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SUMMARY 

A well-known and useful method for generalised regression analysis when a 

linear covariate x  is available only through some approximation z  is to carry out 

more or less the usual analysis with ( | )E x z  substituted for x . Sometimes, but not 

always, the quantity var( | )x z  should be used to allow for overdispersion introduced 

by this substitution. These quantities involve the distribution of true covariables x , 

and with some exceptions this requires assessment of that distribution through the 

distribution of observed values z . It is often desirable to take a nonparametric 

approach to this, which inherently involves a deconvolution that is difficult to carry 

out directly. However, if covariate errors are assumed to be multiplicative and 

lognormal, simple but accurate approximations are available for the quantities 

( | ), 1, 2,kE x z k = ! . In particular, the approximations depend only on the first two 

derivatives of the logarithm of the density of z  at the point under consideration and 

the coefficient of variation of |z x .  The methods will thus be most useful in large-

scale observational studies where the distribution of z  can be assessed well enough in 

an essentially nonparametric manner to approximate adequately those derivatives. We 

consider both the classical and Berkson error models. This approach is applied to 

radiation dose estimates for atomic-bomb survivors. 
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1. INTRODUCTION 

We are concerned with fairly general regression settings, such as generalised 

linear models or regression models for response times, that include a covariate x 

represented in the data only by some estimate or approximation  z.  We assume that 

covariate-estimation errors vary independently between individuals, and as usual that 

conditional on x  the values of z  are uninformative. It is well known that when the 

covariate x  enters the model linearly it is often useful to replace x by the quantity 

( | )E x z  rather than z  and carry out essentially, often exactly, the same analysis as if 

x had been observed. This is often referred to as regression calibration, although that 

term is used more generally. There are several alternative methods, some of which are 

indicated below, for dealing with covariate errors, and our aim is not to argue that 

regression calibration is always the most useful one among these. However, it is 

widely used, effective, reasonably well investigated, and has some particular 

advantages in applications motivating this work.  

Even within regression calibration methods there are substantial variations. In 

particular one may sometimes estimate ( | )E x z  directly by regression in a validation 

dataset where both x  and z are available. In doing this, under the classical error 

model defined below and of primary interest here, one must take care that the 

marginal distribution of x  in the validation dataset is approximately the same as in 

the primary dataset; see for example the admonition in Carroll et al. (1995, 1.3.3§ ). 

Alternatively, if there is an assumed error model formulated in terms of the 

conditional distribution ( | )p z x , then ( | )E x z can be computed from the joint 

distribution ( , ) ( ) ( | )p x z p x p z x=  provided that one can make suitable inference 

about ( )p x  from the observed distribution of the estimates z . This is the approach of 

primary interest here, where the distribution ( )p x  is considered nonparametrically 

and it is assumed that ( | )p z x  is lognormal with scale parameter x .  

Direct nonparametric estimation of ( )p x  from the marginal distribution of z -

values in this setting, referred to as deconvolution when on some scale z x e= + , is 
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difficult although not totally impossible. A useful discussion of this and related 

matters is given in Carroll et al. (1995, Ch.12). In standard asymptotic formulations, 

explicit nonparametric estimation of ( )p x suffers from slow convergence, basically 

because convolution smooths out details of ( )p x  that cannot be recovered. As is 

noted in that reference, two issues are particularly important for current needs: how 

best to use smoothness assumptions regarding ( )p x , and that it is easier to estimate 

( | )E x z  than ( )p x  itself. The contributions of the present paper are precisely in those 

directions. A recent approach of Schafer (2001) uses an EM approach to approximate 

directly something more general than ( | )E x z  but not ( )p x  in its entirely, namely the 

relevant score equation, conditional on z , for estimation of the regression parameter. 

Developed here is a way of reducing deconvolution difficulties when ( | )p z x  is 

taken as lognormal with scale parameter x , assuming only that ( )p x  is suitably 

smooth. First, highly accurate approximation of ( | )E x z  in terms of ( )p x  is given by 

the ratio for 1k =  and 0k =  of Laplace approximations to integrals 

( ) ( | )kx p x p z x dx∫ , which involve only the first two derivatives of log ( )p x  

evaluated at z . The approach also applies for 1k >  in the numerator, thus providing 

approximations to ( | )kE x z  that are useful for several purposes. A second and more 

crucial step involves similar Laplace approximations relating the required derivatives 

of log ( )p x  to those of the logarithm of the distribution of z . The approach is thus 

useful for samples large enough that these latter derivatives can be usefully estimated 

in an essentially nonparametric manner. The proposed approximation to ( | )E x z  is an 

explicit function of the coefficient of variation of the distribution ( | )p z x . 

