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RADIATION RESEARCH 123, 275-284 (1990) 

Allowing for Random Errors in Radiation Dose Estimates 
for the Atomic Bomb Survivor Data 

DONALD A. PIERCE, DANIEL 0. STRAM, AND MICHAEL VAETH 

Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan 

PIERCE, D. A., STRAM, D. O., AND VAETH, M. Allowing for 
Random Errors in Radiation Dose Estimates for the Atomic 
Bomb Survivor Data. Radiat. Res. 123, 275-284 (1990). 

The presence of random errors in the individual radiation 
dose estimates for the A-bomb survivors causes underestima- 
tion of radiation effects in dose-response analyses, and also dis- 
torts the shape of dose-response curves. Statistical methods are 
presented which will adjust for these biases, provided that a 
valid statistical model for the dose estimation errors is used. 
Emphasis is on clarifying some rather subtle statistical issues. 
For most of this development the distinction between radiation 
dose and exposure is not critical. The proposed methods involve 
downward adjustment of dose estimates, but this does not imply 
that the dosimetry system is faulty. Rather, this is a part of the 
dose-response analysis required to remove biases in the risk 
estimates. The primary focus of this report is on linear dose-re- 
sponse models, but methods for linear-quadratic models are 
also considered briefly. Some plausible models for the dose esti- 
mation errors are considered, which have typical errors in a 
range of 30-40% of the true values, and sensitivity analysis of 
the resulting bias corrections is provided. It is found that for 
these error models the resulting estimates of excess cancer risk 
based on linear models are about 6-17% greater than estimates 
that make no allowance for dose estimation errors. This in- 
crease in risk estimates is reduced to about 4-11% if, as has 
often been done recently, survivors with dose estimates above 4 
Gy are eliminated from the analysis. ? 1990 Academic Press, Inc. 

INTRODUCTION 

Much work at the Radiation Effects Research Founda- 
tion (RERF) involves estimation of the A-bomb survivors' 
radiation dose response for various end points, using esti- 
mates of individual radiation doses that have substantial 
uncertainties. Random errors in dose estimates cause sys- 
tematic biases in estimates of risk based on a linear dose-re- 
sponse model, and also distort the shape of the dose re- 
sponse. In this paper we develop statistical methods for deal- 
ing with these problems, with emphasis on clarifying some 
of the issues involved. The primary motivation for this 
work was analysis of cancer data, but some attention is 
given to analysis of data for chromosomal aberrations to 
illustrate how the methods depend on the nature of the 

response data. The focus is on fitting linear dose-response 
models, but brief consideration is given to the extension 
required for linear-quadratic models. In another report 
Pierce and Vaeth (1) use that extension to study the shape 
of the cancer dose-response curve. 

The problem of errors in doses for RERF data has been 
investigated in some detail by Jablon (2) and Gilbert (3). 
Jablon's report is particularly useful because of his analysis 
of the probable form and magnitude of errors in dose esti- 
mates. The general conclusions of the Gilbert paper are 
quite similar to those presented here, but the details of our 
development and proposed implementation of statistical 
methods are substantially different. 

A generally useful classical reference for the "errors in 
covariables" problem is Cochran (4), and an entry into the 
recent literature is provided by papers in a recent workshop 
(5). A textbook with broad coverage is Fuller (6), but this 
book deals little with the particular needs and approach 
here. More closely related methods are investigated by 
Armstrong (7), Prentice (8-10), and Clayton (11). 

Consideration is given only to what might be called "ran- 
dom" errors in dose estimates, due largely to uncertainties 
regarding the survivors' location and shielding, in contrast 
to those of a more systematic nature, such as in the yields of 
the bombs. No attempt is made here to investigate the ac- 
tual nature of the dose-estimation errors. Some preliminary 
discussion of precision in the Dosimetry System 1986 
(DS86) estimates, as well as a useful summary of the entire 
system, is given in Chapter 9 of the DS86 Report (12). The 
assessment of errors given by Jablon (2) for the previous 
dosimetry system remains relevant, because it focused on 
errors due to uncertainties about survivor location and 
shielding, and the same basic input is used in the DS86. 
Further research is needed on both the required statistical 
methods, and the ascertainment of the nature and magni- 
tude of errors in the DS86 estimates. 

For much of the paper the term dose will refer to "in air" 
tissue kerma at the location of the survivor corrected for 
shielding and terrain. Adjustments for errors in the tissue 
kerma estimates will be derived, resulting in factors which 
can be applied to organ doses. The alternative of developing 
more specific adjustments for doses to various organs seems 
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needlessly complicated. The primary weakness in basing 
adjustments on tissue kerma is that organ dose estimates 
generally have somewhat larger errors than do tissue kerma 
estimates, and the magnitude of the additional errors may 
depend on the organ considered. These points can be seen 
from the observation that the error in an organ dose esti- 
mate depends, to an extent depending on the organ under 
consideration, on uncertainty about which direction the 
survivor was facing when exposed. 

BASIC STATISTICAL ISSUES 

Suppose the true dose response for some outcome y is of 
linear form a + fx, where x is the true dose and a, f are 
parameters to be estimated. Then due to the linearity in x, 
the expected response among those with estimated dose z is 
a + 3 Avg(x I z), where Avg(x I z) is the average true dose 
among those with estimated dose z. The numerical values 
of the parameters a and : are the same in these two expres- 
sions. It is useful to think of Avg(x I z) as the average x-value 
for those with approximately the same z-value. Of course 
Avg(x I z) is not directly available from the data, but consid- 
eration of this quantity, as a function of z, is the key to 
understanding how biases arise when the relationship of y 
to z is used to draw inferences about the relationship of y to 
x, and how to approach correcting this problem. 

