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SUMMARY 

It is well known that a given dataset can be thought of within various reference 

sets, with no effect on the likelihood function but leading to different frequency 

inferences. Here we focus on the effect of censoring models for response-time data 

and stopping rules for sequential experiments, although our results have more general 

implications. Since the choice of reference set does not affect first-order likelihood-

based inferences, higher-order likelihood asymptotics providing explicit corrections to 

these are ideally suited to assessment of reference-set effects. It has been noted that 

there are two aspects of higher-order corrections to first-order likelihood methods: (i) 

that involving effects of fitting nuisance parameters and leading to the modified 

profile likelihood, and (ii) another part pertaining to limitation in adjusted 

information. We show that correction (i) is largely independent of the reference set, 

whereas (ii) is what reflects that choice. In particular, to second order (i) is not 

affected by either censoring models or stopping rules, whereas (ii) is affected by 

stopping rules but not censoring models. These structural results bear on issues 

regarding likelihood-Bayesian vs frequency inference, clarifying that modified profile 

likelihood is appropriate for both modes of inference through its independence of the 

reference set, and it is only in regard to adjustment (ii) that they should differ in this 

respect. Two side issues are addressed, one being the applicability of higher-order 

likelihood asymptotics to sequential settings. The other pertains to the meaning of 

ideal inferences for evaluating reference set effects, since exact methods will not exist 
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generally enough for this purpose. In this regard it is shown that the ordinary signed 

likelihood ratio statistic, its usual higher-order modifications, and the version arising 

from integrating out nuisance parameters using any smooth prior, all provide to 

second order the same ordering of datasets according to evidence against the 

hypothesis. Thus in a strong sense all of these test statistics are second-order 

equivalent, even though to this order they have different limiting distributions.  

Some key words: censoring model, higher-order asymptotics, likelihood asymptotics, 

likelihood principle, modified directed deviance, modified profile likelihood, 

sequential experiments. 

1. INTRODUCTION 

It is well known that a given dataset can be thought of within various reference 

sets, i.e. hypothetical repetitions of an experiment, leading to different frequency 

inferences. We are interested only in choices of reference set resulting in the same 

likelihood function for the data at hand. See, for example, Cox & Hinkley (1974, §  

2.3, 2.4). There are various reasons for interest in the general matter, including: (i) 

foundational issues involving the likelihood principle or contrast of frequency and 

Bayesian inference, (ii) both theoretical and practical unattractiveness of inferential 

dependence on models for censored or otherwise incomplete data, and (iii) further 

insights into how inferences should depend on stopping rules in sequential 

experiments.  Our aim is to clarify the structural dependence of frequency inference 

on the choice of reference set, with specific emphasis on (ii) and (iii) but also adding 

clarification to (i).  

Our interest is in directional inference regarding a scalar parametric function 

( )ψ θ in multiparameter problems, couched in terms of significance tests but largely 

with the aim of inverting these for confidence intervals. We consider only 

distributions under the hypothesis, as required for these aims. Almost never is there an 

‘exact’ test for hypotheses of this nature within each of two reference sets, since this 

would require that in both settings the problem is either a full-rank exponential family 

or a transformation model. We will thus refer to ‘ideal’ rather than ‘exact’ inference, 

which involves asymptotic considerations dealt with in § 2. 

Sequential settings raise issues regarding the validity of usual first order 

asymptotic methods, considered in §  4, and for the meantime we note that our general 
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considerations apply for stopping rules where first-order methods are valid. The 

asymptotic index is generally an information matrix scaling factor that we usually 

denote informally by n ; often this is the number of independent observations but for 

sequential settings the index is essentially ( )E n . All results are for so-called moderate 

deviations, basically where 1/ 2ˆ ( )pO nθ θ −− = , and thus little distinction is required 

between ( )pO ⋅  and ( )O ⋅ . When we say that a relation holds to / 2( )kO n− , i.e. to 

thk order, we mean when ignoring terms of / 2( )kO n− in asymptotic expansions. 

Usually the reference quantity will be (1)O  and if not we will strive to make clear 

whether this refers to absolute or relative error. 

Pierce & Peters (1994) noted that modern higher-order asymptotics, in the form 

lately called likelihood asymptotics, provides for incisive quantitative investigation of 

reference set issues. Likelihood asymptotics express ideal frequency directional  

P-values explicitly in terms of  

(a) the contribution from the directional likelihood ratio statistic, which is in 

our framework both independent of the choice of reference set and first-

order standard normal for any such choice; and 

(b) a higher-order adjustment depending on more than the likelihood function 

and thus capturing the effect of the reference set, along with other aspects 

of moving from first-order likelihood inference to more precise P-values.  

The adjustment (b) generally affects P-values by 1/ 2( )O n− , yielding accuracy to at 

least 1( )O n− . The main points to be made are that sometimes the effect of the 

reference set on that adjustment is of 1( )O n− , and that usually the effect on a major 

aspect of it is of that order. It might be said that effects of that magnitude are nil since 

it seems that, generally enough for purposes of comparing reference sets, ideal 

inferences may only be defined to 1( )O n− .  

Barndorff-Nielsen & Cox (1984 and 1994, § 7.5), and Sweeting (2001) used 

likelihood asymptotics to study reference set effects, considering both censoring and 

sequential settings. However, they only considered 2-sided P-values, where 

directional effects often cancel to second order, and thus some of their statements may 

superficially seem contradictory to ours. 
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For one-parameter models, Pierce & Peters (1994) used the adjustment (b) 

referred to above to investigate the magnitude of the 1/ 2n−  term of the dependence of 

P-values on stopping rules in highly stylized one-parameter settings. In other 

considerations they failed to realize that, as shown here, the effect of censoring model 

on the term (b) is of 1( )O n− . To an extent this is simply because potential censoring 

times, when they are all known, are ancillary statistics, and since ideal inference 

should be conditional on ancillaries it will not depend on the censoring model. 

However, potential but unrealized censoring times are often not known, and hence a 

more general argument is needed. Censoring is an instance of missing or coarsened 

data, and results here will to some extent apply to these more general settings. 

Pierce & Peters (1994) considered only in passing settings with nuisance 

parameters, making a conjecture that is clarified here. In such settings (b) comprises 

two parts: one reflecting effects of fitting nuisance parameters and the other pertaining 

to moving from likelihood-based inference to frequency P-values. We show here that 

the former of these parts depends to at most 1( )O n− on stopping rules for sequential 

experiments, where these are considered much more generally than by Pierce & 

Peters. This part of the higher-order adjustment provides what is referred to as the 

modified profile likelihood and thus we see that, for the two primary settings 

considered, modified profile likelihood indeed has the likelihood-like character of 

being largely free of the reference set.  

Before turning to our main results we give some background material. There is 

by now a vast literature on asymptotic theory related to this paper, and we refer only 

to papers very directly pertinent to our developments. We largely follow the 

development due to Barndorff-Nielsen, noting that Fraser and co-workers have 

developed a somewhat different approach; see for example Fraser, Reid & Wu (1999), 

Fraser (2003). Surveys of relevant literature are given by Reid (1996, 2004) and 

Skovgaard (2001), and useful treatments that include introductory matters are given 

by Pace & Salvan (1997) and Severini (2000).  
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2. BACKGROUND ON HIGHER-ORDER ASYMPTOTICS 

Ideal inference 

We denote by y  the entire dataset, whose fully-parametric distribution for a 

given reference set is governed by a multidimensional parameter θ . Consider testing 

an hypothesis ( )ψ θ ψ=  versus one-sided alternatives, where ψ  is a scalar function. 

