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INTRODUCTION

We are interested in relations between frequentist inference and
Bayesian inference using diffuse priors --- but differently than in 
terms of “matching priors”

Find that posterior densities can provide approximations to 
certain pseudo-likelihoods, providing for quite accurate 
frequentist inference from the Bayesian calculations

Particularly interested in Bayesian MCMC methods, useful when 
evaluating the likelihood function involves intractable integrals; 
e.g. GLMM, covariate errors, imputation of missing data, spatial
(and image) analysis, and so forth

Many of those using this seem really to be seeking “frequentist”
inference, only using the MCMC to resolve difficulties in 
evaluating the likelihood
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For very large n, frequentist and Bayesian inference 
coincide since                    has the same Gaussian limiting
distribution from either perspective  

Not so “comforting” if either of these distributions is 
clearly not Gaussian

Modern frequentist likelihood asymptotics points to deeper 
connections between the two modes of inference

This pertains largely to the treatment of nuisance 
parameters

Usually, in frequentist methods these are “maximized out”
of the likelihood function, but in Bayesian methods they 
are “integrated out”

But modern (frequentist) likelihood asymptotics suggests 
also the “integrating out” of nuisance parameters

ˆ( ) / SEθ θ−
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Inference about           where     is multi-dimensional

Reparametrize as           , realizing that the choice of 
representation of     is largely arbitrary

Profile likelihood (PL) is fundamental and does not depend on that 
arbitrary matter

Modern likelihood asymptotics points to two types of modification 
of PL, dealing with effects of fitting nuisance parameters

Approximate conditional likelihood (ACL) in terms of “orthogonal”
nuisance parameter       (not unique)

(using asy var, obsvd info)

Modified profile likelihood (MPL) which does not depend on 
representation of nuisance parameters

(  constrained MLE)                                         
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Logistic regr: 77 binary obsvns with 6 covars. The “ACL” here 
uses the formula for that but with the non-orthogonal 
canonical parameter. When using the orthogonal mean 
parameter, the ACL is the same as the MPL
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Orthogonal parameters:  Main point is that the MLE of       when
is known does not depend strongly on    

Will be true if the expected information matrix for             is 
block diagonal

Leads to a PDE with solution giving      , always exists when      is 
scalar --- depends on both     and         (unless …)         

The above Jacobian is a quantity whose precise 
definition is complicated, but . . .

Can approximate it adequately in terms of the covariance of the 
score vector at two different parameter values --- simpler 
approximation when the data can be represented in stochastically
independent subsets

Orthogonal parameters are important to what follows, with 
interesting Bayesian and MCMC implications
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ACL based on common approach of conditioning to eliminate 
nuisance parameters

It depends on the non-unique choice of the orthogonal parameter

MPL invariant to that choice, approximating conditional likelihood 
when that is appropriate and “marginal” likelihood when that is 
appropriate

* It appears that MPL is generally approximating an idealized 
“integrated” likelihood IL

where the weight function         is, in principle, a suitably invariant 
distribution on               --- difficult to deal with explicitly 

Severini (2007) developed a good approximation to that aim, but 
essentially with a complicated weight function          depending on 
the data
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Bayesian calculations: If            are a priori independent then

so 

where the special IL depends on the representation of the 
nuisance parameter and the prior for it (related matters)

Note that the prior          has a very simple effect, not very 
important for our considerations, since we are mainly concerned 
with some kind of pseudo-likelihood for 

An important Laplace approximation (Sweeting 1987) is

which is formula for ACL but without imposing orthogonality

An IL using an orthogonal parameter may approximate well a 
version of ACL, and perhaps even the MPL
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Often fairly easy with MCMC to obtain samples from

As noted above, if         is uniform then the marginal density of     
from this is an integrated likelihood                 and this will 
depend little on the choice of a diffuse

Recall that for diffuse 

but this is not ACL unless     is orthogonal 

Seems impractical to ask that the MCMC be done, generally, in an
orthogonal parameterization

It seems not so difficult approximate the final factor from 
analysis of the MCMC samples, thus to “remove” it and obtain PL

We suspect, but less confidently, that one can generally 
approximate from the samples a desired adjustment factor
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In the example given above, the MCMC posterior density is 
essentially the same as the “wrong ACL” when, as usual,      is 
represented in terms of canonical parameters

If the MCMC were done taking       as the orthogonal mean 
parameter, the posterior density would be essentially the same 
as the MPL.