This approach enables tractable consideration of settings where the covariate 

errors are a combination of two types; namely that indicated above in line with the 

factorisation ( , ) ( ) ( | )p x z p x p z x= , along with another component for which the 

more relevant factorisation is ( , ) ( ) ( | )p x z p z p x z= . This distinction involves what 

are commonly referred to as the ‘classical’ and ‘Berkson’ covariate error models. In 

the classical error model z is an estimate of x in the ordinary sense, and in the 

Berkson model z  is a different kind of approximation such as one arising from 

grouping x -values. Results for the combination of classical and Berkson errors are 
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given in the penultimate section of the paper, and until then all considerations are for 

only classical errors. 

An alternative and popular class of approaches, where consideration of ( | )E x z  

does not arise, consists of adjustment of estimating equations to reduce biases in 

parameter estimators, which might be thought of as extending to generalised linear 

models the classical correction-for-attenuation methods (Fuller, 1987, p. 5). For 

example, this includes methods of Stefanski & Carroll (1987), Stefanski (1989) and 

Nakamura (1990, 1992); see also Carroll et al. (1995, Ch. 6). Generally, the adjusted 

estimating equations must be derived on a case-by-case basis in regard to the 

probability model for the primary response data. Another approach, attractive in being 

very direct and general although computationally intensive, is simulation 

extrapolation as developed by Cook & Stefanski (1994), Stefanski & Cook (1995), 

and described in Carroll et al. (1995, Ch. 5). None of these methods make explicit use 

of theoretical or estimated distributions ( )p x  and ( | )p x z , or of the marginal 

distribution of the observed z -values. On the contrary, some of them and much 

classical literature in the area strongly consider the collection of x -values as nuisance 

or incidental parameters, a type of modelling referred to as ‘functional’.  

Maximum likelihood might be considered as an alternative to the approaches 

indicated above, but our view is more that this is an ideal standard, usually very 

difficult to implement, to which other methods may be at least in principle compared. 

Likelihood methods involve averaging with respect to ( | )p x z  the likelihood function 

if x  were observed, and to implement this involves deconvolution in some sense. As 

noted above, Schafer (2001) considers maximum likelihood with a different approach 

to the deconvolution from that taken here. Our interest in regression calibration is 

largely as an approximation to maximum likelihood, and as noted below this 

approximation can in some settings be quite accurate, to the extent that ( | )E x z  is 

determined. Since adjusted estimating equation methods do not involve ( )p x  or 

( | )p x z , their merits seem to consist more of not having to assess these distributions 

than in being a natural approach for approximating maximum likelihood. This is not 

to say, however, that adjusted estimating equation methods cannot be highly efficient. 

These issues are discussed in Chapter 7 of Carroll et al. (1995), where it is noted that 

the general theoretical matters relevant to this issue are not clear.  
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Although it is not our aim to advocate regression calibration generally over such 

alternative methods, but rather to facilitate this for those who may be inclined for 

some reason to use it, the approach does have some particular advantages in our 

motivating applications: analyses of the atomic-bomb survivor data. There x  is true 

radiation dose and fairly imprecise approximations z  are provided by a general 

dosimetry system using survivor location and shielding. At our institutes and 

elsewhere a great many analyses of the same cohort data are made for different 

purposes and in exploratory modelling. These involve analyses for different health 

endpoints, employing several types of generalised regression models including 

survival analysis, and exploratory work involving choices and modelling of additional  

covariates. For this it is very convenient that once values of ( | )E x z are made 

available in the database, essentially the same methods for ongoing analyses can be 

employed as if x  were observed. It would be enormously inhibiting for exploratory 

work, and probably seldom done even for final results, if either specialised adjusted 

estimating equations or computationally intensive simulation-based methods were 

required. Furthermore, in the final section we note a particularly important 

interpretation of ( | )E x z  for our cohort study.  

It may be helpful to clarify issues regarding use of more or less the same methods 

of analysis with regression calibration as if the true covariate were available. We will 

do this very casually, and in particular the Taylor’s approximation below requires 

further attention or modification in a more careful treatment. It is difficult to 

document the history of the methodological suggestion and its development, but it has 

been popular in biostatistics since the work of Armstrong & Oakes (1982), Armstrong 

(1985) and Prentice (1982a,b); see further references in Carroll et al. (1995, Ch. 3). 

Ignoring covariates measured without error, and first considering x  as observed, 

express the response data for an individual as ( )y x eη α β= + + , where conditionally 

on x  we have ( ) 0E e = and var( ) ( )e xκ α β= + . For exponential family generalised 

linear models, iteratively weighted least squares in this formulation is equivalent to 

maximum likelihood estimation. Writing ( | )z E x z′ = and 

{ ( )}y z x z eη α β β′ ′= + + − +  suggests the approximation  

 ( ) ( ) ( ) ( )y z z x z e z u eη α β η α β β η α β′ ′ ′ ′+ + + − + = + + +"!  . 
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Then conditionally on z  the error term for regression analysis becomes u e+ . It is 

not difficult to see that ( | ) 0E u e z+ =  and  

 2var( | ) { ( ) | } { ( ) } var( | )u e z E x z z x zκ α β η α β β′+ = + + +"  . 

