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S

A well-known and useful method for generalised regression analysis when a linear
covariate x is available only through some approximation z is to carry out more or less
the usual analysis with E(x|z) substituted for x. Sometimes, but not always, the quantity
var (x|z) should be used to allow for overdispersion introduced by this substitution. These
quantities involve the distribution of true covariates x, and with some exceptions this
requires assessment of that distribution through the distribution of observed values z. It
is often desirable to take a nonparametric approach to this, which inherently involves a
deconvolution that is difficult to carry our directly. However, if covariate errors are
assumed to be multiplicative and log-normal, simple but accurate approximations are
available for the quantities E(xk |z) (k=1, 2, . . .). In particular, the approximations depend
only on the first two derivatives of the logarithm of the density of z at the point under
consideration and the coefficient of variation of z|x. The methods will thus be most useful
in large-scale observational studies where the distribution of z can be assessed well enough
in an essentially nonparametric manner to approximate adequately those derivatives. We
consider both the classical and Berkson error models. This approach is applied to radiation
dose estimates for atomic-bomb survivors.

Some key words: Berkson errors; Classical error model; Deconvolution of covariate errors; Errors in
covariables; Generalised regression model; Regression calibration.

1. I

We are concerned with fairly general regression settings, such as generalised linear
models or regression models for response times, that include a covariate x represented in
the data only by some estimate or approximation z. We assume that covariate-estimation
errors vary independently between individuals and, as usual, that conditional on x the
values of z are uninformative. It is well known that when the covariate x enters the model
linearly it is often useful to replace x by the quantity E(x|z) rather than z and carry out
essentially, often exactly, the same analysis as if x had been observed. This is often referred
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to as regression calibration, although that term is used more generally. There are several
alternative methods, some of which are indicated below, for dealing with covariate errors,
and our aim is not to argue that regression calibration is always the most useful one
among these. However, it is widely used, effective, reasonably well investigated, and has
some particular advantages in applications motivating this work.
Even within regression calibration methods there are substantial variations. In parti-

cular one may sometimes estimate E(x|z) directly by regression in a validation dataset
where both x and z are available. In doing this, under the classical error model defined
below and of primary interest here, one must take care that the marginal distribution of x
in the validation dataset is approximately the same as in the primary dataset; see for
example the admonition in Carroll et al. (1995, § 1.3.3). Alternatively, if there is an
assumed error model formulated in terms of the conditional distribution p(z|x), then E(x|z)
can be computed from the joint distribution p(x, z)=p(x)p(z|x) provided that one can
make suitable inference about p(x) from the observed distribution of the estimates z.
This is the approach of primary interest here, where the distribution p(x) is considered
nonparametrically and it is assumed that p(z|x) is log-normal with scale parameter x.
Direct nonparametric estimation of p(x) from the marginal distribution of z-values
in this setting, referred to as deconvolution when on some scale z=x+e, is difficult
although not totally impossible. A useful discussion of this and related matters is given in
Carroll et al. (1995, Ch. 12). In standard asymptotic formulations, explicit nonparametric
estimation of p(x) suffers from slow convergence, basically because convolution smooths
out details of p(x) that cannot be recovered. As is noted in that reference, two issues are
particularly important for current needs: how best to use smoothness assumptions regard-
ing p(x), and that it is easier to estimate E(x|z) than p(x) itself. The contributions of the
present paper are precisely in those directions. A recent method of Schafer (2001) uses an
 approach to approximate directly something more general than E(x|z) but not p(x) in
its entirety, namely the relevant score equation, conditional on z, for estimation of the
regression parameter.
Developed here is a way of reducing deconvolution difficulties when p(z|x) is taken as
log-normal with scale parameter x, assuming only that p(x) is suitably smooth. First,
highly accurate approximation of E(x|z) in terms of p(x) is given by the ratio for k=1
and k=0 of Laplace approximations to integrals ∆ xkp(x)p(z|x)dx, which involve only the
first two derivatives of log p(x) evaluated at z. The approach also applies for k>1 in the
numerator, thus providing approximations to E(xk |z) that are useful for several purposes.
A second and more crucial step involves similar Laplace approximations relating the
required derivatives of log p(x) to those of the logarithm of the distribution of z. The
approach is thus useful for samples large enough that these latter derivatives can be
usefully estimated in an essentially nonparametric manner. The proposed approximation
to E(x|z) is an explicit function of the coefficient of variation of the distribution p(z|x).
This approach enables tractable consideration of settings where the covariate errors are