So one can obtain useful likelihood quantities from the MCMC, 
but it is crucial to use something close to the orthogonal 
representation of nuisance parameters

How to do this can be worked out for some important classes of 
problems, e.g. GLMMs, but it is difficult to do in general, so we 
need a way to “fix up” the damage from using non-orthogonal 
parameters.

λ

λ



11

Some comments:

There is much written about choice of          but for our intentions 
this is not really an issue

If not taken as uniform, then can divide by it at the end. Doing
this may affect the convergence of the MCMC

It is not really necessary to “sample” at all --- can take a grid 
of values for it and only sample      .  In WinBUGS, say, make many 
separate runs with       fixed

As for orthogonal parameters, it will not work simply to transform 
the samples after the simulation --- there are complications 
regarding the Jacobian that possibly could be dealt with

Even when a form of orthogonal parameter is known in simple form, 
it can be difficult to use that in the MCMC specifications

The quantities                                   are very smooth functions, 
often essentially linear in       
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Example: Logistic regression with random intercept for 
clusters.

When taking             , it turns out that a nearly orthogonal 
parametrization replaces      by

This derives from considering the usual “attenuation” in 
marginal estimation with mixed models

Things work fine, i.e. the WinBUGS posterior density for    
is essentially the MPL as desired: the problem is that rather 
special considerations were necessary to obtain        
(When           the original lack of orthogonality is minor)

Essentially the same approach works for any GLMM with 
random intercepts for clusters, and for identity, log or logit
link (as above). 

But, can we fix things up regarding non-orthogonal parameters 
in a more general manner? 
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“Bacteria” data --- binary data on 50 individuals, repeated 
observations at 0,2,4,6,11 weeks (some missing) for 220 total 
binary readings. 

Model: 3 parameters for treatments, 4 parameters for time 
variation

Logistic mixed model with                term on logit scale for each 
individual, to allow for within-individual correlation

WinBUGS analysis, and HOA likelihood analysis using R-program 
prepared by Bellio in work with Brazzale

Consider here only inference about sigma

2(0, )N σ
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3 left curves: PL, MPL, WinBUGS posterior orthog param
2 right curves: APL formula (Laplace), WinBUGS orig param
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Posterior samples (sigma, const) in orthog params: Orthog
seen as constant regression.  Variation of Var(const|sigma) 
would provide for adjustment PL to APL, but none seen
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Original params: Lack of orthog seen as non-constant 
regression.  Var(const|sigma) varies too much with sigma, 
including unwanted variation due to E(const|sigma)
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Recall that

and consider approximating the final factor from the MCMC 
samples, so we can (first) remove it to obtain an approximation 
to PL

From the MCMC samples we can compute (estimate arbitrarily 
well) 

(recall that for our needs we could either fix      at specified
values, or sample it from            )

With diffuse prior we can expect that

Making this substitution, estimating the conditional variance 
function from posterior samples, and “back-calculating” the PL
works quite well in various examples we have tried
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Profile (solid), posterior density (rightmost dashed), and 
posterior adjusted by estimated variance function (leftmost 
dashed) ---- recovering essentially the PL from the MCMC. Can 
actually do better than this with modification of details
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Can we go further and approximate an ACL or the MPL ?

Need to estimate the function var( | )λ ψ ψ⊥ =� �
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One possibility is to “remove” from the variance function here 
that variation due to the unwanted dependence ( | )E λ ψ ψ=� �
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Another is to estimate more directly from the posterior samples 
key aspects of the transformation to orthogonal parameters

Possible resolution of these issues is currently underway

So where are we so far?

We can use MCMC to approximate the PL and likely an ACL or MPL

Distinctions between using the posterior as a density and using it 
as a likelihood are readily explored (often will not matter much)

Can obtain very good frequentist inferences without complications 
of choosing prior for interest parameter          

As a practical matter, provides for frequentist inference when the 
likelihood is difficult to evaluate

As a theoretical matter, clarifies connections between the two 
modes of inference