Employing exactly the usual methods means using iteratively re-weighted least 

squares in the model ( )y z wη α β ′= + + , where w u e= + , using variance function 

( )zκ α β ′+ . Since ( | ) 0E u e z+ =  this will lead to consistent estimation even though 

the variance function may not be appropriate. The substitution of ( )zκ α β ′+  for 

{ ( ) | }E x zκ α β+  will usually be innocuous, and the issue requiring consideration 

involves whether the term 2{ ( ) } var( | )z x zη α β β′+"  representing overdispersion due 

to covariate error can be ignored. That the overdispersion involves var( | )x z is one of 

the reasons why we provide approximations for ( | )kE x z for 1k > . Another reason is 

that when the regression model involves kx , for 1k > , then the regression calibration 

method entails substituting ( | )kE x z  for kx . 

When y  is binomial with sample size m , the variance function becomes 
2 2( ) ( ){ ( ) } var( | )k z m m z x zα β η α β β′ ′+ + − +" , so for the Bernoulli case 1m =  there 

is no overdispersion. In fact, |y z remains Bernoulli and iteratively re-weighted least 

squares is maximum likelihood. When y  is Poisson, the variance function is 
2( ) { ( ) } var( | )k z z x zα β η α β β+ + +"# # , and the overdispersion is usually negligible 

when ( )E y is small. For either the binomial case with large m or the Poisson case 

with large mean, the overdispersion should be taken into account. This might be done 

either by using the correct variance function, or by using the variance function 

( )zκ α β+ #  with perhaps only modest loss of efficiency, along with a robust method of 

estimating standard errors not relying on the incorrectly assumed variance function. 

For the analysis of survival data with response time T  with hazard linear in x , 

Prentice (1982a) showed that using the standard analysis with substitution of z′ for x  

provides a close approximation to maximum likelihood estimation provided 

that ( | , ) / ( | )E x z T t E x z>  is near unity; that is, in comparison to z , the response time 

T  carries relatively little information regarding x . Prentice (1982b) has shown that 

similar considerations hold for case-control studies.  
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 We first present the main results for the classical error model, where the 

factorisation ( , ) ( ) ( | )p x z p x p z x= is most natural, and then apply these to our 

motivating example involving radiation doses for atomic-bomb survivors. Following 

that we consider the extension when Berkson errors, where the natural factorisation is 

( , ) ( ) ( | )p x z p z p x z= , are involved as well. 

2. MAIN RESULTS 

Results in this section are based on the factorisation ( , ) ( ) ( | )p x z p x p z x=  most 

useful in the classical error model. As noted, we will assume that covariate estimation 

errors are multiplicative and ( | )p z x is lognormal with scale parameter x  and 

constant coefficient of variation. Henceforth, we clarify notation by usually 

expressing the distributions of x  and z  as ( )Xp i  and ( )Zp i , and so forth, unless the 

meaning is otherwise clear. We first provide an approximation to ( | )E x z  as a 

functional of ( )Xp i , and then extend this to a functional of ( )Zp i . 

The argument and results are more direct on the log scale, and we write 
* log( )x x= and * log( )z z= . Under our model we then have that * * *z x e= + , where 

the covariate error *e  is Gaussian and independent of *x . We first assume that 
*( ) 0E e = , so that * * *( | )E z x x= , and then provide modifications for the case that 

( | )E z x x= . For either case write 2 * *var( | )z xσ = , noting that the square root of this 

is the approximate coefficient of variation of |z x . Of course assessment of σ  is an 

important and difficult matter, but one considered outside of the scope of this paper. 

Our first main result is the following approximation to ( | )kE x z  as a functional 

of ( )Xp i , or more directly of * ( )
X

p i . This is given in terms of correction factors 

( )kC z  defined and approximated as   

 1 2
2{ 2 ( )}/{1 ( )}with( | ) { ( ) } ( )k

k k
k

k d z d zE x z C z z C z σω + −≡ ! . (1) 

Here 2exp( / 2)ω σ=  and 1( )d z and 2 ( )d z  are the first two derivatives of *log ( )
X

p i  

with respect to *x , evaluated at * log( )z z= . The result (1) is only valid when 
2

21 ( ) 0d zσ− > . The formal derivation is very straightforward, following directly 
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from replacing *log ( )
X

p i  by a second-order expansion at the point *z in each of the 

integrals * * * * *exp( ) ( ) ( | )kx p x p z x dx∫ and * * * *( ) ( | )p x p z x dx∫ , whose ratio is 

( | )kE x z . This means that the relationship in (1) is exact when ( )Xp i  is lognormal, 

but our interest is in a general ( )Xp i . These approximations to the two integrals are 

Laplace-type (Barndorff-Nielsen & Cox, 1989), where the asymptotic index is 2σ − . 