Ideal inferences, and the higher-order asymptotics of interest here, begin with the 

directed deviance, i.e. the signed square root of the asymptotically 2
1χ  generalized 

likelihood ratio statistic,  

 { } 1/ 2ˆ ˆˆ( ) sgn( ) 2 ( ; ) ( ; )r y l y l yψ ψψ ψ θ θ = − −  , (1) 

where ( ; )l yθ  is the loglikelihood function, θ̂  and ψ̂  are maximum likelihood 

estimators, and ˆ ˆ( , )ψ ψθ ψ ν=  is the constrained maximum likelihood estimator under 

the hypothesis. In that last notation, the nuisance parameter is denoted by ν  and its 

constrained estimator by ψ̂ν . Note that ˆ( ; )l yψθ is the log profile likelihood and 

ˆ( ; )l yθ is its maximum value. It is useful to have the subscript ψ  explicitly denoting 

both the interest parameter and value of the hypothesis being tested. The value of rψ  

does not depend on the reference set, and quite generally this quantity has to first 

order a standard normal distribution regardless of the reference set. 

As already noted, reference set effects must be considered in terms of ideal, 

rather than exact, frequency inference. Fundamental issues of inference involve only 

an ordering of datasets y  according to evidence against the hypothesis. That is, given 

such an ordering the evaluation of a P-value involves only distributional calculations 

unrelated to theory of inference. In spite of well-known limitations of using the 

standard normal approximation to the distribution of ( )r yψ , there are strong reasons 

for why this statistic provides the ideal ordering of datasets. It is shown in Appendix 1 

that the ordering of datasets provided by ( )r yψ  is to second order not altered by 

employing usual modifications of this statistic to improve its standard normal 

approximation, nor by using a one-parameter version of ( )r yψ based on any of the 

usual pseudo-likelihoods for ψ . This includes the usual modified or adjusted profile 
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likelihoods and also the likelihood arising from integrating out the nuisance parameter 

according to any smooth prior distribution. These results suggest that to second order 

the ideal P-value for observed data obsy  is of form { ( ) ( ); , }obspr r y r yψ ψ ψ ν≤ , which to 

this order does not depend on ν . The semi-Bayesian result noted above is to us a 

particularly compelling part of the justification for this. There are various reasons for 

why it is unlikely that there is a general theory of frequency inference to third order 

and thus we refer to the method just given as ideal, rather than ideal to second order. 

There are further comments on third-order matters below. 

We now turn to the usual approximation of such P-values arising in likelihood 

asymptotics.  We note that there is basically nothing in the derivation of the following 

results excluding their applicability to sequential experiments, provided that the 

stopping rule is such that ( )r yψ  has to first order a standard normal distribution. We 

return to such issues in § 4.  

Approximating the distribution of ( )r yψ  

Details and further references regarding the following are provided in Appendix 

2.  Barndorff-Nielsen (1986; see also §  6.6 of Barndorff-Nielsen & Cox, 1994) 

proposed an adjusted version of the signed likelihood ratio statistic of form explained 

below and further in Appendix 2,  

 * 1( ) ( ) { ( )} log{ ( ) / ( )}r y r y r y u y r yψ ψ ψ ψ ψ
−= + , (2) 

such that to second order and for observed data obsy ,  

 { } { }*( ) ( ); , ( )obs obspr r y r y r yψ ψ ψψ ν≤ Φ!  (3) 

with Φ  the standard normal distribution function. An implication of (3) is that to 

second order the left side depends only on ψ . The adjustment to rψ  is 1/ 2( )O n− and as 

discussed in the Introduction it subsumes the aspect of inference depending on the 

reference set. Note that (3) is valid if and only if *( )r yψ  is standard normal to second 

order. In fact this latter condition generally holds to third order, and focus on that has 

rather obscured the second-order relation (3), even though obtaining this was the 

original motivation for (2). The relation (3) cannot be generally valid to third order, 
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since to that order *( )r yψ is not a function of ( )r yψ ; see comments at the end of 

Appendix 2.  

It is in principle possible to compute the left side of (3) to third order without 

knowledge of the true ν , since DiCiccio, Martin & Stern (2001) have shown that to 

this order { } { }ˆ( ) ( ); , ( ) ( ) ; ,obs obspr r y r y pr r y r yψ ψ ψ ψ ψψ ν ψ ν≤ ≤! .  Evaluating the left 

side to this accuracy would usually involve simulation. However, as noted by those 

authors, there seems not to be a satisfactory inferential basis for P-values computed to 

that order, which is part of the reason we refer to second-order theory as ideal.  

In related theory Barndorff-Nielsen (1983), see also § 8.2 of Barndorff-Nielsen & 

Cox (1994), proposed a modified profile likelihood function ( ) ( ) ( )MP PL M Lψ ψ ψ=  

aiming to reduce undesirable effects of fitting nuisance parameters. Following 

development by Pierce & Peters (1992) for full-rank exponential families, as 

generalized in Barndorff-Nielsen & Cox (1994),  (2) can usefully be expressed as  

 *( ) ( ) ( ) ( )r y r y NP y INF yψ ψ ψ ψ= + +  (4) 

in such a way that exp( ) ( )r NP Mψ ψ ψ− = . Thus 2( ) exp( / 2)MPL r NP rψ ψ ψψ = − −  and 

hence to second order 2( ) exp{ ( ) / 2}MPL r NPψ ψψ = − + . For these reasons NPψ  is 

referred to as the nuisance parameter adjustment. The remaining adjustment INFψ  

pertains more specifically to moving from likelihood to frequency inference, and is 

called the information adjustment since it is only substantial when the adjusted 

information for ψ  is small. Thus in practice the INF adjustment is often small or 

negligible, but when there are several nuisance parameters the NP  adjustment can be 

substantial even when the adjusted information for ψ  is large. This is exemplified in 

Example 1 to follow, with many other examples given in Pierce & Peters (1992), 

§ 6.6 and § 8.2 of Barndorff-Nielsen & Cox (1994), Sartori, et al. (1999), Chapters  

7–9 of Severini (2000), Sartori (2003) and elsewhere.   

Results here are that usually, but perhaps not always, the NP  part of the 

adjustment depends on the choice of reference set only to 1( )O n− , this being one order 

smaller than the magnitude of the adjustment itself.  Thus the modified profile 

likelihood usually has in this respect the character of an ordinary likelihood function. 
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Usually the INF  adjustment reflects the first-order effect of the choice of reference 

set along with the effect of other limitations in adjusted information. But in certain 

settings, notably those involving censored data, the effect of the reference set on 

INF is also 1( )O n− .  

Except for full-rank exponential families and transformation (e.g. location-scale) 

models, the adjustments referred to above are difficult to compute since they involve 

differentiation of the loglikelihood with respect to parameter estimates while holding 

fixed an approximate ancillary statistic, so-called sample-space derivatives. Various 

approximations to these with resulting error 1( )O n−  for the adjustments have been 

developed, but it was a major advance when Skovgaard (1996) developed the general 

and fundamental method used here. This is detailed in Appendix 2 and partially 

indicated in the following section. The error in this approximation is not only 1( )O n−  

but is proportional to the statistical curvature of the model, which in practice is 

usually quite small. We will make no notational distinction for quantities above to 

reflect use of the Skovgaard approximation.  

3. CENSORED DATA 

Although we comment later on more general results, the argument considered in 

detail is restricted to survival times with literally independent censoring. That is, the 

censored observations it  are the minimum of independent response times and 

censoring times that are either fixed or mutually independent random variables also 

independent of response times.  We show that for this setting ideal inference from a 

given dataset does not depend on further specification of the censoring model. In 

particular, inference does not depend whether censoring times are fixed or random, or 

on unobserved random censoring times. As usual, the data are represented as 

observations ( , )i it c , where ic is an indicator of censoring, and the usual contributions 

to the likelihood of the form 1( ; ) ( ; )i
i i i i

ic cf t pr T tθ θ− >  are for our setting 

stochastically independent. This would not always be true for more general censoring 

models. 