a combination of two types, namely that indicated above in line with the factorisation
p(x, z)=p(x)p(z|x), along with another component for which the more relevant factor-
isation is p(x, z)=p(z)p(x|z). This distinction involves what are commonly referred to as
the ‘classical’ and ‘Berkson’ covariate error models. In the classical error model z is an
estimate of x in the ordinary sense, and in the Berkson model z is a different kind of
approximation such as one arising from grouping x-values. Results for the combination
of classical and Berkson errors are given in § 4, and until then all considerations are for
only classical errors.
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An alternative and popular class of approaches, where consideration of E(x|z) does
not arise, consists of adjustment of estimating equations to reduce biases in parameter
estimators, which might be thought of as extending to generalised linear models the
classical correction-for-attenuation methods (Fuller, 1987, p. 5). For example, this includes
methods of Stefanski & Carroll (1987), Stefanski (1989) and Nakamura (1990, 1992); see
also Carroll et al. (1995, Ch. 6). Generally, the adjusted estimating equations must be
derived on a case-by-case basis with regard to the probability model for the primary
response data. Another approach, attractive in being very direct and general although
computationally intensive, is simulation extrapolation as developed by Cook & Stefanski
(1994) and Stefanski & Cook (1995), and described in Carroll et al. (1995, Ch. 5). None
of these methods make explicit use of theoretical or estimated distributions p(x) and p(x|z),
or of the marginal distribution of the observed z-values. On the contrary, some of them
and much classical literature in the area strongly consider the collection of x-values as
nuisance or incidental parameters, a type of modelling referred to as ‘functional’.
Maximum likelihood might be considered as an alternative to the approaches indicated

above, but our view is more that this is an ideal standard, implementation of which is
usually very difficult, to which other methods may be at least in principle compared.
Likelihood methods involve averaging with respect to p(x|z) the likelihood function if x
were observed, and to implement this involves deconvolution in some sense. As noted
above, Schafer (2001) considers maximum likelihood with a different approach to the
deconvolution from that taken here. Our interest in regression calibration is largely as an
approximation to maximum likelihood, and as noted below this approximation can in
some settings be quite accurate, to the extent that E(x|z) is determined. Since adjusted
estimating equation methods do not involve p(x) or p(x|z), their merits seem to consist
more of not having to assess these distributions than being a natural approach for approxi-
mating maximum likelihood. This is not to say, however, that adjusted estimating equation
methods cannot be highly efficient. These issues are discussed in Chapter 7 of Carroll
et al. (1995), where it is noted that the general theoretical matters relevant to this issue
are not clear.
Although it is not our aim to advocate regression calibration generally over such

alternative methods, but rather to facilitate this for those who may be inclined for some
reason to use it, the approach does have some particular advantages in our motivating
applications, the analyses of the atomic-bomb survivor data. There x is true radiation dose
and fairly imprecise approximations z are provided by a general dosimetry system using
survivor location and shielding. At our institutes and elsewhere a great many analyses of
the same cohort data are made for different purposes and in exploratory modelling. These
involve analyses for different health endpoints, employing several types of generalised
regression models including survival analysis, and exploratory work involving choices and
modelling of additional covariates. For this it is very convenient that, once values of E(x|z)
are made available in the database, essentially the same methods for ongoing analyses
can be employed as if x were observed. It would be enormously inhibiting for exploratory
work, and probably seldom done even for final results, if either specialised adjusted esti-
mating equations or computationally intensive simulation-based methods were required.
Furthermore, in the final section we note a particularly important interpretation of E(x|z)
for our cohort study.
It may be helpful to clarify issues regarding use of more or less the same methods of

analysis with regression calibration as if the true covariate were available. We will do this
very casually, and in particular the Taylor’s approximation below requires further attention
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or modification in a more careful treatment. It is difficult to document the history of the
methodological suggestion and its development, but it has been popular in biostatistics
since the work of Armstrong & Oakes (1982), Armstrong (1985) and Prentice (1982a,b);
see further references in Carroll et al. (1995, Ch. 3). Ignoring covariates measured without
error, and first considering x as observed, express the response data for an individual
as y=g(a+bx)+e, where conditionally on x we have E(e)=0 and var (e)=k(a+bx).
For exponential family generalised linear models, iteratively weighted least squares in
this formulation is equivalent to maximum likelihood estimation. Writing z∞=E(x|z) and
y=g{a+bz+b(x−z)}+e suggests the approximation

yjg(a+bz)+g< (a+bz)b(x−z)+e=g(a+bz)+u+e.

Then conditionally on z the error term for regression analysis becomes u+e. It is not
difficult to see that E(u+e|z)=0 and

var (u+e|z)=E{k(a+bx) |z}+{g< (a+bz∞)b}2 var (x|z).