The key to impressive accuracy, in this and many other settings, is that the underlying 

second-order expansion is made locally to each value of z  and need only be reliable 

for x -values where ( | )p z x  is substantial. Moreover, the approximation to the ratio is 

substantially better than that to either term since moderate errors tend to cancel 

(Tierney & Kadane, 1986).  More formally, the approach requires that 2 ( )d z  be 

continuous, and then it is well known that for such Laplace approximations the error 

for each integral is 2( )O σ −  and that for the ratio of the two integrals is 4( )O σ − .  

We now turn to approximations as functionals of ( )Zp i , the distribution of 

observed quantities z . Further Laplace-type approximation explained below relates 

the derivatives ( )jd z  arising in (1) to the derivatives ( )jd z#  of *log ( )
Z

p i , with respect 

to *z  and evaluated at * log( )z z= . This relationship is given by  

 2
2( ) ( ) /{1 ( )}, 1,2j jd z d z d z jσ+ =# #!  , (2) 

and substituting these into (1) yields our second main result,  

 2 1
2 ( )} ( )2{1with( | ) { ( ) } ( )k k

k k
z zdk dE x z C z z C z σω ++≡

### # !  . (3) 

Implementing (3) involves estimating the derivatives required there from the 

empirical distribution of the observed covariate estimates z . Although the local 

nature of the underlying approximations might suggest using nonparametric local 

estimates of the derivatives 1( )d z#  and 2 ( )d z# , this should probably be avoided in most 

applications unless very substantial smoothing is employed. This is because the true 

derivatives being estimated will typically be quite smooth functions of z , and it will 

be unattractive at best if the correction factors ( )kC z#  are not correspondingly 

smooth. Therefore the intended use of these methods, which should usually present no 
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serious difficulty, is that one fit globally to the empirical distribution of *log ( )
Z

p i  a 

curve suitable for analytical differentiation, and with continuous second derivative. 

For this, taking *{log ( )}
Z

f p i as a third- or fourth-degree polynomial in *( )g z , for 

some suitable functions ( )f i  and ( )g i  arrived at in an exploratory manner, should 

usually be adequate. Splines might be used, but with some attention to adequate 

smoothing and continuous second derivative.  

Relationships (2) can be formally derived as follows. We have that * * *z x e= + , 

where *e  is Gaussian and independent of *x . Equations (2) would arise directly if *x  

were Gaussian, in terms of moments of *x  and *z . Furthermore, along lines similar to 

the development of (1), local approximations show that (2) holds more generally. In 

particular, differentiating the convolution equation yields that  

{ } { }
* *

* *

* * * * * * * *
1 1

* * 2 * * * * * 2 * * * *
1 2 1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) .
Z X

Z X

p z d z p z e d z e p e de

p z d z d z p z e d z e d z e p e de

= − −

+ = − − + −

∫
∫

#

# #
 

Of course these functional equations relating the derivatives have solution (2) when 

* ( )
X

p i  is Gaussian. Use of local second-order approximations of *
* *log ( )

X
p z e−  at 

each *z  then provides (2) as an approximate solution to the functional equations. This 

is a Laplace-type approximation, but less accurate than (1) because the aim is not 

evaluation of the integrals but solution of the functional equations. Nonparametric 

deconvolution is a notoriously difficult problem, and the evaluation in the following 

section of the adequacy of approximation (3) is especially important.  

There is interest in conditions such that ( | )E x z z< , since one might expect this 

to be true for large values of z when the distributions ( )Xp i  or ( )Zp i  are highly 

skewed to the right. Clearly, in the case of approximations (1) and (3) that condition 

holds in terms of ( )Xp i  when 1( ) 1/ 2d z < − , or in terms of ( )Zp i  when 

2
1 2( ) {1 ( )}/ 2d z d zσ< − +# # .  

Furthermore, it will often be the case that 2 ( )d z  and 2 ( )d z#  vary modestly over 

the range of z , in which case the ratios 2 1( ) / ( )C z C z  and 2 1( ) / ( )C z C z# #  are fairly 

constant. This would mean that 2( | )E x z  is approximately a constant multiple of 
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2( | )E x z , and thus that var( | )x z  is approximately proportional to 2( | )E x z . The 

former is useful when testing linearity in x  of the regression model by considering a 

quadratic alternative, and the latter for considering the effect of overdispersion 

introduced by the distribution of ( | )x E x z− .  

Finally, in the case that ( | )E z x x= , rather than * *( | )E z x x=  as assumed above, 

the changes are as follows. The z -variate, altz  say, unbiased on the linear scale is 1ω−  

times that unbiased on the log scale, so one could simply rescale altz  and apply the 

above methods. We note, however, that in the case of approximation (3) the result is 

that alt
alt( ) ( )k kC z C zω=# # , and for approximation (1) it is 1

alt
alt( ) ( )k kC z C z+= .   In the 

case of approximation (3), this involves some change in (2), namely that the 

expression for 1j =  becomes 2 2
1 1 2 2( ) { ( ) ( )}/{1 ( )}d z d z d z d zσ σ= − +# # # , whereas that 

for 2j =  remains the same. 