The conditions required for our argument can be stated rather more generally, for 

broader applications to partially observed data, as follows. For some class of reference 

sets compatible with the observed data, let there be a representation of the 
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loglikelihood as 
1

n
ii

l l
=

=∑ not depending on the reference set, such that the 

contributions 1 2,{ , }l l ! are stochastically independent. Under these conditions the 

adjustments NP  and INF are to second order independent of the reference sets 

considered. Our argument involves consideration of cov( , )U J , where U and J−  are 

first and second derivatives of the loglikelihood. Expansions given in the following 

paragraph show that to second order the sample-space derivatives required for the 

higher-order adjustments depend on the reference set only through cov( , )U J , 

evaluated at ˆθ θ= . Further, we see that approximation of this covariance with first-

order relative error results in second-order approximation to the sample-space 

derivatives. Under the above assumptions this can be done independently of the 

reference set, using the sample mean from the observed data of quantities ( )i iU J , 

where the iU  and iJ  correspond to the loglikelihood contributions.  

Although laying out the remaining argument in full detail depends on matters 

addressed in Appendix 2, the following makes it sufficiently clear. Skovgaard’s 

second-order approximation to the sample-space derivative involved in the NP 

adjustment is   

 { }2 1
ˆ

ˆ ˆ ˆ ˆ ˆ ˆ( ; ) /{ } cov ( ), ( )l y U U i jψ ψθθ θ θ θ θ −∂ ∂ ∂ !  , (5) 

where the covariance of the loglikelihood derivatives at two parameter values is 

evaluated before substituting the parameter estimates, and where ĵ and î are the 

observed and expected information evaluated at θ̂ . When the term ˆ( )U ψθ  is 

expanded in ˆ ˆ
ψθ θ−  the leading term of the covariance in (5) is î , leading to the 

second-order approximation   

 1 2 1 1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ( ; ) /{ } ( ) cov( , ) ( )n l y n j n U J i j O nψ ψθ θ θ θ θ− − − − −∂ ∂ ∂ = + − +  , 

where the covariance is evaluated at θ̂ , and we take some innocuous notational 

liberties regarding that 3-dimensional array. The (1)O  leading term in this expansion 

does not depend on the reference set, and the second term, which does depend on the 

reference set through the expectations involved, is 1/ 2( )O n− . The term 1ˆ ˆi j−  is 
1/ 2( )I O n−+ and can be omitted. Thus approximation of 1 cov( , ) (1)n U J O− =  with 
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first-order error leads to second-order approximation of the sample space derivative. 

Results develop similarly for the sample-space derivative providing the INF 

adjustment, where the leading term is 1/ 2 ˆ ˆˆ( )n j ψθ θ− −  and the second term involves 

1 cov( , )n U J− .  

Although this establishes the main result of this section, we note that some 

elaboration on the argument leads to an observation by Severini (1999) that could be 

used more directly to obtain the end results. He showed that second-order error is 

introduced in (5) by approximating the quantities { }ˆ
ˆ ˆcov ( ), ( )U Uψθ θ θ  and î  by 

empirical covariances of scores computed from the observed contributions to the 

likelihood. There is a corresponding result for the other sample-space derivative. Thus 

his approximation depends on the contributions to the loglikelihood but not on the 

censoring model.  

It appears that, in a sense, our main result remains true for general censoring 

models but since we have not pursued this in detail, further comment on this is 

relegated to § 5.  

Example 1.  

We consider Weibull regression with fixed and random censoring, where interest 

is on the shape parameter. This example is useful in that the nuisance parameter 

adjustment is large when there are several covariables, even for fairly large samples. 

Employing simulation we verify numerically that both the nuisance parameter and 

information adjustments agree to second order for the two reference sets. The 

covariances required for the Skovgaard approximation are rather intractable for the 

regression setting, and we approximate these using a very large number of Monte 

Carlo trials for each observed dataset in the main simulation. In particular, our 

simulation used 10,000 datasets with 5,000 Monte Carlo trials for each. In order to 

carry this out simply for fixed censoring times, we assume that as is often the case, the 

potential censoring times are all known.  

The assumed model has hazard function ( ; , ) exp( )i it z tψλ β ψ β= , where iz  

comprises a constant term and 5 Gaussian covariables, with results given for testing 

1ψ = . Censoring times were generated as exponential variates scaled so that there is 

20% chance of censoring, where these were either treated as fixed or random in 
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computing the higher-order adjustments. The approximation (3) is quite accurate in 

this example, when computed under either censoring model. For true tail probabilities 

in the range 0.01–0.20 the average absolute value of the relative error is 10% for 

60n = , whereas this error is 120% when using the unadjusted rψ .  For further 

perspective we first give some general idea of the magnitude of higher-order 

adjustments. Writing *r r NP INF= + + , Table 1 indicates quartiles of each 

adjustment for fixed-time censoring, which depend minimally on the censoring 

model. The NP adjustment is substantial even for 140n = . 

Table 1. Description of adjustments  

Sample size Quartiles of   –NP  Quartiles of   –INF 

20 (1.05, 1.17, 1.29) (0.10, 0.11, 0.13)  

60 (0.54, 0.59, 0.63) (0.05, 0.06, 0.06) 

100 (0.41, 0.44, 0.47) (0.04, 0.04, 0.05) 

140 (0.35, 0.37, 0.39) (0.03, 0.04, 0.04) 
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Figure 1 indicates the reference set effect on each of the NP and INF  

adjustments. For each adjustment, shown are quartiles of the differences in the 

adjustments between the two reference sets. It is seen that, in line with our theoretical 

results, the differences are 1( )O n−  for both adjustments.  

Figure 1. Quartiles of the distribution of differences in the adjustment terms for 

fixed and random censoring.  

4. SEQUENTIAL EXPERIMENTS 

General considerations 

Pierce & Peters (1994) considered from the view of this paper a certain class of 

sequential models for one-parameter settings, exemplified by binomial vs negative 

binomial, or Gaussian vs inverse Gaussian, sampling. Here we want to introduce 

nuisance parameters, and consider more general sequential settings including 

essentially what arises in sequential clinical trials. Our considerations apply whenever 
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there are underlying independent observations 1 2, ,y y ! , with only the first n of these 

observed according to some data-dependent stopping rule. There are some tensions 

discussed below between classical theory of sequential inference and what is required 

to compute P-values and confidence intervals. Our view, basically compatible with 

that of many others, is that inferences should remain to be based on the distribution of 

( )r yψ . Although results of § 2 for approximating this apply fairly generally to 

sequential settings, we give some attention to required conditions for this. Our main 

result is that when that theory does apply, then the NP adjustment and modified 

profile likelihood quite generally depend to second order on the stopping rule, and 

hence its effect is reflected by the INF adjustment.   

In the classical theory of sequential analysis, and much of recent considerations, 

some portion of the stopping boundary is a pre-specified ‘rejection region’. Whereas 

in fixed sample size settings the relation between prespecified α -level rejection rules 

and post-data P-values is relatively simple, this is not the case when the rejection rule 

corresponds to a portion of the stopping boundary. The difficulty, and a resolution of 

it, was perhaps first articulated by Armitage (1957). There is by now fairly general 

agreement that, as he suggested, upon reaching the stopping boundary, P-values and 

confidence intervals should be based on an ordering of points on the entire stopping 

boundary according to evidence against the hypothesis; see for example Siegmund 

(1978), Rosner & Tsiatis (1988), Whitehead (1999), and Cook (2002). Various 

orderings have been proposed, some of which are rather arbitrary or intuitively-based, 

but we maintain that the general considerations earlier in this paper ordinarily apply, 

so that the ideal ordering is based on the value of ( )r yψ . This notion is reasonably 

consistent with results of specific investigations regarding preferred orderings in 

papers cited above. Computing P-values in this manner is equivalent to basing them 

on the distribution of ( )r yψ over the stopping boundary, which of course depends on 

the stopping rule. We aim to use results in § 2 to understand this dependence. 