Employing exactly the usual methods means using iteratively re-weighted least squares
in the model y=g(a+bz∞)+w, where w=u+e, using variance function k(a+bz∞).
Since E(u+e|z)=0 this will lead to consistent estimation even though the variance
function may not be appropriate. The substitution of k(a+bz∞) for E{k(a+bx)|z} will
usually be innocuous, and the issue requiring consideration involves whether or not the
term {g< (a+bz∞)b}2 var (x|z) representing overdispersion due to covariate error can be
ignored. That the overdispersion involves var (x|z) is one of the reasons why we provide
approximations for E(xk |z) for k>1. Another reason is that, when the regression model
involves xk, for k>1, then the regression calibration method entails substituting E(xk |z)
for xk.
When y is binomial with sample size m, the variance function becomes

k(a+bz)+ (m2−m){g< (a+bz)b}2 var (x|z),

so for the Bernoulli case m=1 there is no overdispersion. In fact, y|z remains Bernoulli
and iteratively re-weighted least squares is maximum likelihood. When y is Poisson, the
variance function is k(a+bz)+{g< (a+bz)b}2 var (x|z), and the overdispersion is usually
negligible when E(y) is small. For either the binomial case with large m or the Poisson
case with large mean, the overdispersion should be taken into account. This might be
done either by using the correct variance function, or by using the variance function
k(a+bz∞) with perhaps only modest loss of efficiency, along with a robust method of
estimating standard errors not relying on the incorrectly assumed variance function.
For the analysis of survival data with response time T with hazard linear in x, Prentice
(1982a) showed that using the standard analysis with substitution of z∞ for x provides a
close approximation to maximum likelihood estimation provided that E(x|z, T>t)/E(x|z)
is near unity; that is, in comparison to z, the response time T carries relatively little
information regarding x. Prentice (1982b) has shown that similar considerations hold for
case-control studies.
We first present the main results for the classical error model, where the factorisation

p(x, z)=p(x)p(z|x) is most natural, and then apply these to our motivating example
involving radiation doses for atomic-bomb survivors. Following that we consider the
extension when Berkson errors, where the natural factorisation is p(x, z)=p(z)p(x|z), are
involved as well.
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2. M 

Results in this section are based on the factorisation p(x, z)=p(x)p(z|x) most useful in
the classical error model. As noted, we will assume that covariate estimation errors are
multiplicative and p(z|x) is log-normal with scale parameter x and constant coefficient of
variation. Henceforth, we clarify notation by usually expressing the distributions of x
and z as p

X
( . ) and p

Z
( . ), and so forth, unless the meaning is otherwise clear. We first

provide an approximation to E(x|z) as a functional of p
X
( . ), and then extend this to a

functional of p
Z
( . ).

The argument and results are more direct on the log scale, and we write x*= log (x)
and z*= log (z). Under our model we then have that z*=x*+e*, where the covariate
error e* is Gaussian and independent of x*. We first assume that E(e*)=0, so that
E(z*|x*)=x*, and then provide modifications for the case that E(z|x)=x. For either case
write s2=var (z*|x*), noting that the square root of this is the approximate coefficient of
variation of z|x. Of course assessment of s is an important and difficult matter, but one
considered outside of the scope of this paper.
Our first main result is the following approximation to E(xk |z) as a functional of p

X
( . ),

or more directly of p
X*
( . ). This is given in terms of correction factors C

k
(z) defined and

approximated as

E(xk |z)¬{C
k
(z)z}k (1a)

with

C
k
(z)jv{k+2d

1
(z)}/{1−s2d

2
(z)} . (1b)

Here v=exp (s2/2) and d1 (z) and d2 (z) are the first two derivatives of log pX* ( . ) with
respect to x*, evaluated at z*= log (z). The result (1) is only valid when 1−s2d2 (z)>0. The
formal derivation is very straightforward, following directly from replacing log p

X*
( . ) by

a second-order expansion at the point z* in each of the integrals

P exp (kx*)p(x*)p(z*|x*)dx*, P p(x*)p(z*|x*)dx*,
whose ratio is E(xk |z). This means that the relationship in (1) is exact when p

X
( . ) is

log-normal, but our interest is in a general p
X
( . ). These approximations to the two

integrals are Laplace-type (Barndorff-Nielsen & Cox, 1989), where the asymptotic index
is s−2. The key to impressive accuracy, in this and many other settings, is that the under-
lying second-order expansion is made locally to each value of z and need only be reliable
for x-values where p(z|x) is substantial. Moreover, the approximation to the ratio is
substantially better than that to either term since moderate errors tend to cancel (Tierney
& Kadane, 1986). More formally, the approach requires that d2 (z) be continuous, and
then it is well known that for such Laplace approximations the error for each integral
is O(s−2 ) and that for the ratio of the two integrals is O(s−4 ).
We now turn to approximations as functionals of p