This argument depends on the dose response being linear 
in x, and the focus here is on that case. However, it can be 
generalized in various ways; extension to linear-quadratic 
models is discussed briefly. It is noted that if the nonlinear- 
ity in the expected value of y given x is not very great in the 
restricted range of x-values consistent with an estimated 
dose z, then a graph of y versus Avg(x I z) would still reflect 
the true shape of the dose response. Corrections can be 
made to the approximation in this, but the point remains 
that the relationship between z and Avg(x |z) is of general 
importance. 

It is easy to confuse the notion of Avg(x | z) with that of 
Avg(z Ix). Lack of bias in the dosimetry system should be 
taken to mean that Avg(zi x) = x. It will be seen that even 
when the dose estimates are unbiased in this sense, 
Avg(x I z) is not equal to z. The hypothetical example devel- 
oped in Table I may clarify this. Rounding to the nearest 
gray, the numbers of survivors in the true dose categories 
there are roughly those of the RERF Life Span Study (LSS) 
cohort. Consider a highly artificial statistical model for 
errors, such that with probability 0.5 the estimate is correct, 
with a probability of 0.25 of a 1 -Gy error in either direction. 
The table indicates the expected numbers of survivors in a 
cross-classification of true and estimated doses. Consider- 
ation of the rows of the table shows that, for each true dose, 
the average estimated dose is equal to that true dose and 
thus the estimates are unbiased in the sense of Avg(z Ix) 
= x. On the other hand, Avg(x I z) is computed by averaging 

TABLE I 
Artificial Example Indicating Basic Concepts 

Estimated dose z (Gy) 
True dose Number of 

x (Gy) 1 2 3 4 5 6 survivors 

2 250 500 250 1000 
3 75 150 75 300 
4 33 66 33 132 
5 15 30 15 60 

Avg(xl z) - 2.50 3.62 

true dose according to the frequencies in each column; 
some selected values are given at the bottom of the table. 
The average true dose for those in an estimated dose cate- 
gory is less than the estimated dose. This is seen to result 
from there being far more survivors in each column who 
are 1 Gy below the estimate than 1 Gy above the estimate. 
There is a skewness in each column which is, in turn, due to 
the skewness of the marginal distribution of true doses. 

The error distribution in Table I was chosen largely for 
simplicity, but it illustrates some important points. It is of- 
ten thought that two major aspects of the problem resulting 
from errors in doses are that the errors are: (i) greater for 
larger doses, and (ii) rather symmetric on a logarithmic 
scale, resulting in larger overestimates than underestimates. 
These two factors are relevant, but it can be seen from Table 
I, which has neither of these features, that the fundamental 
problem would exist even without them. 

The achievement of Avg(z Ix) = x, for all values of x, is a 
reasonable aim of a dosimetry system. It is useful to con- 
sider this issue in terms of an idealized dosimetry system 
which would give exact estimates were it not for errors in 
input variables such as the individual's location, shielding, 
etc. Then unbiased estimation of these input variables 
would lead, to an approximation which might be improved 
by transforming to a log scale, to Avg(z I x) = x. We would 
say that dose estimates from such an idealized system are 
unbiased. Whether the DS86 estimates are in fact unbiased 
in this sense is not considered in this paper; we will assume 
that they are unbiased, on a log scale. 

However, this will not ordinarily imply lack of bias in 
parameter estimates for dose-response models. The bias in 
linear risk estimation based on estimated dose z is related 
directly to the extent that Avg(xl z) differs from z. This is 
due to the fact noted above that, when the expected re- 
sponse is given by a + A x, the expected response among 
survivors with a given value of z is a + d Avg(x I z). It will be 
shown here that for the LSS cohort Avg(x J z) is substantially 
less than z in the higher range of estimated dose. 
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The statistical methods suggested for linear risk models 
involve the replacement of the estimated doses z by ad- 
justed estimates Avg(x I z), prior to dose-response analyses. 
True values of Avg(x I z) are not known, but these may be 
approximated as explained here. For some types of data 
additional modifications are required to allow for the varia- 
tion introduced by errors in dose estimates; for the cancer 
data this is generally not necessary. Additional, or some- 
times different, adjustments are required for nonlinear 
models. 

It is emphasized that this adjustment of estimated doses 
is not intended to correct any fault in the dosimetry system. 
When the distribution of true doses is very skewed, the two 
conditions Avg(z I| x) = x for all x and Avg(x | z) = z for all z 
are simply incompatible. Coping with the fact that 
Avg(x I z) is less than z for large dose estimates falls more 
within the realm of dose-response analysis than that of the 
dosimetry system. 

STATISTICAL MODELS AND METHODS 

We first discuss statistical models for errors and a method 
for estimation of Avg(x I z). After that, we indicate why and 
how adjusted estimates should be used in dose-response 
analyses, and give further details of the statistical proce- 
dures involved. 

Estimation of Avg(x I z) 

Avg(x z) is the mean of the conditional distribution of x 
among cohort members having (approximately) the same 
value of z; this conditional distribution is written asf(x I z). 
Other quantities computed from f(x z), such as Avg(x2 I z) 
and the standard deviation SD(x I z) will also be of interest. 