A common view might be that in a final reduction of the data to ( , )r nψ  the value 

of n  is important to the inference. The value of n  is certainly informative, but for 

datasets on the stopping boundary it is often substantially predictable from θ̂ . Thus it 

is inferentially more appropriate to consider the data summary as ( , )nr aψ , where 
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ˆ ˆ{ ( )}/ ( )na n E n SD nθ θ= − . It is a standard result that under suitable regularity 

conditions na is to first order standard normal. When asymptotics considered here 

apply, then na  is asymptotically ancillary and to second order rψ is stochastically 

independent of ancillaries, so inference may be based on the marginal distribution of 

rψ . In one-parameter settings the statistic na can be closely related to the Efron-

Hinkley ancillary (Efron & Hinkley, 1978), but generally na  comprises only part of 

the ancillary information in what we have written as a .  

The underlying observations 1 2,,y y !  will now be taken as independent and 

identically distributed. Comparative inference and regression aspects can to an extent 

be included by thinking of each iy  as a vector with an associated covariable not 

depending on i . The identically distributed condition could be avoided through 

conditions on the sequence of covariables. The asymptotic index in likelihood 

asymptotics is a scaling factor of the Fisher information, which in our setting is 

proportional to ( )E nθ . As for stopping rules, our main results require only the usual 

condition that stopping at trial n  depends only on data 1 2,, , ny y y! . It is well known 

that under this condition the likelihood function does not depend on the stopping rule, 

see for example, Ex. 2.34 of Cox & Hinkley (1974). 

We focus in our examples on stopping rules of form 1| ( , , ) |n nr y y cψ η>! , for 

some hypothesized value ψ  and given sequence nc , with the additional proviso that 

n N≤  for some fixed N . This is a generalization of rules based on repeated 

significance tests, see for example Armitage (1991). For asymptotics η  and N are 

taken to increase together. Important modifications of this form to which our results 

apply arise when the parametric function of inferential interest is different from that 

involved in the stopping rule, as considered by Whitehead, Todd & Hall (2000), and 

when the stopping rule pertains to the precision of the inference, as considered by 

Grambsch (1983). 

Even usual first-order asymptotics can fail in sequential settings, and conditions 

for them to hold were established by Anscombe (1952). Anscombe’s Theorem shows 

that if ( )r yψ  is to first order standard normal for fixed sample sizes, then this remains 

true for sequential sampling under two conditions: basically that the coefficient of 
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variation of the stopping time n approaches zero, and that the distribution of ( )r yψ  is 

asymptotically suitably continuous. Grambsch (1983) provides a statement of 

Anscombe’s Theorem, giving arguments and results tangential to ours. The condition 

on the stopping time is largely a formality, and for applications the critical issue is the 

continuity condition. As Anscombe showed, the discrete time aspect does not 

interfere with this. However, the nature of the stopping boundary can affect that 

continuity in complicated ways. As a simple but important example, consider 

stopping at the smallest n  where | |r cψ ≥  or n N= , where asymptotically c  and 

N increase together. Then clearly Anscombe’s Theorem can only apply to the 

distribution of rψ  when ( )pr n N<  is asymptotically negligible. 

Higher-order asymptotics 

As noted by Barndorff-Nielsen & Cox (1994, Sect 7.5) and Coad & Woodroofe 

(1996) issues can arise regarding validity of the results of § 2 for sequential settings. 

We will indicate below that a necessary and sufficient condition for this validity is 

that the distribution of ( )r yψ  is to first order standard normal, i.e. that Anscombe’s 

Theorem applies.  

It is well known that when Anscombe’s Theorem does apply, the convergence 

may be slow and higher-order considerations are important. Others have utilized more 

classical asymptotics than here, for example Woodroofe & Keener (1987). Woodroofe 

(1992) and Coad & Woodroofe (1996) take an approach more closely related ours, 

which is considered later in Example 2. Although we indicate that higher-order 

likelihood asymptotics fairly generally apply for stopping rules such that first-order 

methods are valid, our aims are in a sense less ambitious than usual. Sequential 

settings may sometimes stress second-order theory, and we recommend that ordinarily 

the actual computation of P-values be done by direct simulation of the distribution of 

rψ , using for the nuisance parameter the estimate ψ̂ν . Our aim is less to compute P-

values than to clarify in moderate generality structural aspects of the effect of 

stopping rules on the second-order distribution of rψ , and thus their usual effect on 

ideal inference. The direct simulation approach was suggested by DiCiccio, Martin & 

Stern (2001), although they did not have in mind sequential settings.  
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Arguments underlying results of § 2 require, strictly speaking, that all relevant 

quantities have densities with respect to Lebesgue measure, or some other suitable 

measure not depending on n , which will not be the case for discrete-time sequential 

settings. As in other discrete-data settings, the best resolution of this is to think of the 

development in terms of a continuous idealization, then verifying either theoretically 

or numerically that results apply to the actual settings. We assume that such 

idealizations are made, and consider only more fundamental issues regarding the form 

of stopping rules.  

The substantive usual condition required for higher-order likelihood asymptotics 

to apply is that ˆ( | ; )p aθ θ  is to first order normal with something akin to a second-

order Edgeworth expansion. In particular, there is no assumption of independent 

observations. However, we do not want to make assumptions 

regarding ˆ( | ; )p aθ θ since there are available no results regarding the effect of 

stopping rules on this. To deal with the needs in more familiar terms, we indicate in 

Appendix 3 that what is required for results of § 2 is only that the stopping rule is such 

that rψ  is standard normal to first order and that its density allows something akin to a 

second-order Edgeworth expansion. The argument is not specialized to sequential 

settings and clarifies in general the role of conditioning on ancillaries in higher-order 

likelihood asymptotics. That is, to second order conditioning on ancillaries is not 

ultimately required since rψ  is independent of these, and it is interesting to see just 

where in the development of higher-order asymptotics this conditioning can be 

dropped.  

Argument for main result 

We now show that to second order the NP  adjustment and modified profile 

likelihood function ( )MPL ψ  do not depend on the stopping rule. Although ( )MPL ψ  

and this result have nothing to do with representation of the nuisance parameter, the 

argument involves specifications where ν  is orthogonal to ψ . The key to the 

argument is showing that such orthogonality does not depend on the stopping rule. 

We also show that when there is a choice of nuisance parameter meeting the stronger 

condition that ˆ ˆψν ν≡ , the NP adjustment and modified profile likelihood are exactly 

independent of the stopping rule.  
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 For the general argument we rely on our formulation where 1 2, ,y y !  are 

identically distributed, although this is not totally necessary. Write 1( )i θ  for the 

expected information corresponding to a single observation iy  , noting that in the 

fixed- n  setting the information in the sample is 1( ) ( )i n iθ θ= . Then for the sequential 

setting it follows from Wald’s Fundamental Identity that 1( ) ( ) ( )i E n iθθ θ= ; see in 

particular § 7c.2 (v) of Rao (1973). A more modern view of this is that 2 2/( )nl θ∂ ∂ less 

its compensator, where nl  is the loglikelihood for the first n observations, is a 

martingale relative to the sequence 1 2, ,y y ! , and thus the expectation of 
2 2

1/( ) ( )nl niθ θ∂ ∂ −  is zero regardless of the stopping rule. So we see that parameters 

orthogonal in the fixed- n  setting remain orthogonal in the sequential setting. 