3. EXAMPLE 

The example involves rather imprecisely estimated radiation doses for atomic-

bomb survivors followed up by the Radiation Effects Research Foundation in 

Hiroshima and Nagasaki, which are used in the study of radiation-related cancer and 

other diseases. The dosimetry system providing estimates z is documented in Roesch 

(1987). We note that it consists of having assessed each survivor’s location and 

shielding through interviews, and then applying physical calculations of radiation 

transport through air and shielding materials.  

The value of the proposed methods becomes clearer in relation to what has been 

used in the past for these data. Pierce et al. (1990), also reported in Pierce et al. 

(1992), estimated the distributions of true radiation doses for Hiroshima and Nagasaki 

as Weibull distributions, although restricted to the dose range used below, with 

cumulative distribution functions 2
1 1 2( ) 1 exp( ) ; {2.84,2.33}, 0.5XF x xθθ θ θ= − − = = , 

where the two values of 1θ  are for Hiroshima and Nagasaki, respectively. The 

adjustment factors 1( )C z  and 2 ( )C z  were then computed by numerical integration, 

and approximated in terms of second-degree polynomials in log( )z  for routine use. 

We have found that the error in approximation (1) for this specific Weibull setting is 

totally negligible, but there was really no need for this when assuming that the above 
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estimates of ( )Xp i  are adequate. The unattractive aspects of the methodology were 

involved in the deconvolution step used in arriving at the above estimates of ( )XF x . 

First ( )Zp i  was fitted by a Weibull distribution for each city, using the restricted dose 

range indicated below. Then, for selected values of {log( ) | }SD z xσ = , trial and error 

was used to find Weibull distributions for ( )Xp i  that correspond approximately to the 

estimated Weibull distributions for ( )Zp i . The criterion for this correspondence was 

rather arbitrary, but the weakest link was assuming Weibull forms, particularly for 

( )Xp i . This method has been used extensively at the Radiation Effects Research 

Foundation and elsewhere for a decade, assuming 35% coefficient of variation 

classical errors, that is 0.35σ = . Comparison of previous results to those obtained 

here is indicated below. 

We illustrate the new methods here for Nagasaki, where the log empirical density 

log ( )Zp i  departs more than for Hiroshima from a second-degree polynomial, for 

which the approximation (1) is exact. The dose range used here is 0.10 – 6 Gy (Gray) 

of primary interest for the adjustments in question, which for Nagasaki involves about 

4000 survivors, with dose quartiles 0.20, 0.45 and 0.85 Gy. About 85% of Nagasaki 

survivors in the cohort have doses less than 0.10, where radiation risks are very small, 

and including these low-dose survivors would greatly and unnecessarily complicate 

considerations here. As a perspective on radiation dose levels, with whole-body 

exposures a dose of 1 Gy would require serious medical attention, a dose of 3 Gy is 

roughly the LD50, and annual occupational limits for radiation workers are around 

0.02–0.05 Gy. Roughly speaking, cancer rates for a survivor are increased by about 

50% per Gy for all remaining lifetime (Pierce et al., 1996).  

Figure 1 shows the log-log empirical density of dose estimates z  for Nagasaki, 

along with the fit of a third-degree polynomial on the indicated dose range, namely 
* * 2 * 3const 0.543 0.503( ) 0.110( )z z z− − − .  Our initial aim was to use the exploratory 

method suggested in the previous section, but this worked out much more simply than 

expected since the transformations ( )f i  and ( )g i  suggested there were not necessary 

in this case.  
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Fig. 1. Empirical density and cubic polynomial fit, log-log scale,  

for Nagasaki and dose range 0.10 – 6 Gy. 

In order to demonstrate the accuracy of the Laplace approximations in (1), we 

first pretend that the curve in Fig. 1 estimates the distribution ( )Xp i  of true doses. 

Figure 2 shows, for 0.35σ =  and 0.7σ = , correction factors 1( )C x  and 2 ( )C x  

computed both by numerical integration using the cubic polynomial and by 

approximation (1). Henceforth we make plots on the range 0.25–6 Gy to avoid, in 

integrations, excessive extrapolation to doses below the 0.10 used in Fig. 1. The 

adjustment factors, both exact and approximate, appear to be unstable for doses less 

than 0.25. For the application we have little interest in this, particularly in view of the 

extrapolative uncertainties involved, since risk estimation relative errors at very low 

doses dominate effects of dose adjustment.  
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Fig. 2. Comparison, for (a) 0.35σ =  and (b) 0.70σ = , of approximation (1) (dashed 

lines) to exact results (solid lines) based on numerical integration, taking the curve in Fig. 1 as 

estimating ( )Xp i rather than ( )Zp i . The lower pair of lines pertains to 1( )C x and the upper 

pair to 2 ( )C x . 