The density function f(x I z) can be obtained from the 
relationship 

f(xlz) oc f(x)f(zlx), (1) 

where f(x) is the marginal distribution of true doses and 
f(z Ix) is the distribution of the estimated doses for a given 
true dose. The proportionality in Eq. (1) is with respect to x. 
Several assumed models for f(z x) will be used, to explore 
the sensitivity of final results to this choice. Numerical inte- 
gration is used here to determine moments off(x |z) from 
Eq. (1), in order to avoid artificial constraints due to mathe- 
matically convenient choices of models. An estimate of the 
distribution f(x) of true doses in the study population must 
be made; this will be done by adjusting the observed distri- 
bution of estimated doses z. 

Before turning to details of these points, we discuss the 
intended meaning off(x I z), since these distributions are 
central to the approach. The intention is not to consider a 
particular survivor's true dose as a random variable, but 

rather to think of the distributionf(x I z) as representing the 
actual, but unobserved, distribution of true doses in the 
cohort among those with (approximately) a given estimated 
dose z. Considering Table I may clarify this. From this 
viewpoint the distribution f(x) in Eq. (1) represents the ac- 
tual distribution of true doses in the cohort, rather than that 
of a population from which the cohort is considered to be a 
sample. 

Careful definition of the meaning off(x I z) involves sub- 
tle statistical issues, and the point is raised here for two 
reasons. Replacing carefully obtained dose estimates z by 
adjusted values Avg(x I z) in dose-response analyses cer- 
tainly deserves careful thought, and may be controversial. 
The authors felt that it might be considered inappropriate 
to treat a given survivor's true dose as a random variable. 
Further, in the general statistical literature on errors in co- 
variables a major distinction is made between considering 
the true values x as random variables or as fixed unknown 
quantities. In applications, however, this distinction is un- 
clear. 

The meaning off(x I z) may be clearest for grouped data, 
but there are two reasons why it is helpful to carry out the 
development here without such grouping. Numerical re- 
sults here can be used for whatever grouping on estimated 
exposures may be appropriate for a given investigation, and 
even for ungrouped data when such analysis is feasible. Fur- 
ther, in the second part of this section it will be important to 
consider the distribution of x given z for individual survi- 
vors. In concrete terms it may be best to think of this as 
representing the x-value for a survivor selected at random 
from those with approximately a given estimated dose z. 

Attention is now given to choice off(x), the distribution 
of true doses in the cohort. Because the distribution of sur- 
vivors' locations relative to hypocenters of the two bombs 
differed markedly,f(x) differs between cities (2). The choice 
off(x) and the computation of Avg(x I z) is therefore done 
by city. The following procedure adjusts the observed distri- 
bution of z for each city to arrive at estimates of the distri- 
bution of x. 

For each city the proportion of those with dose estimates 
greater than any given value of z can be fitted very well by 
expressions of the form exp(-60 Z02), which is known as the 
Weibull model. (The values of 02 are less than one, corre- 
sponding to a monotonically decreasing density function.) 
It seems adequate to assume the same parametric form for 
the distribution of x, and estimate the parameters 01 and 02. 
This is done here by choosing these parameters so that, with 
a given model for the errors, the theoretical distribution of 
the z's induced byf(x) andf(z x) agrees well with the ob- 
served distribution of z's. In particular this is done by com- 
puting this induced distribution numerically, for given val- 
ues of 01 and 02 and choice of an error model, and using a 
direct search to find suitable parameter values for f(x). 
Since this depends on the choice of an error modelf(z Ix), 
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the results are given after discussing the error models consid- 
ered here. 

The lognormal model is of primary interest for f(z I x), 
where log(z) is assumed to be normally distributed with 
mean log(x) and standard deviation independent of x. Two 
other models are considered to explore the effects of this 
assumption. The lognormal model was suggested by Jablon 
(2), after consideration of the nature of the major sources of 
error. A key feature is that on the original scale the magni- 
tude of errors is proportional to the level of true dose; this 
feature seems essential to any model for f(z Ix). For the 
range of values used here, the standard deviation (SD) of 
log(z) is approximately equal to the coefficient of variation 
(CV) of z; that is, standard deviation of z relative to its 
mean. The precise relationship for lognormal models is that 
CV(z)2 = exp{SD[log(z)]2} - 1. For example, values of 
0.30, 0.35, and 0.40 for SD[log(z)] correspond to 30.7%, 
36.1%, and 41.7% for CV(z). For simplicity, such a model 
with SD(z) = 0.30 will be referred to as "lognormal 30% 
error," and so forth. 

Jablon concluded that the lognormal 30% error model 
was worth particular attention, but that somewhat larger 
errors should also be seriously considered. Results are given 
for the lognormal 30% and 40% error models and for two 
types of models which are not lognormal, but which have 
CV(z) = 40%. Some final numerical results are also given 
for the lognormal 35% error model. 

The most serious concern with the lognormal model is 
not the assumption of symmetry on the log scale, but rather 
the more specific assumption of normality. The normal dis- 
tribution is noteworthy, indeed notorious, for having very 
"light tails"; that is, it allows for few deviations which are 
large in relation to the size of more frequent ones. Since 
results here might be sensitive to the assumed chance of 
extreme errors, investigating a distribution with "heavier 
tails" is important. A natural choice is a contaminated log- 
normal distribution, taking log(z) as having an 85% chance 
of being normally distributed with standard deviation 0.30, 
and a 15% chance of being normally distributed with stan- 
dard deviation 0.75. These parameters were chosen to give 
another 40% error model for z, but with a quite different 
shape for the distribution. 