As is well known and noted in Appendix 2, ( )MPL ψ  agrees to second order with 

the Cox-Reid approximate conditional likelihood ( )ACL ψ  for any choice of 

orthogonal nuisance parameter, which depends only on the likelihood function. Since 

the orthogonal parameter can be defined independently of the stopping rule, this 

means that to second order ( )MPL ψ , and hence the NP adjustment, do not depend on 

the stopping rule. The limitation that ( )ACL ψ  depends on the specific choice of 

orthogonal nuisance parameter is not very serious for the present argument, since it 

holds for every such choice and one can expect that usually for some choice the 

approximation of ( )MPL ψ  by ( )ACL ψ  is quite good.  

For the further result suppose there is a choice of nuisance parameter such that 

ˆ ˆψν ν≡ , which is the case in any full-rank exponential family when ψ  is a canonical 

parameter. In particular, ν can then be taken as the complementary mean parameter; 

see for example § 2.9 of Barndorff-Nielsen & Cox (1994). It is well known that when 

ˆ ˆψν ν≡  then ( ) ( )AC MPL Lψ ψ= , and worth noting that the NP adustment takes the 

simple form 1 1/ 2ˆ ˆ ˆlog[{ ( , ) / ( , )} ]r j jψ νν ννψ ν ψ ν−  depending only on the likelihood 

function. The key to seeing this is the well-known result that when ˆ ˆψν ν≡  there is the 

simplification of the required sample-space derivative as  
2 2 2ˆ ˆ ˆ( , ) / ( , ) /( )l lψψ ν ν ν ψ ν ν∂ ∂ ∂ = ∂ ∂ ; see for example Eqn. (5.14) of Barndorff-

Nielsen & Cox (1994). 
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We now turn to two examples. In Ex. 2 there is no nuisance parameter, so the aim 

is not to illustrate our main result, but rather to provide some indication in the most 

fundamental setting of the adequacy of higher-order likelihood asymptotics. Example 

3 then illustrates our main result regarding the NP  adjustment and modified profile 

likelihood. 

Example 2.  

We consider independent observations ( ,1)iy N θ∼  and two different stopping 

rules. The first is an example used by Woodroofe (1992), stopping for / 2n N≤  at the 

first observation where 1/ 2
0| |r nθ η −

= >  and for / 2N n N< ≤  where 

1/ 2
0| | 2 ( ) /r N n Nθ η= > − . The change in character at / 2N  provides for the stopping 

boundary to close smoothly by the maximum number of trials N . The asymptotic 

index can be taken as η , with N  increasing proportionately. We consider only one 

value of the asymptotic index for each part of this example, turning to formal 

asymptotics in Ex. 3. The notation 0rθ =  in describing the stopping rule is to distinguish 

from the use of rθ  for testing other values of θ . Of course for this example *r rθ θ=  for 

reference set when n  is fixed, and so the adjustment *r rθ θ−  reflects only the effect of 

the stopping rule. We raise this specific stopping rule mainly to compare *rθ  to a 

related quantity proposed by Woodroofe (1992), of form 
* 1/ 2 1( ) /(1 )z r n b n cθ θ

− −= − +# # with coefficients ,b c# #  being the asymptotic mean and 

standard deviation of rθ , evaluated at the parameter estimate. He shows that under 

rather general conditions this statistic is in a ‘very weak sense’ standard normal to 
1( )o n− . It follows from considerations at the end of Appendix 2 that, provided our 

higher-order asymptotics are valid, *zθ  and *rθ  must agree to second order. As 

indicated by Woodroofe, under the general conditions for which he establishes the 

very weak convergence, there will be settings where *zθ  is not to second order 

standard normal in the usual sense. Then neither Anscombe’s Theorem nor the theory 

underlying *rθ  will apply. More practically, one might expect his statistic to perform 

somewhat better than *rθ , since it is specifically tailored to the sequential setting. 



 

 19

Substantial further development would be required for use of *zθ  in the presence of 

nuisance parameters.  

For this stopping rule, with 72N =  and 9η = , we obtain the results of Table 1, 

where the values for *zθ  are taken from Woodroofe’s paper. Those for rθ  and *rθ  were 

obtained by simulation, using 10,000 datasets and 5,000 Monte Carlo trials for each of 

these to compute the covariance required by the Skovgaard approximation to *rθ . The 

conditions for Anscombe’s Theorem hold for this example, and these results support 

our theoretical argument that for such an example *rθ  is standard normal to second 

order, and to this order agrees with *zθ . For this example, and very specially, the 

symmetry of the model and stopping rule means that both *
0rθ =  and *

0zθ =  agree to 

second order with 0rθ = . Thus 0rθ =  is standard normal to second order, and the 

substantial improvement seen on this is due to adjustment of 1( )O n−  not considered 

by our general theory.  

Table 1. Part 1 of Ex. 2: Tail probabilities for various statistics. 

True θ  Statistic 1.96pr < −  1.645pr < −  1.645pr >  1.96pr >  

0.0 rθ  0.051 0.101 0.101 0.050 

 *rθ  0.024 0.051 0.050 0.024 

 *zθ  0.025 0.051 0.048 0.024 

0.5 rθ  0.013 0.030 0.070 0.037 

 *rθ  0.021 0.044 0.049 0.026 

 *zθ  0.022 0.051 0.047 0.024 

1.0 rθ  0.015 0.032 0.060 0.031 

 *rθ  0.023 0.051 0.051 0.023 

 *zθ  0.026 0.054 0.053 0.021 
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For the remainder of this Ex. 2, we consider stopping rules seeming to us more 

practically important, having the general character of what is often used in clinical 

trials where the stopping boundary is not smoothly closed as above. There the 

intention is to stop usually at some maximum number of trials n N= , but earlier 

when the evidence against the hypothesis is substantial. We have in mind plans 

allowing at most N trials, stopping earlier if 0| | nr cθ η= ≥ , with nc decreasing modestly 

on the range 1, ,n N= ! , and where in asymptotics η  and N increase together. For 

Gaussian data as above, we consider only 60N =  and 2η = , with nc decreasing 

linearly from 1 3 / 2c = to 1Nc = . We can avoid focus on testing only certain values of 

θ  by considering confidence intervals. Figure 2 shows 90% equi-tailed confidence 

intervals for θ , based on various datasets on the stopping boundary, computed from 

the exact distributions of rθ , and from standard normal approximations to rθ  and *rθ . 

The exact and *rθ  upper limits are there indistinguishable, and for lower limits the 

upper curve is based on rθ  and the lower curve is exact. In terms of the P-values 

involved, those based on rθ  are too large by a factor of about two for 10,20n = . The 

final 3 points for each limit are for 60n N= = , and rθ -values of 2, 1, and 0.  

Figure 2. Confidence limits for data on the non-closed boundary: exact, first-

order, and second-order. 
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Example 3. 

This example illustrates for a sequential setting our main result regarding the NP 

adjustment, and also some of the more general asymptotic aspects. We consider again 

inference about the shape parameter in the Weibull model, but now with identically 

distributed observations involving only scale and shape parameters, and no censoring. 

Both the stopping rule and the inference pertain to testing that the shape parameter is 

unity. The stopping boundary is that of the first part of Ex. 2, with / 8Nη = , but 

using for that purpose the score test rather than the likelihood ratio statistic. Since 

employing a first-order test in the stopping rule is inappropriate for very small sample 

sizes, we do not stop when 4n < . The higher-order adjustments are computed by 

simulation as indicated in Ex. 1. For perspective, both the NP and INF adjustments 

are moderately important even for 100N = , where the probability of stopping prior to 

n N=  is 19% and ( ) 85E n = . In that case the NP adjustment takes values around 

0.1−  when 1| |rψ =  is in the range 1.5 2.0− , the INF adjustment is around 0.2−  when 

rψ  is in the range 1.5 2.0− , and is around 0.1+  when rψ−  is in that range.  