Z
( . ), the distribution of observed

quantities z. Further Laplace-type approximation explained below relates the derivatives
d
j
(z) arising in (1) to the derivatives dA

j
(z) of log p

Z*
( . ), with respect to z* and evaluated

at z*= log (z). This relationship is given by

d
j
(z)jdA

j
(z)/{1+s2dA

2
(z)} ( j=1, 2), (2)
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and substituting these into (1) yields our second main result,

E(xk |z)¬{CB
k
(z)z}k , (3a)

with

CB
k
(z)jvk{1+s2dA

2
(z)}+2dA

1
(z) . (3b)

Implementing (3) involves estimating the derivatives required there from the empirical
distribution of the observed covariate estimates z. Although the local nature of the under-
lying approximations might suggest using nonparametric local estimates of the derivatives
dA1 (z) and d

A
2 (z), this should probably be avoided in most applications unless very sub-

stantial smoothing is employed. This is because the true derivatives being estimated will
typically be quite smooth functions of z, and it will be unattractive at best if the correction
factors CB

k
(z) are not correspondingly smooth. Therefore the intended use of these methods,

which should usually present no serious difficulty, is that one fit globally to the empirical
distribution of log p

Z*
( . ) a curve suitable for analytical differentiation, and with continuous

second derivative. For this, taking f {log p
Z*
( . )} as a third- or fourth-degree polynomial

in g(z*), for some suitable functions f ( . ) and g(.) arrived at in an exploratory manner,
should usually be adequate. Splines might be used, but with some attention to adequate
smoothing and continuous second derivative.
Relationships (2) can be formally derived as follows. We have that z*=x*+e*,
where e* is Gaussian and independent of x*. Equations (2) would arise directly if x* were
Gaussian, in terms of moments of x* and z*. Furthermore, along lines similar to the
development of (1), local approximations show that (2) holds more generally. In particular,
differentiating the convolution equation yields that

p
Z*
(z*)dA

1
(z*)=P pX* (z*−e*)d1 (z*−e*)p(e*)de*,

p
Z*
(z*){dA

1
(z*)2+dA

2
(z*)}=P pX* (z*−e*){d1 (z*−e*)2+d2 (z*−e*)}p(e*)de*.

Of course these functional equations relating the derivatives have solution (2) when
p
X*
( . ) is Gaussian. Use of local second-order approximations of log p

X*
(z*−e*) at

each z* then provides (2) as an approximate solution to the functional equations. This is
a Laplace-type approximation, but less accurate than (1) because the aim is not evaluation
of the integrals but solution of the functional equations. Nonparametric deconvolution is
a notoriously difficult problem, and the evaluation in the following section of the adequacy
of approximation (3) is especially important.
There is interest in conditions such that E(x|z)<z, since one might expect this to be

true for large values of z when the distributions p
X
( . ) or p

Z
( . ) are highly skewed to the

right. Clearly, in the case of approximations (1) and (3) that condition holds in terms
of p
X
( . ) when d1 (z)<−12

, or in terms of p
Z
( . ) when dA1 (z)<−{1+s2d

A
2 (z)}/2.

Furthermore, it will often be the case that d
2
(z) and dA2 (z) vary modestly over the range

of z, in which case the ratios C2 (z)/C1 (z) and CB 2 (z)/CB 1 (z) are fairly constant. This would
mean that E(x2 |z) is approximately a constant multiple of E(x|z)2, and thus that var (x|z) is
approximately proportional to E(x|z)2. The former is useful when testing linearity in x of
the regression model by considering a quadratic alternative, and the latter for considering
the effect of overdispersion introduced by the distribution of x−E(x|z).



869Adjusting for covariate errors

Finally, in the case that E(z|x)=x, rather than E(z*|x)=x* as assumed above, the
changes are as follows. The z-variate, zalt say, unbiased on the linear scale is v−1 times
that unbiased on the log scale, so one could simply rescale zalt and apply the above
methods. We note, however, that in the case of approximation (3) the result is that
CB alt
k
(zalt )=vCB k (z), and for approximation (1) it is Caltk (zalt )=Ck+1 (z). In the case of

approximation (3), this involves some change in (2), namely that the expression for j=1
becomes d1 (z)={d

A
1 (z)−s2d

A
2 (z)}/{1+s2d

A
2 (z)}, whereas that for j=2 remains the same.