A fourth model was chosen to examine departures from 
the assumption of symmetry on the log scale, with conse- 
quent skewness on the original scale. This model takes z as 
normally distributed, with mean x and standard deviation 
proportional to x so that CV(z) = 40%. Although approxi- 
mate symmetry on a log scale is more natural, this rather 
extreme departure nevertheless provides useful informa- 
tion about the effect of the shape of the distribution. 

In summary, results will be given for four error models: 
A, lognormal 30% error; B, lognormal 40% error; C, con- 
taminated lognormal 40% error; and D, normal 40% error. 

The dependence of the dose-estimation errors on the 
shielding characteristics and perhaps other factors should 
be considered. Further information about the DS86 dosime- 
try system will be needed to evaluate such refinements. 

Use of these Adjustments for Dose-Response Analyses 

We first consider models in which the expected response 
is linear in true dose. Some comments on nonlinear models 
are given at the end of this section. The aim is to develop 
more carefully the argument of the previous section, sug- 
gesting replacement of the z-values by Avg(x I z) for dose- 
response analyses. In particular, it is clear that one should 
not simply think of values of Avg(x I z) as equivalent to the 
true x's, and a primary aim is to see what additional allow- 
ances may be required. 

Two specific types of response data, i.e., cancer and chro- 
mosomal aberrations, will be considered below; but first 
consider in general a response variable y following a statisti- 
cal model, in terms of true doses, of the form 

y = a + i.x + error. (2) 

Standard maximum likelihood methods for the data of in- 
terest can be implemented as weighted least-squares analy- 
sis under this model. For data of interest here the variance 
of "error" depends on x, which calls for weighted regres- 
sion, and also on a and i, which calls for iterative methods. 

For a survivor selected at random from the cohort, with 
estimated dose z, Eq. (2) can be re-expressed as 

y = a + / Avg(xl z) + 13[x - Avg(xl z)] + error. (3) 

In this setting x is a random variable with distribution 
f(x z) so the term /3 [x - Avg(x z)] becomes an additional 
"error term" in the model, with expected value zero and 
variance /2Var(x I z). Thus the variance of x among those 
with a given z becomes an important quantity, which can 
be computed similarly to Avg(x I z). 

The primary result is therefore that the datum for an 
individual with estimated dose z can be expressed as 

y = a + 3 Avg(xl z) + error*, (4) 

where error* is the combination of the two error terms in 
Eq. (3). In the sense of averaging over both sampling varia- 
tion and errors in dose estimation, the expected value of the 
error* term is zero, implying that weighted linear regression 
analysis based on Eq. (4) will yield unbiased estimates. 
(There is actually a small, ordinarily negligible, bias due to 
iterative estimation of weights for the regression). Further, 
it follows from a standard calculation that 
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Var(error*) = /2Var(xlz) + Avg[Var(error)], (5) 

where the last term is the average, in the distributionf(x I z), 
of the variance of the error in model (2). Thus Eq. (5) pro- 
vides the proper weights for fitting model (4) by weighted 
least squares, and also, ultimately, the standard errors of the 
parameter estimates. 

For some applications the only required modification to 
standard methods is to replace z by Avg(x I z). In others one 
must additionally modify the weights for the regression to 
accommodate dose errors. The distinction between these 
depends on the relative size of the two terms in Eq. (5). 

We consider two primary types of data that are of interest 
at RERF: (i) cancer incidence or mortality, and (ii) chromo- 
somal aberration prevalence. A more detailed discussion of 
the following issues is given in an appendix to Pierce et 
al. (13). 

For cancer analyses the datum on each individual is es- 
sentially binary, making the second term (from sampling 
errors) in Eq. (5) much larger than the first term (from dose 
errors). Moreover, the term Avg[Var(error)] in Eq. (5) de- 
pends upon Avg(x I z) in the same way that Var(error) de- 
pends on x. Because of these two results, the only required 
change to standard analyses is to replace z by Avg(x I z). The 
conclusions just drawn agree with more careful analysis 
based on statistical models for what are called "survival 
data". 

For chromosomal aberration analyses the datum on each 
individual is the proportion of about 100 examined cells 
which exhibit an aberration. The binomial probability 
model describes the sampling error for such data. Under the 
binomial model the sampling error is inversely propor- 
tional to the number of cells examined, and is thus much 
smaller than for the cancer data. Calculations show that the 
two terms in Eq. (5) are roughly of the same magnitude, and 
therefore allowance must be made for the additional varia- 
tion in the data y, which is due to dose-estimation errors. 
However, these data clearly exhibit more dispersion than 
predicted by the binomial model, and specially developed 
methods have been used for some time; see, for example, 
Preston et al. (14). These methods are based on an empiri- 
cal model for the variance, which is remarkably similar to 
Eq. (5), which incidentally lends support to the modeling of 
this paper. The conclusion is that although binomial meth- 
ods modified only by replacing z by Avg(x I z) are not ap- 
propriate, the special methods given by Preston et al. (14) 
require only that modification. 