Our main result is confirmed by finding that the difference in NP adjustments for 

the sequential setting and when treating n as fixed at the stopping value is around 
310−± for all datasets. Plots show this having the character of being second order in 

( )E n , but are not shown since the differences are so small.  

Figure 3 shows as a function of ( )E n a summary measure of departure from 

standard normality of rψ , *rψ  when n is considered as fixed at the stopping value, and 

*rψ  for the sequential setting. The curves from top to bottom are for the three statistics 

in the order just stated. The summary measure is the average of absolute relative error 

in tail probabilities at 0.025, 0.05, 0.10, and 0.15 in each direction. Also shown, to 

investigate second-order convergence, is the summary error measure multiplied by 

( )E n . The convergence of  *rψ  correctly computed for the sequential setting is, as 

theory suggests, of second order. Although rψ  and the incorrect fixed-n *rψ  perform 

poorly, the rate of improvement at the largest values of ( )E n appears better than the 

first-order that is expected. Generally, we find the nature of the stopping boundary to 



 

 22

have rather complicated effects on concrete details of asymptotic behaviour, a point to 

which we will return in the Discussion.  

 

Figure 3. Comparison to standard normal of the distributions of rψ , *rψ , and of *rψ  

when n is considered as fixed at the stopping value.  

Figure 4 shows quartiles of the difference in INF adjustments computed for the 

sequential setting and when n is treated as fixed at the stopping values. In contrast to 

what occurs with the NP adjustment, this difference reflects the effect of the stopping 

rule and is of first order in ( )E n . A further plot not shown indicates that the 

difference is not also of second order.  

Figure 4. Quartiles of distributions of differences in INF adjustments for the 

sequential reference set and when n is considered as fixed. 
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5. DISCUSSION  

For the two settings considered in this paper, the NP  adjustment and modified 

profile likelihood are to second order independent of the reference set. The question 

arises of whether the NP adjustment ever depends on the reference set, and we suspect 

that there are instances where it does. In both settings of this paper the matter hinges 

on likelihood-related martingales whose contributions are the same for the reference 

sets considered, and it seems likely that generalizations would require this. However, 

as further indicated below, even from a martingale view the arguments for censored 

data and for stopping rules seem fundamentally different, and it is unlikely that there 

is a single general argument.  

Modified profile likelihood is an attractive concept that needs more attention in 

practice. The work of Brazzale (1999), who implemented S-plus routines for certain 

important applications, should help with this. Practical implementation can be carried 

out substantially more generally using the method indicated in § 9.5.4 of Severini 

(2000), which basically corresponds to the NP part of the Skovgaard approximation 

used in this paper.  

 From a frequency viewpoint a primary attraction of the modified profile 

likelihood is that the INF adjustment is usually small in practice, and use of the 

modified profile likelihood is then tantamount to use of *rψ . Ordinary asymptotics is 

rather misleading when the NP adjustment is large and the INF adjustment is small, 

and more relevant asymptotics involve allowing the number of parameters to increase 

along with the sample size; see for example Sartori (2003) and references there. 

Modified profile likelihood is attractive on Bayesian grounds, where it can 

circumvent need for a prior distribution on nuisance parameters. The argument of 

Sweeting (1987) referred to in Appendix I is important in this, but more work in that 

direction is needed. His condition that the nuisance parameter can be taken as both 

orthogonal to and a priori independent of ψ  is quite restrictive, and moreover his 

result does not, even then, distinguish between use of the Cox-Reid approximate 

conditional likelihood and the Barndorff-Nielsen modified profile likelihood. Since 

the latter is invariant to the representation of the nuisance parameter, Bayesian 

arguments leading more directly to it should involve invariance of prior distributions.  
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In regard to sequential experiments, it is clear to us that the formulation of the 

stopping rule and inferential matters should be considered more separately than they 

usually are. In particular, we believe it is neither necessary nor desirable to identify 

some portion of the stopping boundary as a rejection region. Others have come to 

essentially this view (Armitage, 1957; Whitehead, 1999), but it seems fair to say that 

much work, both classical and recent, on sequential experiments is confusing in these 

respects. 

The first-order convergence implied by Anscombe’s Theorem is often quite slow. 

Although second-order methods usually improve substantially on this, they seem 

unlikely to provide practical methods because they are difficult to compute and direct 

simulation of the distribution of rψ is much simpler. Moreover, the precise 

performance of *rψ  depends in complicated ways on specific aspects of the stopping 

boundary. Our view is that a primary value of higher-order asymptotics for sequential 

settings, and indeed more generally, is for theoretical understanding of the structure of 

inference. That is, the effects of fitting nuisance parameters, the role of choice of 

reference set, connections between frequency and likelihood-Bayesian inference, and 

so forth. From this view it is not critical that one may not want to actually compute 
*rψ , or rely strongly on it, for sequential settings.  

For censored data, that higher-order inference is independent of the censoring 

model does not in itself resolve how to make second-order adjustments in practice. 

For the types of censoring considered in § 3, our argument does suggest a method to 

use, which essentially involves the approximation to *rψ  suggested by Severini (1999) 

described briefly in § 3. However, we are not certain that this is the best method, and 

further work would be useful. 

It appears that our results for both the NP and INF adjustments extend to general 

censoring models, although there are some logical subtleties involved. Censoring 

models as considered in § 3 are essentially referred to as Type I, and those where they 

are taken as certain of the ordered failure times are referred to as Type II. It turns out 

to be important in second-order considerations that a given dataset will not be exactly 

compatible with both Type I and Type II censoring; the issue being whether censoring 

times coincide with failure times. Thus whether ideal inference from a given dataset is 
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the same for Type I and II censoring models seems to be not quite the right question. 

Indeed, direct calculations show that for instances of the two types of models with 

censoring patterns the same in expectation, the values of cov( , )U J  typically fail to 

agree to first order. However, the more fundamental question is whether knowledge of 

the censoring model is required for ideal inference from a given dataset, and the 

answer seems to be that it is not. 

The issues can be dealt with in a general manner through martingale 

considerations, a useful general reference being Andersen, et al. (1993). Although we 

have not fully investigated the matter, our analysis including numerical results for a 

simple example indicates that there is a first-order approximation to cov( , )U J , 

namely the compensator of UJ , depending on the observed censoring but not on 

knowledge of the censoring model. This compensator is sensitive to whether or not 

the censoring times occur exactly at failure times, and so the estimator can be said to 

adapt to whether censoring is of Type I or II. We should add that it is not always true 

in martingale considerations that such a compensator involves only the observed data 

and not the model for it; see for example Barndorff-Nielsen & Sørensen (1994) 

regarding what they refer to as the ‘incremental expected information’. That the 

compensator of UJ for our setting depends only on the observed data, and indeed its 

very existence, is special to counting processes arising for survival data. This is why 

the argument just alluded to fails to apply for the considerations in § 4. 

Returning to general considerations, we have not intended in this paper to take a 

position on the merits of restricting to first-order methods that do not depend on the 

reference set; for example relying on Anscombe’s Theorem for sequential 

experiments. Rather, we simply aim to clarify what is involved in such issues, by 

quantification to an extent reference set effects. However, our results regarding 

modified profile likelihood bear on such matters, since it is easier to recommend 

general use of this after finding that it is widely independent of the reference set.  