3. E

The example involves rather imprecisely estimated radiation doses for atomic-bomb
survivors followed up by the Radiation Effects Research Foundation in Hiroshima and
Nagasaki, which are used in the study of radiation-related cancer and other diseases. The
dosimetry system providing estimates z is documented in Roesch (1987). We note that it
consists of having assessed each survivor’s location and shielding through interviews, and
then applying physical calculations of radiation transport through air and shielding
materials.
The value of the proposed methods becomes clearer in relation to what has been used

in the past for these data. Pierce et al. (1990), also reported in Pierce et al. (1992), estimated
the distributions of true radiation doses for Hiroshima and Nagasaki as Weibull distri-
butions, although restricted to the dose range used below, with cumulative distribution
functions F

X
(x)=1−exp (−h1xh2 ); h1={2·84, 2·33} and h2=0·5, where the two values

of h1 are for Hiroshima and Nagasaki, respectively. The adjustment factors C1 (z) and
C2 (z) were then computed by numerical integration, and approximated in terms of
second-degree polynomials in log (z) for routine use. We have found that the error in
approximation (1) for this specific Weibull setting is totally negligible, but there was really
no need for this when assuming that the above estimates of p

X
( . ) are adequate. The

unattractive aspects of the methodology were involved in the deconvolution step used in
arriving at the above estimates of F

X
(x). First p

Z
( . ) was fitted by a Weibull distribution

for each city, using the restricted dose range indicated below. Then, for selected values of
s={log (z) |x}, trial and error was used to find Weibull distributions for p

X
( . ). The

criterion for this correspondence was rather arbitrary, but the weakest link was assuming
Weibull forms, particularly for p

X
( . ). This method has been used extensively at the

Radiation Effects Research Foundation and elsewhere for a decade, assuming 35%
coefficient of variation classical errors, that is s=0·35. Comparison of previous results to
those obtained here is briefly indicated below.
We illustrate the new methods here for Nagasaki, where the log empirical density

log p
Z
( . ) departs more than for Hiroshima from a second-degree polynomial, for which

the approximation (1) is exact. The dose range used here is 0·1–6 Gy (Gray) of primary
interest for the adjustments in question, which for Nagasaki involves about 4000 survivors,
with dose quartiles 0·20, 0·45 and 0·85 Gy. About 85% of Nagasaki survivors in the cohort
have doses less than 0·10, where radiation risks are very small, and including these low-
dose survivors would greatly and unnecessarily complicate considerations here. As a per-
spective on radiation dose levels, with whole-body exposures a dose of 1 Gy would require
serious medical attention, a dose of 3 Gy is roughly the 50 , and annual occupational
limits for radiation workers are around 0·02–0·05 Gy. Roughly speaking, cancer rates for
a survivor are increased by about 50% per Gy for all remaining lifetime (Pierce et al., 1996).
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Fig. 1. Empirical density and cubic polynomial fit, log-
log scale, for Nagasaki and dose range 0·10–6 Gy.

Figure 1 shows the log-log empirical density of dose estimates z for Nagasaki,
along with the fit of a third-degree polynomial on the indicated dose range, namely
const−0·543z*−0·503(z*)2−0·110(z*)3. Our initial aim was to use the exploratory
method suggested in the previous section, but this worked out much more simply than
expected since the transformations f ( . ) and g(.) suggested they were not necessary in
this case.
In order to demonstrate the accuracy of the Laplace approximations in (1), we first

pretend that the curve in Fig. 1 estimates the distribution p
X
( . ) of true doses. Figure 2

shows, for s=0·35 and s=0·7, correction factors C1 (x) and C2 (x) computed both by
numerical integration using the cubic polynomial and by approximation (1). Henceforth
we make plots on the range 0·25–6 Gy to avoid, in integrations, excessive extrapolation
to doses below the 0·10 used in Fig. 1. The adjustment factors, both exact and approximate,
appear to be unstable for doses less than 0·25. For the application we have little interest
in this, particularly in view of the extrapolative uncertainties involved, since risk estimation
relative errors at very low doses dominate effects of dose adjustment.
In Fig. 3 we show for s=0·35, the choice ordinarily used for our setting, final results
of using CB 1 (z) and CB 2 (z) given in (3). These are compared to C1 (z) and C2 (z) given

Fig. 2. Comparison, for (a) s=0·35 and (b) s=0·70, of approximation (1) (dashed lines) to
exact results (solid lines) based on numerical integration, taking the curve in Fig. 1 as estimating
p
X
( . ) rather than p