The above results pertain to models in which the ex- 
pected response is linear in true dose. Corresponding devel- 
opment for nonlinear models is generally less tractable, but 
there is a natural extension for the important case of linear- 
quadratic models, i.e., those where a + fx in Eq. (2) is 
extended to a + fx + yx2. In this case unbiased estimation 
would be achieved by extending the above methods to re- 

gression on both Avg(x I z) and Avg(x2 l z). This last quan- 
tity can be calculated similarly to Avg(x l z); indeed the need 
for this has already arisen above in terms of Var(x I z), which 
is Avg(x21 I z) - [Avg(x I z)]2. Caution should be taken in us- 
ing this approach, since Avg(x2l z) will probably be more 
sensitive to the choice of error model than is Avg(x I z). Fur- 
ther details on the effects of dose errors when fitting linear- 
quadratic models are given by Pierce and Vaeth (1). 

The development of methods in this paper is for the case 
of a single covariable, dose, and it is important to consider 
the effects of additional covariables measured without 
error. Such covariables can be included in the dose-re- 
sponse analysis without further modifications if they have 
no effect on the distribution f(x I z). This is most clearly 
thought of in terms of their potential effect on eitherf(x) or 
f(z l x). The primary additional covariables of interest in the 
LSS are city, sex, and age-at-exposure. The effects of city on 
f(x) are accounted for here by calculating the adjustments 
Avg(x I z) in a city-specific manner. The other primary co- 
variables, sex and age-at-exposure, are unlikely to affect 
substantially either f(x) orf(z Ix). 

An important point is thatf(x I z) may depend on covari- 
ables which are not in the model for the expected value of y. 
An example of this is shielding category. Although further 
attention to this point is of interest, it is noted that failing to 
incorporate such covariables only decreases the precision of 
estimates of the dose response, rather than introducing 
biases. It may be that this loss in precision is small, and that 
incorporation of shielding category in computing Avg(x I z) 
is less important than might first be thought. 

Another important issue arises in analysis of response 
data available only for a subset of the cohort, such as that on 
chromosomal aberrations. If the selection of the subcohort 
is based substantially on estimated dose, as it has been for 
study of chromosomal aberrations, then it would be wrong 
to use the distribution of the z's in the subcohort to arrive at 
estimates of Avg(x I z). More precisely, it would be wrong to 
use this distribution in exactly the same way that we use the 
distribution of z's for the entire cohort in this paper. The 
same estimates of Avg(x l z) that we derive here should be 
used for analysis of the subcohort data. This is because the 
distribution f(x I z) is not changed by selection on z. If the 
distribution of z's for a subcohort selected on estimated 
dose were to be used as in this paper, allowance would have 
to be made for the effect of the selection on the error model 
f(z x). The error model used here is appropriate for the 
entire LSS cohort. This point also applies to analysis of data 
for the Adult Health Study subcohort, which is followed up 
by clinical examinations. 

RESULTS 

Estimates of the city-specific distributions f(x) of true 
doses are now given, based on the method explained in the 
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TABLE II 
Numbers of Survivors in LSS DS86 Cohort Exceeding 

Selected Values of In Air Tissue Kerma 

Kerma (Gy) Hiroshima Nagasaki 

0.1 14632 3420 
0.5 5099 1501 
1.0 2229 801 
1.5 1311 444 
2.0 820 282 
2.5 532 185 
3.0 338 129 
3.5 218 100 
4.0 171 85 
4.5 128 71 
5.0 108 55 

previous section. The distributions of estimated doses (tis- 
sue kerma) for each city are given in Table II. An important 
aspect of these distributions is that the relative numbers of 
survivors decrease more rapidly with increasing dose in 
Hiroshima than in Nagasaki. 

The cohort contains a large number of persons at essen- 
tially zero dose, used as a comparison group. The immedi- 
ate concern here is only with those having positive doses, 
and calculations below are based on the distribution of z 
among those above 0.10 Gy. The bias in risk estimates due 
to dose-estimation errors does depend on the size of the 
comparison group. This is a general phenomenon in regres- 
sion with errors in covariables; information about the value 
of the intercept decreases the bias in the slope estimate. In 
the approach here this is accounted for automatically. 

Recall that a parametric form is to be chosen for f(x), 
namely that the probability of the true dose exceeding any 
value x is given by exp(-01xX2). For each city, estimates of 
the parameters 09 and 02 can be found such that the induced 
distribution of z matches very closely the observed distribu- 
tion. The results depend only slightly on the error model 
used. For simplicity the 0-values resulting from a fifth "cen- 
tral" model, lognormal with 35% error, will be used for all 
analysis here. The results are: 

Hiroshima: 01 = 2.84 02 = 0.50 

Nagasaki: 01 = 2.33 02 = 0.50. 

The values of 02 for the two cities are estimated, rather 
than constrained, to be equal. The fitted values are in ap- 
proximate agreement to two decimal points. 

With this city-specific model forf(x) it is straightforward 
to compute Avg(x I z) numerically from Eq. (1). Results for 
each error model at selected z-values are given in Table III. 