Appendix 1 

We take it for granted that ideal inference should fundamentally involve 

likelihood ratios, but in the presence of nuisance parameters there are various pseudo-

likelihood functions for the interest parameter that should be considered. It is 

indicated here that P-values computed from the exact or second-order distribution of 
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( )r yψ  agree to second order with those computed similarly, but where ( )r yψ  is 

replaced by the generalized likelihood ratio statistic computed from the modified 

profile likelihood or from a Bayesian likelihood BL  obtained by integrating out the 

nuisance parameter according to any smooth prior distribution. The point is that the 

various statistics provide to second order the same ordering of datasets according to 

evidence against the hypothesis, even though, as is well known, this degree of 

equivalence does not obtain when comparing the pseudo-likelihoods as functions of 

ψ . For example, as functions of ψ , MPL  and PL  generally differ by first order.  

Comprehensive comparisons of the pseudo-likelihoods as functions of ψ  are given by 

Severini (1998). It is further indicated at the end of Appendix 2 that to second order 

( )r yψ  and *( )r yψ  provide the same ordering of datasets.   

Specifically, we will show that for ( )MPL ψ the logarithmic directional likelihood 

ratio is to second order of form 1/ 2 ( )r n bψ θ−− , so the ordering of datasets is the same 

as when using rψ , the directional likelihood ratio from ( )PL ψ .  It is the function of 

( )b θ  which results in the usually considered first-order difference between modified 

profile and profile likelihoods as functions of ψ . We then show that this also holds 

for integrated likelihoods ( )BL ψ with the function ( )b θ  depending also on the prior 

distribution, leading to the same overall conclusion.  

Indeed, a strong case can be made, in view of the Wald complete class theory, 

that ideal frequency inference should be based on ordering of datasets by ratios of an 

integrated likelihood  

 ( ) ( , ) ( | )BL L dψ ψ ν π ν ψ ν= ∫  

for some prior distribution ( , )π ψ ν . We will show that to second order such an 

ordering does not depend on the prior, provided it is suitably smooth. 

Considering the Cox & Reid (1987) proposal given in Appendix II, and 

combining use of a Laplace approximation given by Sweeting (1987) with the second-

order equivalence noted by Barndorff-Nielsen (1987) of MPL and the Cox-Reid 

proposal, we can express to that order 

 ˆ ˆ ˆ( ) ( | ) ( ) ( | ) ( ) ( | ) ( ) ( )B AC MP PL L L M Lψ ψ ψψ π ν ψ ψ π ν ψ ψ π ν ψ ψ ψ=! !  
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where ( )M ψ is defined in § 2.  

First we consider the modified profile likelihood ( ) ( ) ( )MP PL M Lψ ψ ψ= . 

Following Barndorff-Nielsen (1986), and discussed further at the end of Appendix 2, 

we can express via a function (1)Q O=  the modified profile likelihood adjustment as  

 1/ 2 1 1/ 2 1ˆ ˆlog{ ( ) / ( )} ( , , ) ( ) ( ) ( )M M n Q a r O n n Q r O nψ ψ ψψ ψ ψ ν θ− − − −= + = + . 

The replacement of ˆ( , , )Q aψψ ν  by the function ( )Q θ  not depending on the data is 

crucial to the argument here.  It is immaterial throughout arguments here whether 

pseudo-likelihood ratios use ψ̂ , the ˆMψ  maximizing MPL , or the ˆBψ , since all these 

agree to 1( )O n−  without standardization, and lead to  distinctions of second order in 

likelihood ratios. The above expansion means that to second order 

ˆlog{ ( ) / ( )}MP MP ML Lψ ψ is a quadratic function of rψ with coefficients depending on θ , 

and completing the square gives the result claimed above for the case of MPL .  

Turning to the integrated likelihood, note first that both MPL and BL  are invariant 

to the representation of ν , so we may with no loss take that as orthogonal to ψ . As 

noted by Sweeting (1987), if ( | )π ν ψ does not depend on ψ  then the contribution to 

the likelihood ratio resulting from that term is unity to second order since 
1ˆ ˆ ( )O nψν ν −− = , and our final result for BL  is the same as for MPL . But that a priori 

independence, along with orthogonality, is a very strong assumption. When 

( | )π ν ψ depends on ψ , then BL  and MPL differ by first order as functions of ψ , but 

we now show that our claim regarding ordering of datasets still holds.  

The point is how the factor ˆ ˆ ˆ( | ) / ( | )ψπ ν ψ π ν ψ modifies ˆ( ) / ( )MP MPL Lψ ψ . Since 

1ˆ ˆ ( )O nψν ν −− = , writing ( , ) log ( | ) /g ψ ν π ν ψ ψ= ∂ ∂  we have to second order that 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( | ) / ( | ) 1 ( , )( ) 1 ( , )( ) exp{ ( , )( )}g g gψπ ν ψ π ν ψ ψ ν ψ ψ ψ ν ψ ψ ψ ν ψ ψ= + − = + − = − . It 

follows routinely from approximating the log profile likelihood as quadratic in ψ  that   
1/ 2 1
|ˆ( ) ( ) ( )i r O nψ ν ψψ ψ θ− −− = + , where | ( )iψ ν θ  is the expected adjusted information. 

Combining these results with those for ( )MPL ψ means that ˆ( ) ( )B Bl lψ ψ− is a quadratic 

function of rψ with coefficients depending on θ  and now, through g , on the prior as 
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well. Completing the square shows that to second order the logarithmic directional 

likelihood ratio is of form 1/ 2 ( , )r n b gψ θ−− , providing the claimed result for BL .  

Appendix 2 

Everything to follow can be obtained by combining results in Sects. 6.6 and 8.2 

of Barndorff-Nielsen & Cox (1994) with those in Sects.7.4.1, 7.5.4 of Severini 

(2000). However, it is useful to gather together what is needed for this paper.  

The material of the next few paragraphs was developed by Barndorff-Nielsen 

(1986), but it is clearer to refer to the argument as presented in Severini (2000). The 

derivation of *rψ  involves the likelihood ratio approximation to the density ˆ( | ; )p aθ θ , 

a simple derivation of which is indicated in Severini’s § 6.3.2 and is considered 

further in Appendix III of this paper. From this, one can transform to a second-order 

approximation to the distribution of rψ  as indicated in Severini’s § 7.4.1, arriving at 

{ } { }*( ) ( ) | ; ( )obs obspr r y r y a r yψ ψ ψθ≤ = Φ , where Φ  is the standard normal cumulative 

distribution function and *rψ  is as given below. Barndorff-Nielsen (1986) showed that 

*rψ  is stochastically independent of a  to second order, and it follows from this and 

considerations at the end of this Appendix to this order rψ  is also stochastically 

independent of a , so that unconditionally as well , 

{ } { }*( ) ( ); ( )obs obspr r y r y r yψ ψ ψθ≤ = Φ . 

Following notation of Barndorff-Nielsen & Cox, and noting that ( )M ψ of § 2 is 

the same as 1Cψ
−  below, we can write eqn. (4) of the text more explicitly as  

 * 1 1 1log( ) log( / )r r r C r u rψ ψ ψ ψ ψ ψ ψ
− − −= + + #  (A2.1) 

where  

 
{ }

{ }
1/ 2
|

1/ 21 2

ˆ ˆ ˆ/ ( ) ( )

ˆˆ ˆ ˆ| ( , ) / | / | ( , ) | | |

P Pu j l l

C l j j

ψ ψ ν

ψ ψ νν ψ νν

ψ ψ ψ

ψ ν ν ν ψ ν

−

−

= ∂ ∂ −

= ∂ ∂ ∂

#
 

Here ĵ  denotes the observed information at the maximum likelihood estimator, |ĵψ ν is 

the adjusted information there. For partial differentiation the data specifying the 

likelihood, suppressed in notation above, are represented as ˆ ˆ( , , )aψψ ν . The two 
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adjustment terms in (A2.1) are each 1/ 2( )O n− and are invariant to representation of the 

nuisance parameter. In related theory Barndorff-Nielsen has defined a modified 

profile likelihood  

 
1 1/ 2

1

ˆ ˆ ˆ( ) | / | | ( , ) | ( )