Z
( . ). The lower pair of lines pertains to C1 (x) and the upper pair to C2 (x).
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Fig. 3. Final results, with s=0·35, for CB 1 (z) and CB 2 (z), the
lower and upper solid curves, respectively. Broken lines show
C1 (z), lower curve, and C2 (z), upper curve, when one takes
the derivatives of p

X
( . ) as those of the observed p

Z
( . ), omitting

the deconvolution step.

by (1) when taking d
j
(z)=dA

j
(z), to demonstrate the effect of the deconvolution to estimate

p
X
( . ) from p

Z
( . ). We note that these results differ substantially from what was obtained

using the previous method indicated at the outset of this section. For example, whereas
CB 1 (4)=0·78 in Fig. 3, the value obtained before was C1 (4)=0·87. We believe that this
reflects the inadequacies of the previous methods, and that the current assessment is
essentially correct, given the assumptions. However, we note that such a discrepancy is
not really large in relation to uncertainties of modelling covariate errors. Beyond the
dependence on the assumed value of s, we note that assuming E(z|x)=x rather than
E(z*|x)=x*, as we have done here, would result in CB 1 (4)=0·83. Such variations, however,
do not have a large effect on eventual estimation of quantities such as radiation-related
cancer risk, and the primary value of methods under consideration is to show that
covariate errors roughly as considered here actually have a very modest effect on final
regression analyses of that nature.
We have evaluated by simulation the use of approximation (3), compared to exact

results based on the true distribution p
X
( . ), for settings similar to this example. For

the sample size arising in the example, discussed further below, Table 1 summarises the

Table 1. Simulation distributions, with 3000 trials, of relative error of approximation (3)
at 4 Gy

Relative error
s b3 >−30% >−20% >−30% −10% to 10% >10% >20% >30% Mean

0·35 0 0·012 0·071 0·248 0·584 0·168 0·036 0·007 0·016
−0·10 0·017 0·069 0·265 0·624 0·110 0·014 0·001 0·032
−0·20 0·040 0·135 0·380 0·545 0·075 0·005 0·000 0·069

0·50 0 0·010 0·071 0·258 0·573 0·169 0·041 0·007 0·017
−0·10 0·014 0·068 0·259 0·634 0·108 0·014 0·001 0·033
−0·20 0·052 0·189 0·469 0·486 0·045 0·005 0·000 0·096
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errors in estimating C1 (z), relative to the reduction 1−C1 (z), at z=4 Gy, for the three
true dose distributions shown in Fig. 4 and two values of s. The intermediate distri-
bution there corresponds essentially to the fitted curve shown in Fig. 1, rounding the
polynomial coefficients there to const−0·50x*−0·50(x*)2−0·10(x*)3. The other two
distributions correspond to replacing the coefficient b3=−0·10 by b3=0 and b3=−0·20.
In Table 1, notation such as>−20% means at least 20% error in the negative direction.
Thus, for example, with b3=−0·10 as in the example and for s=0·35, there were
6·9%+1·4%=8·3% of the trials with relative error greater than 20%. As discussed below,
most of the error seen in Table 1 is not due to approximation (3) but to errors in estimation
of the true p

Z
( . ).

Fig. 4. Assumed densities of true dose for simulation. Solid line
corresponds to Fig. 1 and the dashed lines to b3=0 and−0·20,

with the former giving the more Guassian-like curve.

Before giving some further details of the simulation, we discuss important matters of
perspective that will arise more generally. For the application we are mainly interested in
the value of C1 (z) in the range 2–4 Gy. Although there are about 4000 Nagasaki survivors
with dose estimates in the range 0·1–6 Gy, only about 400 of these have dose estimates
of at least 2 Gy. In the simulations we maintain for the other dose distributions the 4000
individuals in the range 0·1–6 Gy. Most of the error seen in Table 1 comes not from the
Laplace-type approximations leading to (1) and (2), but from estimating the derivatives
dA
j
(z). Evidence for that derives from the fact that for b3=0 the approximations (1) and (2)
are exact, and the errors for the three values of b3 are similar. The error in estimating
the dA

j
(z) depends on the method used for this estimation, described below.