The results shown in Table III will be discussed later in 
the paper, but it is briefly noted now that model C gives 

TABLE III 
Adjusted Dose Estimates for the Four Error Models 

Avg(x I z) 

Estimated Hiroshima Nagasaki 
kerma 
(Gy) Aa B C D A B C D 

0.5 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.53 
1.0 0.96 0.94 0.94 0.97 0.98 0.97 0.97 1.00 
2.0 1.84 1.73 1.75 1.81 1.89 1.82 1.83 1.88 
3.0 2.66 2.45 2.47 2.59 2.75 2.59 2.62 2.71 
4.0 3.44 3.12 3.13 3.34 3.58 3.32 3.36 3.50 
5.0 4.20 3.75 3.74 4.07 4.38 4.01 4.05 4.26 
6.0 4.93 4.35 4.28 4.78 5.16 4.67 4.69 5.01 

a A, lognormal 30% error; B, lognormal 40% error; C, contaminated 
lognormal 40% error; and D, normal 40% error. 

results similar to those for model B. The error models C and 
D are not pursued further, and most subsequent numerical 
results will be given only for the lognormal models, with the 
addition of an intermediate choice with 35% error to be 
discussed later. Note that the adjustments are greater for 
Hiroshima than Nagasaki; this is because the numbers of 
survivors decrease more rapidly with increasing dose in 
Hiroshima. 

Convenient formulas for Avg(xlz) can be obtained by 
fitting second-degree polynomials in log(z) to the reduction 
factors, [z - Avg(xlz)]/z. These formulas agree with the 
numerical computations of Avg(x I z) to within 0.01 Gy 
over the range to 6 Gy. Coefficients for these approxima- 
tions to the reduction factors are given in Table IV. It is 
suggested that no adjustments be made to estimates under 
0.5 Gy, since they would be very small, and that estimates 
above 6 Gy be reduced to that value before adjustment. 
This truncation at 6 Gy has been made in all previous analy- 
ses of these data, since the small chance of survival suggests 
that estimates above 6 Gy are likely to be too large. It could 

TABLE IV 
Coefficients for Calculating Reduction Factors 

[z - Avg(x I z)]/z as Polynomials in log(z) 

Error model Coefficients for terms 
lognormal 

percentage error Constant log(z) [log(z)]2 

30% 0.03597 0.05807 0.01166 
Hiroshima 35% 0.04732 0.07623 0.01336 

40% 0.06036 0.09684 0.01314 

30% 0.01500 0.05304 0.00885 
Nagasaki 35% 0.01900 0.06545 0.01374 

40% 0.02817 0.08031 0.01558 
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TABLE V 
Squared Coefficient of Variation for the Four Error Models 

Var(x I z)/[Avg(x Iz)]2 

Estimated Hiroshima Nagasaki 
kerma 
(Gy) Aa B C D A B C D 

0.5 0.090 0.158 0.137 0.181 0.091 0.160 0.140 0.194 
1.0 0.088 0.154 0.133 0.154 0.089 0.157 0.135 0.170 
2.0 0.086 0.148 0.135 0.124 0.087 0.152 0.132 0.141 
3.0 0.085 0.144 0.142 0.108 0.086 0.148 0.135 0.124 
4.0 0.084 0.141 0.152 0.097 0.085 0.145 0.139 0.112 
5.0 0.083 0.139 0.164 0.089 0.084 0.143 0.145 0.104 
6.0 0.082 0.137 0.177 0.083 0.083 0.141 0.152 0.097 

a A, lognormal 30% error; B, lognormal 40% error; C, contaminated 
lognormal 40% error; and D, normal 40% error. 

be argued that with proper adjustment for dose-estimation 
errors, this arbitrary procedure should be discontinued. 
The recommendation above is made so that the error 
model used will not have to apply to extremely high esti- 
mates. The DS86 estimates of tissue kerma are lower than 
previous estimates, which results in fewer survivors (pres- 
ently 76) with estimates above 6 Gy tissue kerma. 

For calculation of adjusted organ doses it is recom- 
mended, largely for simplicity, that organ dose estimates be 
adjusted by these reduction factors computed from tissue 
kerma estimates. 

In the previous section several reasons were noted for 
interest in Var(x I z), the variance of x among those at given 
z; and in Avg(x2 z), which is given by Var(x z) + 
[Avg(x | z)]2. Values of the squared coefficient of variation, 
Var(x I z)/[Avg(x I z)]2, are given in Table V for the four 
error models. 

Although the values in Table V can also be fitted very 
well by convenient approximations, they are remarkably 
constant in z for each error model and it would be an over- 
interpretation of the models used here to emphasize the 
small variation seen. The form of the additional variation 
in the chromosome aberration data due to errors in dose 
estimates depends on these values, as indicated in Eq. (5). 
Further, adding 1.0 to the numbers in Table V gives the 
ratio of Avg(x2 I z) to [Avg(x I z)]2, providing the quadratic 
covariable to be used for fitting linear-quadratic models. 
Since these ratios are nearly constant in z, simply regressing 
on Avg(x z) and [Avg(xlz)]2 provides essentially the 
correct fit for a linear-quadratic model. That is, the fitted 
curve and significance tests for nonlinearity will be correct, 
but the coefficient of [Avg(x I z)]2 will differ from the one 
appropriate for Avg(x21 z) by the reciprocal of the ratio dis- 
cussed above in relation to the quadratic covariable. 