( )
MP P

P

L j L

C L
ψ νν ψ

ψ

ψ ν ν ψ ν ψ

ψ

− −

−

= ∂ ∂

∝
 (A2.2) 

The final step there follows from Eqn. (8.21) of Barndorff-Nielsen & Cox (1994). As 

noted in § 2, these considerations lead to designation of the two adjustment terms in 

(A2.1) as the nuisance parameter and information adjustments. It is the term 

ˆ ˆ| / |ψν ν∂ ∂  that renders this invariant to the representation of the nuisance parameter, 

but this is difficult to compute. If the nuisance parameter is chosen to be orthogonal to 

ψ , then this term is 11 ( )O n−+ , and omitting it in that case leads to the Cox & Reid 

(1987) approximate conditional likelihood  

 1/ 2ˆ( ) | ( , ) | ( )AC PL j Lνν ψψ ψ ν ψ−= . (A2.3) 

The problem with this is that if ν  is orthogonal to ψ , then so is any choice ( )gλ ν= , 

introducing a great deal of arbitrariness in ACL  even though all forms agree to second 

order; see, for example, Severini (2000, Example 9.13).  

 The Skovgaard approximations to the sample space derivatives required for 

(A2.1) are as follows. Writing ( )U θ  for the score statistic evaluated at a parameter 

value θ , define  

 
$ { }
$ % { }

1

1

1 2

1 2 1
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ˆcov( , ) cov ( ), ( ) ( )

U U U U

U l U l l

θ

θ

θ θ

θ θ θ

=

∆ = −

#
 

where, following computation of the expectations, 1θ  and 2θ  are respectively 

evaluated at the unconstrained and constrained maximum likelihood estimators θ̂  and 

ˆ( , )ψ ψθ ψ ν=# . Writing ĵ  and î  for the observed and expected information evaluated 

at θ̂ , the Skovgaard approximations for quantities involved in A2.1 are  
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−
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In § 3 we indicated how each of these can be expressed as the sum of a term 

depending only on the likelihood function and term of one smaller order depending on 

the reference set. Going from the second expression above to the quantity uψ#  referred 

to following (A2.1) is not totally straightforward because the quantity ψ̂ν  is held fixed 

in the partial differentiation; formulas for this are given in (6.106–107) of Barndorff-

Nielsen & Cox (1994).  

It is useful for many purposes to note that, as shown by Barndorff-Nielsen 

(1986), *rψ  can to third order be expressed as 

* 1/ 2 1ˆ ˆ{ ( , , )}/{1 ( , , )}r r n b a n c aψ ψ ψ ψψ ν ψ ν− −= − + . Moreover, to second but not third order 

the arguments ˆ( , , )aψψ ν  there can be replaced by θ , and of course to that order the 

denominator is not relevant. Consequently, the orderings of datasets according to 

evidence against the hypothesis ψ  given by ( )r yψ  and *( )r yψ  are to second but not 

third order equivalent. More fundamentally, in regard to the relation 
* 1 log( / )r r r u rψ ψ ψ ψ ψ

−= + , Barndorff-Nielsen considered the expansion 

1/ 2 2 1
1 2ˆ ˆlog( / ) ( , , ) ( , , )u r r n Q a r n Q aψ ψ ψ ψ ψ ψψ ν ψ ν− −= + , noting that the coefficients of the 

above affine transformation are then 1b Q=  and 2
2 1/ 4 / 2c Q Q= − . He then argued 

that the functions 1Q  and 2Q  can be expanded in powers of ψ̂ν ν−  and ( )a E a− with 

leading terms 1( )Q θ  and 2 ( )Q θ , leading to the expression for *rψ  stated above. When 

log( / )u rψ ψ  is decomposed as in (A2.1), analogous arguments for replacing ˆ( , , )aψψ ν  

by θ  apply to each term of the decomposition.  

Appendix 3 

We indicate somewhat heuristically here why the considerations of § 2 apply to 

sequential settings, provided that the stopping rule is such that ordinary likelihood-

based methods are valid to second order. Some idealizations will ordinarily be 

required so that densities to follow can be taken with respect to Lebesgue measure. 

We begin with one-parameter models and then indicate what is required with nuisance 

parameters. The argument to follow is not restricted to sequential settings, and 

clarifies the role of conditioning on ancillaries for inference based on *rψ .  

Likelihood asymptotics begin with the identity  
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2

ˆ( | ; )ˆ ˆ ˆ( | ; ) ( | ; )ˆ ˆ( | ; )
ˆ ˆexp( / 2) ( | ; )

p ap a p a
p a

r p aθ

θ θθ θ θ θ
θ θ

θ θ

=

= −

 

with the second form holding when a  is exactly ancillary. When a  is ancillary to first 

order then the result holds to second order for moderate deviations of θ . The usual 

approach is to assume that ˆ( | ; )p aθ θ  is normal to first order, and then to replace 

ˆ ˆ( | ; )p aθ θ  by its value 1/ 2(2 )jπ −  from a second-order Edgeworth expansion, see for 

example, § 6.3.2 of Severini (2000). We will avoid that step here, assuming for the 

moment only that there is a first-order ancillary so that that above identity is 

applicable.  

Although conditions on ˆ ˆ( | ; )p aθ θ  are essential for the likelihood ratio 

approximation to the distribution of θ̂ , they are not for approximating the distribution 

of rθ . Transforming the above relation to the density for rθ  leads to the relations 
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/ 2 1/ 2

/ 2
ˆ

ˆ ˆ ˆˆ ˆ( | ; ) | / | ( | ; )

ˆ ˆˆ/ ( | ; )

ˆ/ ( | ; )

r

r

r

p r a r j e j p a

r u e j p a

r u e p r a

θ

θ

θ

θ θ
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   = ∂ ∂   
   =   
 =  

 

where uθ is as defined in Appendix 2, with the profile loglikelihood Pl  replaced by 

the loglikelihood, and using the fact that ˆ/d r dθ θ  evaluated at ˆθ θ=  is 1/ 2ĵ− .  The 

final expression on the last line means the density ( | ; )p r aθ θ  when θ  is taken as θ̂  , 

the argument there is zero. As noted at the end of Appendix 2 there is a function ( )b θ  

such that * 1 log( / )r r r u rθ θ θ θ θ
−= +  is to second order equal to 1/ 2 ( )r n bθ θ−− . Thus we 

can integrate both sides of the above expression with respect to the distribution of a  

to obtain 

 
2 / 2

ˆ
ˆ( ; ) / ( ; )rp r r u e p rθ

θ θ θ θθ θ− =   . (A3.1) 

Then when the stopping rule is such that rθ  is to first order standard normal, it is a 

minor further assumption that its distribution has a second-order Edgeworth 

expansion, according to which 1/ 2
ˆ

ˆ( ; ) (2 )p rθ θ π −= since the skewness term vanishes at 
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ˆ 0rθ = . With this substitution in (A3.1), approximation (3) of the main text follows 

rather directly from completing the square in the logarithm of the term in brackets and 

then integrating.   

When there is a nuisance parameter, the distribution ( | ; )p r aθ θ  above is replaced 

by ˆ( , | ; )p r aψ ψν θ , which involves another Jacobian in replacing ν̂  by ψ̂ν . Then, 

proceeding as in § 7.4.1 of Severini (2000), one integrates out ψ̂ν . The result is then 

as in (A3.1), where now uψ is as defined in Appendix 2 using the profile likelihood.  

The second-order approximation to the marginal distribution of rψ obtained is that 

given by (3) of the main text, without needing to assume as in the usual development 

that ˆ( | ; )p aθ θ  is normal to first order, but only that ( ; )p rψ θ  has this property.  
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