If instead of 4000 there were only 2000 survivors in the dose range 0·1–6 Gy, there
would be so few at above 2 Gy that smoothness assumptions stronger than those used here
would be required. If there were 10 000 survivors in the range 0·1–6 Gy, errors such as
those reported in Table 1 would be much smaller. For example, the 8·3% chance, referred
to above, of errors of at least 20% for s=0·35 is then reduced to 0·8%, and essentially
the same reduction occurs for s=0·50. Those ten-fold reductions are for b3=−0·10, and
for b3=−0·20 the corresponding reductions are by factors of about 6 for s=0·35, and
about 3 for s=0·50. This indicates, as claimed, that fairly generally the errors do not
result mainly from approximations (1) and (2) but from the inherent difficulty of estimation
of the dA

j
(z) in the right-hand tail of the distribution.
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In the simulation we take the approach indicated in Fig. 1 of fitting a cubic poly-
nomial to the log-log density of z for use in (2) and (1). Use of a quartic polynomial
gives very similar results. This is not strictly speaking a nonparametric approach, but
indicates the general nature of our intended application. It would become somewhat
more nonparametric if as suggested earlier one finds by exploration suitable nonlinear
transformations of both the log density and log doses for use in the polynomial-based
estimation of required derivatives. In the simulation unweighted regression of empirical
densities in 40 equal-width bins was used. It is important to generate true doses over a
wider range than that used for estimated doses, so that the convolution remains in effect
near the endpoints. Sampling was continued until there was the desired number 4000 of
estimated doses in the range 0·1–6 Gy.

4. B 

The classical error model is appropriate when z is in the usual sense an estimate of x,
such as that on the original or logarithmic scale z=x+e with cov (e, x)=0. The Berkson
error model arises when z is some other type of approximation, such as would arise from
grouping x-values, in which case it is better to think of x=z+e, where cov (e, z)=0,
along with the factorisation p(x, z)=p(z)p(x|z). In the classical case z is more variable
than x, and in the Berkson case it is less variable.
Although we chose not to complicate the above example with such matters, and could

not deal with them using previous methods, for the atomic-bomb survivor setting the
overall error is a composite of the two types. Classical error arises mainly from estimation
of survivor location and shielding, whereas Berkson error arises from using the location
and shielding information only to some approximation, which would be necessary even
if this information were known without error.
A formulation for our log-normal setting allowing for both classical and Berkson errors

can be expressed in terms of a latent variable u=exp (u*) as

u*=x*+e*
C
, (4)

u*=z*+e*
B
, (5)

where e*
C
is classical with variance s2

C
and is independent of x, and e*

B
is Berkson with

variance s2
B
and is independent of (z, e

C
); that is, u can be thought of as an unobserved

‘estimate’ of x as in (4), whereas because of some smoothing or grouping what is available
is only z as provided by (5). A slightly different formulation was used by Tosteson &
Tsiatis (1988) and Reeves et al. (1998), equivalent to the above at least when all the
variables are normally distributed.
The methods of this paper can be readily employed for this more general setting as

follows. Suppose first, artificially, that the required derivatives of p
X
( . ) were known. Even

though u is not observed, approximation (1) can be applied to equation (4) to obtain
E(xk |u)j{C

k
(u)u}k. Then u can be eliminated from this result by taking the expectation

corresponding to equation (5), conditionally on z. Usually, the functions {C
k
(u)u}k, for

k=1, 2, are close enough to linear in u to allow us to use simply {C
k
(z)z}k for this

expectation.
To carry this out in practice requires us, as before, to relate the derivatives of p

X*
( . ) to

those of p
Z*
( . ) in the more general setting. We show at the end of this section that the
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generalisation of the previous relationship (2) that corresponds to the model given by (4)
and (5) is

d
j
(z)jdA

j
(z)/{1+ (s2

C
−s2
B
)dA
2
(z)} ( j=1, 2). (6)

Thus, given estimates of the derivatives dA
j
(z), which do not depend on the error model,

one uses (6) to estimate the derivatives d
j
(z) to be used in approximation (1), taking

s2=s2
C
, for obtaining the intermediate result E(xk |u)j{C

k
(u)u}k. Then equation (5)

involving s2
B
is employed to compute the expectation E[{C

k
(u)u}k |z]jE(xk |z). As noted

above, one may usually take E[{C
k
(u)u}k |z]j{C

k
(z)z}k with negligible error. If necessary,

this error may be reduced by approximating {C
k
(u)u}k as log-quadratic in u*−z*, so that

the expectation under (5) can be evaluated exactly when e*
B
is normally distributed.

For our example, consider the two cases where we assume that s
B
=s
C
=0·35 on the

one hand, or s
C
=0·35 and s

B
=0 on the other. In the first case we see from (6) that the

net effect of the deconvolution is nil, so that we apply approximation (1) with d
j
(z)=dA

j
(z).