The standard deviations of x given z are of some direct 
interest in understanding how informative the estimated 

doses are. However, the standard deviations do not give a 
clear description of variability, since the distributions 
f(x I z) are far from normal. Thus graphs of some examples 
of the distributionsf(x I z) are given in Fig. 1. Also given in 
the same figures are corresponding graphs of the distribu- 
tions f(z Ix). Note that the horizontal axis for each figure 
corresponds to x for one graph, and z for the other. The 
pairs of graphs are given together to emphasize the impor- 
tant distinction between the distributionf(x I z) of true dose 
among those with a given estimated dose and the distribu- 
tionf(z | x) of estimated doses among those at the same true 
dose. These are the more realistic versions of the distribu- 
tions indicated in the rows and columns of Table I. 

f(xlz =1.5) 

f(zlx =1.5) 

0 1 2 3 4 5 
ay 

f(xlz=3) 

f(zlx=3) 

0 2 4 6 8 10 
ay 

f(zlx=4.5) 

0 3 6 9 12 15 
Gy 

FIG. 1. Graphs off(z I x), andf(x I z) for Hiroshima, for the lognormal 
35% errors model. 
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TABLE VI 
Increases in Linear Cancer Risk Estimates for Three 

Lognormal Error Models 

Lognormal 
percentage Increase in linear risk 

error estimate (%) 

Range of analysis: 0-6 Gy 0-4 Gy 

30 10.0 6.8 
All cancer except 35 13.3 9.0 

leukemia 40 16.7 11.4 

30 6.1 4.3 
Leukemia 35 8.1 5.6 

40 10.2 7.2 

Returning to consideration of Table III, the extent to 
which values of Avg(x I z) are less than z fails to clarify how 
much bias in risk estimates will be removed by the methods 
of this paper, since the relative importance of various z- 
values in fitting dose-response models is not easily de- 
scribed. For the same reason, the sensitivity of results to the 
choice of error model is not made clear. Thus it is necessary 
to see how the methods of this paper affect final results, for 
various error models. 

The LSS cancer mortality data have been reanalyzed us- 
ing the data and models recently presented by Preston and 
Pierce (15). Table VI shows the resulting increase in their 
linear risk estimates, for all cancers except leukemia and for 
leukemia. These are in terms of relative risk for nonleuke- 
mia and absolute excess risk for leukemia. The risks depend 
on sex and age-at-exposure, and the summary measure of 
their paper is used, averaging over sex and three categories 
of age-at-exposure. Estimates are given for both the 0-4 Gy 
and the 0-6 Gy dose (tissue kerma) ranges. Preston and 
Pierce (15) gave both of these because of an apparent 
plateau in excess risk above 4 Gy. Here we have the addi- 
tional motivation of seeing how restricting the dose range 
affects biases due to errors in dose estimates. 

For the cancer data the standard errors of the parameter 
estimates relative to the estimates, i.e., the coefficients of 
variation, are essentially unchanged by the analysis allow- 
ing for dose-estimation errors. This is not happenstance, 
but reflects the fact that the additional variation in the data 
due to dose-estimation errors, beyond ordinary sampling 
variation, is negligible. For the chromosomal data, on the 
other hand, this is not the case and analysis allowing for 
dose estimation errors will lead to larger standard errors 
than those resulting from a binomial model. However, as 
discussed earlier, methods allowing for overdispersion rela- 
tive to the binomial model have already been in use and the 
standard errors under the proposed method will be similar 
to those given by current methods. 

DISCUSSION 

As noted at the outset, the method developed here is not 
fundamentally different from that of Gilbert (3), but the 
implementation is more suitable for many purposes, espe- 
cially since it is not linked to extensive calculations of the 
average true doses corresponding to a particular choice of 
estimated dose categories. The principles are also consistent 
with those discussed by Prentice (8, 9), who deals more 
specifically with application to survival data, but we have 
emphasized more some details specific to the LSS setting. 
The general approach laid out by Clayton (11) seeks to es- 
tablish a unified solution to the problem of inference in the 
three components of the model: the dose-response model, 
the errors in doses, and the distribution of doses. This may 
have some theoretical advantages, but the methods in- 
volved need more development. 

Much of the statistical literature on errors in covariables 
emphasizes reduction of bias by adjusting the "naive" esti- 
mates, i.e., those obtained by regression analysis using the 
observed covariables. The very different approach taken 
here has a number of important advantages for the needs 
associated with the RERF data. It lends itself better to the 
ongoing analyses of different end points and on different 
subcohorts of the data. The approach makes particularly 
clear the role of the distributionf(x) of true doses, and how 
the analysis here should be modified to account for addi- 
tional covariables and aspects such as shielding category. In 
regard to analysis of subcohorts, it becomes more clear that 
it is the distribution of dosesf(x) in the entire cohort, rather 
than in the subcohort under analysis, which is relevant to 
the correction procedure. Further, explicit consideration 
of the nonlinear nature of Avg(x I z) is critical in analy- 
ses of the shape of the dose-response curve; see Pierce and 
Vaeth (1). 

Further research on issues involving estimation of the 
distribution f(x) of true doses may be useful. The final sta- 
tistical methods suggested here make no allowance for 
errors in this estimation. The choices off(x) used here in- 
duce distributions of dose estimates which closely agree 
with the observed distributions, but the extent to which 
other choices off(x) would also do this has not been investi- 
gated. 

The major difficulty, however, involves the assumptions 
regarding the statistical modelf(z I x) for errors in dose esti- 
mates. The results in Tables III and V indicate that there is 
very little difference between the use of the lognormal 
model and the contaminated lognormal model, which has 
substantially "heavier" tails. Thus, although the latter 
model may have substantial appeal as being more realistic, 
there seems to be little need to introduce the additional 
complexity. The normal model with a constant coefficient 
of variation does give somewhat different results, in the 
sense of smaller adjustments. We feel, as do others who 
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have considered this problem, that the lognormal model is 
preferable both on grounds that are specific to the dosime- 
try system, and on more general statistical considerations. 