In Fig. 3 we show for 0.35σ = , the choice ordinarily used for our setting, final 

results of using 1( )C z#  and 2 ( )C z#  given in (3). These are compared to 1( )C z  and 

2 ( )C z  given by (1) when taking ( ) ( )j jd z d z= # , to demonstrate the effect of the 

deconvolution to estimate ( )Xp i  from ( )Zp i . We note that these results differ 

substantially from what was obtained using the previous method indicated at the 

outset of this section. For example, whereas 1(4) 0.78C =#  in Fig. 3, the value obtained 

before was 1(4) 0.87C = . We believe that this reflects the inadequacies of the previous 

methods, and that the current assessment is essentially correct, given the assumptions. 

However, we note that such a discrepancy is not really large in relation to 

uncertainties of modelling covariate errors. Beyond the dependence on the assumed 

value of σ , we note that assuming ( | )E z x x=  rather than * *( | )E z x x= , as we have 

done here, would result in 1(4) 0.83C =# . Such variations, however, do not have a large 

effect on eventual estimation of quantities such as radiation-related cancer risk, and 

the primary value of methods under consideration is to show that covariate errors 

roughly as considered here actually have very modest effect on final regression 

analyses of that nature. 
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Fig. 3. Final results, with 0.35σ = , for 1( )C z#  and 2 ( )C z# , the solid curves of each 

pair, where the lower pair contains 1( )C z# . Dashed curves in each pair are 1( )C z  and 

2 ( )C z  when one takes the derivatives of ( )Xp i  as those of the observed ( )Zp i , 

omitting the deconvolution step.  

We have evaluated by simulation the use of approximation (3), compared to 

exact results based on the true distribution ( )Xp i , for settings similar to this example. 

For the sample size arising in the example, discussed further below, Table 1 

summarises the errors in estimating 1( )C z , relative to the reduction 11 ( )C z− , at 

4z = Gy, for the three true dose distributions shown in Fig. 4 and two values of σ . 

The intermediate distribution there corresponds essentially to the fitted curve shown 

in Fig. 1, rounding the polynomial coefficients there to 
* * 2 * 3const 0.50 0.50( ) 0.10( )x x x− − − . The other two distributions correspond to 

replacing the coefficient 3 0.10b = −  by 3 0b =  and 3 0.20b = − . In Table 1, notation 

such as 20%> −  means at least 20% error in the negative direction. Thus, for 

example, with 3 0.10b = − as in the example and for 0.35σ = , there were 6.9% + 1.4% 

= 8.3% of trials with relative error greater than 20%. As discussed below, most of the 

error seen in Table 1 is not due to approximation (3) but to errors in estimation of the 

true ( )Zp i .  

0.7

0.8

0.9

1

1.1

1.2

0 1 2 3 4 5 6

Dose

A
dj

us
tm

en
t F

ac
to

rs



 

 15

 

Fig.4. Assumed densities of true dose for simulation. Solid line corresponds to Fig. 1 and 

the dashed lines to 3 0 and 0.20b = − , with the former giving the more Gaussian-like 

curve.   

Table 1. Simulation distributions, with 3,000 trials, of relative error of approximation 

(3) at 4 Gy 

 

Relative Error 

3b  > –30% > – 20% > –30% –10% to 10% >10% >20% >30% mean 

0.35σ =  

0 0.012 0.071 0.248 0.584 0.168 0.036 0.007 0.016 

-0.10 0.017 0.069 0.265 0.624 0.110 0.014 0.001 0.032 

-0.20 0.040 0.135 0.380 0.545 0.075 0.005 0.000 0.069 

0.50σ =  

0 0.010 0.071 0.258 0.573 0.169 0.041 0.007 0.017 

-0.10 0.014 0.068 0.259 0.634 0.108 0.014 0.001 0.033 

-0.20 0.052 0.189 0.469 0.486 0.045 0.005 0.000 0.096 
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Before giving some further details of the simulation, we discuss important 

matters of perspective that will arise more generally. For the application we are 

mainly interested in the value of 1( )C z  in the range 2–4 Gy. Although there are about 

4,000 Nagasaki survivors with dose estimates in the range 0.1 to 6 Gy, only about 400 

of these have dose estimates of at least 2 Gy. In the simulations we maintain for the 

other dose distriubutions the 4,000 individuals in the range 0.1 to 6 Gy. Most of the 

error seen in Table 1 comes not from the Laplace-type approximations leading to (1) 

and (2), but from estimating the derivatives ( )jd z# . Evidence for that derives from the 

fact that for 3 0b =  the approximations (1) and (2) are exact, and the errors for the 

three values of 3b  are similar. The error in estimating the ( )jd z#  depends on the 

method used for this estimation, described below.  

If instead of 4,000 there were only 2,000 survivors in the full dose range there 

would be so few at above 2 Gy that smoothness assumptions stronger than those used 

here would be required. If there were 10,000 survivors in the full dose range, errors 

such as those reported in Table 1 would be much smaller. For example, the 8.3% 

chance, referred to above, of errors of at least 20% for 0.35σ = is then reduced to 

0.8%, and essentially the same reduction occurs for 0.50σ = . Those 10-fold 

reductions are for 3 0.10b = − , and for 3 0.20b = −  the corresponding reductions are by 

factors of about 6 for 0.35σ = , and about 3 for 0.50σ = . This indicates, as claimed, 

that fairly generally the errors do not result mainly from approximations (1) and (2) 

but from the inherent difficulty of estimation of the ( )jd z#  in the right-hand tail of the 

distribution.  