Intuitive support for this is provided by recalling that classical errors alone result in z
being more variable than x, and Berkson errors alone result in z being less variable than x,
so when both types of error are equally present these effects cancel. Since we can use the
approximation E{C1 (u)u|z}jC1 (z)z, we have already shown the comparison of interest
in the bottom two curves in Fig. 3, where the dashed one was given there simply to
illustrate the effect of omitting the deconvolution.
We were surprised to find that adding the Berkson error results in adjustment factors

nearer to unity, meaning that adding these errors actually decreases the bias in the naı̈ve
analysis when simply replacing x by z. On reflection, it seems this may be related to results
following up on a suggestion by Wald, that under the classical error model the bias may
be reduced by grouping the data; see for example Cheng & Van Ness (1999, Ch. 4).
To derive (6), denote by d@

j
( . ) the derivatives of p

U*
( . ) analogous to those already

considered. Applying the previous result (2) to equation (4) yields

d
j
(u)jd@

j
(u)/{1+s2

C
d@
2
(u)} ( j=1, 2),

and application of (2) to equation (5) yields

dA
j
(u)jd@

j
(u)/{1+s2

B
d@
2
(u)} ( j=1, 2).

Solving these four equations provides the result (6).

5. D

In § 1 we noted that the quantities E(x|z) have a particularly important interpretation
for the atomic-bomb survivor data. The dosimetry system does not take into account
information regarding dose provided by the fact of survival of the bombs, but only survivor
location and shielding. To a substantial extent the neglected information is reflected in
the distribution p

X
( . ), this being very highly skewed with relatively few survivors at high

doses. If the survival of a dose x were proportional to p(x), then E(x|z) would take into
account the information provided by survival. What is actually desired, though, is an
appropriate dose estimate not specifically for survivors but for those belonging to the
cohort study, and E(x|z) may be considered the appropriate dose estimate for them. These
issues are discussed more thoroughly in Pierce et al. (1990) and Pierce et al. (1992). In
our view, similar considerations are involved in any observational study, where E(x|z)
reflects aspects of selection of the study population that are normally not considered in
arriving at the estimates z.
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We now consider the limitations of the proposed method for approximating E(x|z).
Approximation (1) would be usually very accurate if the true p

X
( . ) were known and the

second derivative of the log density were reasonably smooth. The more difficult issues
arise with regard to the use of approximation (2), partly in assessing the accuracy of the
relationship itself if the true values of the d@

j
(z) employed there were known, but probably

more importantly in estimating those derivatives. The simulation results in § 3 assess the
combination of both of these matters, providing for some separation of them since one of
the choices for p

X
( . ) is normal, where the Laplace approximations are exact. Those results

suggest that, when the true densities are reasonably smooth, the dominant error results
from estimation of the derivatives dA

j
(z), which also involves smoothness assumptions

and how they are used in this estimation. The difficulties are most serious when, as in
our example and seems likely to be common, the main interest is in E(x|z) for large
values of z where the data for estimating the required derivatives are sparse. In practice,
therefore, the most delicate matter in the proposed method seems to be to achieve suitable
‘nonparametric’ estimation of the derivatives dA1 (z) and d

A
2 (z), while imposing enough

smoothness on p
Z
( . ) to cope with limitations of the data. These issues might often require

more consideration than seems called for in our example, where we are quite confident
about our final results.
A general aim of this paper is to encourage nonparametric use of the apparent

distribution of the covariable x in computation of E(x|z), whether by the methods of
this paper or otherwise. Such a nonparametric approach is in principle rather daunting
because of the deconvolution required for direct estimation of p(x). Given the log-normal
assumption regarding p(z|x), the method suggested here seems likely to be reasonably
accurate in relation to other modelling uncertainties provided that p(x) is quite smooth
and there are a few hundred observations on z in the range of primary interest for E(x|z).
When difficulties are encountered because of limitations to the extent of the data, these
surely must, regardless of the specific approach, be met by stronger modelling assumptions
regarding p(x). It seems to us that this will often be more suitably done in terms of
imposing smoothess rather than choosing some standard parametric form. Imposing this
smoothness in terms of the log density derivatives considered focuses on the apsects of p(x)
that determine E(x|z). If considerable smoothness in this sense is imposed, then it seems
that the error in approximations (1) and (2) will be modest, and the issue becomes
primarily how then to estimate the derivatives dA

j
(z). Improvements on our suggestion for

this would be useful.
For the atomic-bomb survivor application the primary value of careful consideration

of covariate errors is to see that their effect on final regressions, such as for radiation-
related cancer, is actually quite modest. As reported in Pierce et al. (1990), for the
magnitude of errors usually considered such risk estimates are typically increased by
around 10% in comparison to the naı̈ve analysis that ignores dose errors. Detailed
assumptions in error modelling appear not to alter this end result appreciably.
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