Important improvements may result from better assess- 
ment of the magnitude of dose estimation errors, and thus 
further study of this aspect of the DS86 system by RERF 
and dosimetry experts should be given high priority. This 
study should include investigation of the dependence of 
errors on shielding category, and distinction between ran- 
dom and systematic errors. Care must be taken to distin- 
guish between errors as described by f(z Ix) and those de- 
scribed by f(.x I z). 

The results in Table VI indicate not only the basic extent 
of sensitivity to the error model, but the degree to which the 
effect of errors in dose estimates is smaller when those with 
doses above 4 Gy are eliminated from the analysis. How- 
ever, as discussed previously (1, 15), effects of errors in dose 
estimates are not the only motivation for this restriction. 
Other critical issues involved are that the true dose-re- 
sponse may not be linear over a wide range, and that risk 
estimation at low doses is the predominant concern. Restric- 
tions of the dose range have also been used to lessen the 
effects of dosimetry errors. The methods of this paper are a 
more direct approach to this, but such restrictions will still 
help by making the choice of a dose error model less critical. 

It should be noted that there is another important way of 
looking at the entire problem addressed in this paper. The 
dosimetry system takes no account of the information pro- 
vided by the fact that the individuals survived. That is, the 
estimates depend only on survivor location and shielding, 
along with physical calculations based on yield of the 
bombs and radiation transport. If a model for the probabil- 
ity of surviving as a function of true dose were available, it 
would be possible to make dose estimates based on the sur- 
vivor location and shielding, and the information provided 
by survival. It is not suggested that this should actually be 
done. The way that estimated distributions f(x) of true 
doses are used in this paper essentially incorporates the in- 
formation provided by survival, in a more feasible way. 
This point is raised primarily to reinforce the statistical rea- 
soning that, except for those at very small doses, the likeli- 
hood that true dose is less than estimated dose is greater 
than the likelihood that true dose is larger than estimated 
dose. 

There are issues in addition to bias in dose-response anal- 
yses which are related to errors in dose estimates. For exam- 
ple, there is interest in the extent of biological variation 
among individuals in their general sensitivity to irradiation. 
This is relevant to the estimation of cancer risks, since sub- 
stantial variation of this type might imply that those in the 
study cohort, having survived the acute effects, would be 
less sensitive to radiation-induced cancer than a general 
population. This has been investigated by looking for posi- 
tive associations between different radiation effects (cancer, 

acute symptoms, chromosomal aberrations, etc.) among 
those at the same dose level; see, for example, Neriishi et al. 
(16). It is certain, though, that random errors in dose esti- 
mates will induce spurious positive association of this na- 
ture. Among those at (approximately) the same estimated 
dose, there is in fact a distribution of true doses, and two 
types of radiation-induced effects will tend to occur to- 
gether for those with higher true doses. Thus investigations 
must consider whether positive associations found are 
greater than would be due to this. The statistical formula- 
tion of this report can be extended such calculations. 

In conclusion, although further research in this area is 
desirable, it is important to begin using the methodology 
developed here. In some analyses of the RERF data it will 
be important to investigate the sensitivity of conclusions to 
assumptions about the error model. This would be particu- 
larly important, for example, in analyses of the shape of the 
dose response and in studies of individual variation in sensi- 
tivity to irradiation. Many reports, however, are already 
complicated by the necessary attention to a large number of 
issues, and such special consideration of error models will 
be impractical. These investigations ordinarily use linear 
dose response models, and for that case the results here 
suggest that the uncertainty in risk estimates due to choice 
of an error model may be relatively small in relation to 
other uncertainties. For such analyses it may be best to rely 
primarily on the use of a given choice of an error model, 
with some brief indication of the effect of the adjustment. 

The authors thus feel that it is useful to suggest an error 
model to be used at this time, for analyses where it is infeasi- 
ble to devote substantial special attention to the issue. That 
is, it will be better to make adjustments with some error 
model than none at all. It seems clear that lognormal error 
models should be used for this purpose, and it seems to the 
authors that the choice of the 30% error model may be 
somewhat optimistic. A primary basis for this is the judg- 
ment of Jablon (2) that "sources identified in this section 
amount to about 30% plus or minus," preceded by the com- 
ment "reflecting on how they [certain aspects] were derived 
it seems not unlikely that we have underestimated." The 
uncertainties that Jablon considered were largely those due 
to inaccuracies in the assessment of the survivors' location 

TABLE VII 
Representative Values of Adjusted Dose Estimates, 

Lognormal 35% Error Model 

Estimated kerma 
(Gy) 0.50 1.00 2.00 3.00 4.00 5.00 6.00 

Adjusted kerma 
(Gy) 

Hiroshima 0.50 0.95 1.79 2.56 3.28 3.98 4.64 
Nagasaki 0.50 0.98 1.86 2.68 3.46 4.20 4.92 
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and shielding, inputs which are common to the old and the 
new dosimetry systems. Errors in DS86 somewhat smaller 
than 30% have been discussed (Ref. 12, Chapter 9), but that 
assessment apparently takes the input parameters of survi- 
vor location and shielding at face value. 

The authors suggest that for the time being some special 
focus be placed on the lognormal 35% error model. Numer- 
ical values for dose adjustments under this model were not 
given in Table III, although the formula is given in Table 
IV, so some representative values are given in Table VII. 
The values corresponding to Table V, for this model, are in 
the range 0.11-0.12. 
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