In the simulation we take the approach indicated in Fig. 1 of fitting a cubic 

polynomial to the log-log density of z  for use in (2) and (1). Use of a quartic 

polynomial gives very similar results. This is not strictly speaking a nonparametric 

approach, but indicates the general nature of our intended application. It would 

become somewhat more nonparametric if as suggested earlier one finds by 

exploration suitable nonlinear transformations of both the log density and log doses 

for use of the polynomial-based estimation of required derivatives. In the simulation 

unweighted regression of empirical densities in 40 equal width bins was used. It is 

important to generate true doses over a wider range that that used for estimated doses, 
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so that the convolution remains in effect near the endpoints. Sampling was continued 

until there was the desired number of estimated doses in the range 0.1–6 Gy, this 

being 4,000 for Table 1.  

4. BERKSON ERRORS 

The classical error model is appropriate when z  is in the usual sense an estimate 

of x , such as that on the original or logarithmic scale z x e= +  with cov( , ) 0e x = .  

The Berkson error model arises when z  is some other type of approximation, such as 

would arise from grouping x -values, in which case it is better to think of x z e= +  

where cov( , ) 0e z = , along with the factorisation ( , ) ( ) ( | )p x z p z p x z= . In the 

classical case z  is more variable than x , and in the Berkson case it is less variable.  

Although we chose not to complicate the above example with such matters, and 

could not deal with them using previous methods, for the atomic-bomb survivor 

setting the overall error is a composite of the two types. Classical error arises mainly 

from estimation of survivor location and shielding, whereas Berkson error arises from 

using the location and shielding information only to some approximation, which 

would be necessary even if this information were known without error. 

A formulation for our lognormal setting allowing for both classical and Berkson 

errors can be expressed in terms of a latent variable *exp( )u u=  as  

 * * *
Cu x e= +  (4) 

 * * *
Bu z e= +  (5) 

where *
Ce  is classical with variance 2

Cσ  and independent of x , *
Be  is Berkson with 

variance 2
Bσ  and independent of *( , )Cz e .  That is, u  can be thought of as an 

unobserved ‘estimate’ of x  as in (4), whereas because of some smoothing or grouping 

what is available is only z  as provided by (5). A slightly different formulation was 

utilized by Tosteson & Tsiatis (1988) and Reeves et al. (1998), equivalent to the 

above at least when all the variables are normally distributed.  

The methods of this paper can be readily employed for this more general setting 

as follows. Suppose first, artificially, that the required derivatives of ( )Xp i  were 

known. Even though u  is not observed, approximation (1) can be applied to equation 
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(4) to obtain ( | ) { ( ) }k k
kE x u C u u! . Then u  can be eliminated from this result by 

taking the expectation corresponding to equation (5), conditionally on z . Usually, the 

functions { ( ) }k
kC u u , for 1,2k =  are close enough to linear in u  to allow using for 

this expectation simply { ( ) }k
kC z z .  

To carry this out in practice requires us, as before, to relate the derivatives of 

* ( )
X

p i  to those of * ( )
Z

p i  in the more general setting. We show at the end of this 

section that the generalization of the previous relationship (2) that corresponds to the 

model given by (4) and (5) is  

 2 2
2( ) ( ) /{1 ( ) ( )}j j C Bd z d z d zσ σ+ −# #! . (6) 

Thus, given estimates of the derivatives ( )jd z# , which do not depend on the error 

model, one uses (6) to estimate the derivatives ( )jd z  to be used in approximation (1), 

taking 2 2
Cσ σ= , for obtaining the intermediate result ( | ) { ( ) }k k

kE x u C u u! . Then 

equation (5) involving 2
Bσ  is employed to compute the expectation 

[{ ( ) } | ] ( | )k k
kE C u u z E x z! . As noted above, one may usually take 

[{ ( ) } | ] { ( ) }k k
k kE C u u z C z z!  with negligible error. If necessary, this error may be 

reduced by approximating { ( ) }k
kC u u  as log-quadratic in * *u z− , so that the 

expectation under (5) can be evaluated exactly when *
Be  is normally distributed.  

For our example, consider the two cases where we assume that 0.35B cσ σ= =  on 

the one hand, or 0.35, 0c Bσ σ= =  on the other. In the first case we see from (6) that 

the net effect of the deconvolution is nil, so that we apply approximation (1) with 

( ) ( )j jd z d z= # . Intuitive support for this is provided by recalling that classical errors 

alone result in z  being more variable than x , and Berkson errors alone result in z  

being less variable than x , so when both types of error are equally present these 

effects cancel. Since we can use the approximation 1 1{ ( ) | } ( )E C u u z C z z! , we have 

already shown the comparison of interest in the bottom two curves in Fig.3, where the 

dashed one was given there simply to illustrate the effect of omitting the 

deconvolution.  
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We were surprised to find that adding the Berkson error results in adjustment 

factors nearer to unity, meaning that adding these errors actually decreases the bias in 

the naïve analysis when simply replacing x  by z . On reflection, it seems this may be 

related to results following up on a suggestion by Wald, that under the classical error 

model the bias may be reduced by grouping the data; see for example Cheng & Van 

Ness (1999, Ch. 4). 

 To derive (6), denote by ˆ ( )jd i  the derivatives of * ( )
U

p i analogous to those 

already considered. Applying the previous result (2) to equation (4) yields  

 2
2

ˆ ˆ( ) ( ) /{1 ( )}, 1,2j j Cd u d u d u jσ+ =!  , 

and application of (2) to equation (5) yields  

 2
2

ˆ ˆ( ) ( ) /{1 ( )}, 1,2j j Bd u d u d u jσ+ =# !  . 

Solving these four equations provides the result (6). 

5. DISCUSSION 

In 1§  we noted that the quantities ( | )E x z  have a particularly important 

interpretation for the atomic-bomb survivor data. The dosimetry system does not take 

into account information regarding dose provided by the fact of survival of the bombs, 

but only survivor location and shielding. To a substantial extent the neglected 

information is reflected in the distribution ( )Xp i , this being very highly skewed with 

relatively few survivors at high doses. If the survival of a dose x were proportional to 

( )p x , then ( | )E x z  would take into account the information provided by survival. 

What is actually desired, though, is an appropriate dose estimate not specifically for 

survivors but for those belonging to the cohort study, and ( | )E x z  may be considered 

the appropriate dose estimate for them. These issues are discussed more thoroughly in 

Pierce et al. (1990) and Pierce et al. (1992). In our view, similar considerations are 

involved in any observational study, where ( | )E x z  reflects aspects of selection of the 

study population that are normally not considered in arriving at the estimates z . 

We now consider the limitations of the proposed method for approximating 

( | )E x z . Approximation (1) would be usually very accurate if the true ( )Xp i  were 

known and the second derivative of the log density were reasonably smooth. The 
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more difficult issues arise with regard to the use of approximation (2), partly in 

assessing the accuracy of the relationship itself if the true values of the ( )jd z#  

employed there were known, but probably more importantly in estimating those 

derivatives. The simulation results in 3§  assess the combination of both of these 

matters, providing for some separation of them since one of the choices for ( )Xp i  is 

normal, where the Laplace approximations are exact. Those results suggest that when 

the true densities are reasonably smooth, the dominant error results from estimation of 

the derivatives ( )jd z# , which also involves smoothness assumptions and how they are 

used in this estimation. The difficulties are most serious when, as in our example and 

seems likely to be common, the main interest is in ( | )E x z  for large values of 

z where the data for estimating the required derivatives are sparse. In practice, 

therefore, the most delicate matter in the proposed method seems to be to achieve 

suitable ‘nonparametric’ estimation of the derivatives 1 2( ) , ( )d z d z# # , while imposing 

enough smoothness on ( )Zp i  to cope with limitations of the data. These issues might 

often require more consideration than seems called for in our example, where we are 

quite confident in our final results.  

A general aim of this paper is to encourage nonparametric use of the apparent 

distribution of the covariable x  in computation of ( | )E x z , whether by the methods 

of this paper or otherwise. Such a nonparametric approach is in principle rather 

daunting because of the deconvolution required for direct estimation of ( )p x . Given 

the lognormal assumption regarding ( | )p z x , the method suggested here seems likely 

to be reasonably accurate in relation to other modelling uncertainties provided that 

( )p x  is quite smooth and there are a few hundred observations on z  in the range of 

primary interest for ( | )E x z . When difficulties are encountered because of limitations 

to the extent of the data, these surely must, regardless of the specific approach, be met 

by stronger modelling assumptions regarding ( )p x . It seems to us that this will often 

be more suitably done in terms of imposing smoothness rather than choosing some 

standard parametric form. Imposing this smoothness in terms of the log density 

derivatives considered focuses on the aspects of ( )p x  that determine ( | )E x z . If 

considerable smoothness in this sense is imposed, then it seems that the error in 

approximations (1) and (2) will be modest, and the issue becomes primarily how then 
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to estimate the derivatives ( )jd z# . Improvements on our suggestion for this would 

likely be useful. 

For the atomic-bomb survivor application the primary value of careful 

consideration of covariate errors is to see that their effect on final regressions, such as 

for radiation-related cancer, is actually quite modest. As reported in Pierce et al.  

(1990), for the magnitude of errors ordinarily considered such risk estimates are 

typically increased by around 10% in comparison to the naïve analysis that ignores 

dose errors. Detailed assumptions in error modeling appear not to alter this end result 

appreciably.  
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