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In 1986, RERF had a new dosimetry system and I decided it was 

time to do something major on the dose-estimation errors front.

Seymour Jablon had made a presentation to a NAS committee, 

saying that due to such errors, RERF risk estimates might 

underestimate true risk by a “factor of 2 or so”.

During 1986-90 Stram, Vaeth and I developed the basic RERF 

method to deal with dose-estimation errors. This was the dark 

ages for the topic, and our project on this was a saga. 

Much of our thinking pertained to using the information 

provided by survival, not reflected in the dosimetry system.  

Thought “adjusting doses” for this would be a hard sell, but it 

was not.
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Saw need to think of                                                              but what 

is this supposed to mean?

I was reluctant to consider “Mr. Watanabe’s dose” as a random 

variable --- not exactly necessary, though.

Generally, “survival” should be replaced by “selected for study 

cohort”.

(true dose | estimated dose, survival)E
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In 1984 Gilbert carried out various calculations related to this 
“cohort” mode of thought regarding  

On completing in 1990 the line of work described below, we 
realized that her work was closer to what we were doing than 
we had thought.

At any rate, by 1990 we had a distinctly different approach than 
hers, in many respects, that I will report on now.

Our work, and Gilbert’s, was based on assuming a lognormal 
distribution of dose-estimation errors, with a range of specified 
values of percent error relative to true dose.

( | )E true estimated
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Our 1990 method for computing                          was cumbersome.

In 1994 Kellerer and I resolved that problem, also allowing for 2 

types of dose-estimation errors: measurement (classical) and 

averaging (Berkson).

In 2011 we developed a (computer) “laboratory” for evaluating 

effectiveness of the methods, and other needs. 

(true|estim)E

Dose adjustment factors



Write x for true dose and z for estimated dose.  A key issue is 

that even when                     it is seldom true that                    . 

Rectifying this is referred to as calibration . Not achieved by the 

popular Monte Carlo methods -- must still be dealt with.

Since                                          assessing both factors is important. 

Often adequate to take              as lognormal, but           deserves

more attention.  Important in this to set aside any unexposed 

comparison group.

Major distinction between measurement (classical) errors and 

averaging (Berkson) errors.  Difficult to define precisely, but we can 

say intuitively that for measurement errors “z is distributed around 

x” and for averaging errors “x is distributed around z”. The latter 

mainly occurs when z is the average dose for some group.

( | )E z x x ( | )E x z z

( | ) ( ) ( | )pr x z pr x pr z x

( | )pr z x ( )pr x
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Write       and      for the SDs of these on a log scale, so that they can 

be interpreted as coefficients of variation (CV).  One can define a 

model with                        , allowing for both types of error.

When both x and errors are lognormal, then

with w depending on                          .   A factor of                            

hinges on whether z is unbiased on the dose scale or the log dose 

scale!

For general            our initial methods were cumbersome --- in 2004 

Kellerer and I developed a much better method for this.

M A

M Az x e e  

log ( | ) log ( ) (1 ) logE x z w E x w z  

/ (log )M SD x 2exp( / 2)M
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( )pr x



The calibration factor at dose z depends on the first two log-log 
derivatives at z of the pr(x) density. When the fitted smooth is quadratic, 
as for Hiroshima, the distribution is lognormal --- it is not so in Nagasaki.  
These calculations use only those with positive doses.

The derivatives enter due to the local dependence on pr(x) of 
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( | ) ( ) ( | )E x z x pr x pr z x dx 



Our aim is factor             such that                              .   Formula is

Here           and            are the derivatives regarding the distribution of 
true doses.  The (only) role of           is adjusting the derivatives of the 
distribution of estimated doses, to approximate those needed, a 
step referred to as deconvolution.

This provides a programmable means of approximating               as a 
function of         and       , allowing for both measurement and 
averaging errors --- a process not possible in the 1990 development 
of the methodology.   

( )C z ( | ) ( )E x z C z z

( | z)E x

1( )d z
2 ( )d z

A

M A
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These developments have enabled us to carry out simulations 

of the performance of the methods.

Take the actual (adjusted) dose estimates as true values. 

Generate cases using these. Generate dose estimates, adding to 

the true doses both measurement and averaging errors. Next, 

compute the calibrated estimates.  

Then we can compute cancer risk estimates using true doses, 

estimated doses, and calibrated estimated doses.

To avoid simulating deaths to other causes, we keep the CoxReg

risk sets as fixed. Some trickery is needed to usefully generate 

averaging errors. 



Cancer risk estimates for 40% measurement and 20% averaging 
(Berkson) errors, where the assumed and true error levels are 
the same
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using est doseERR using adj doseERR
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This is for assumed 40% msmt and 20% averaging, when 
the true values are 50% msmt and 00% averaging
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using doseERR adjusing est doseERR
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For cancer risk estimation, Averaging Error has no 
effect on SEs (or bias).  Only effect is in adjusting from 
distn of estimated doses to distn of true doses
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Measurement errors, when correctly adjusted for, have 

negligible effect on precision of cancer risk estimates.  This is 

because the variation in the “binary-like” cancer outcome 

dominates. The “only” cost of these random errors is that 

correct calibration assumptions are required to remove their 

effect.  
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The result on the last slide is important and “surprising”, though we 

have been arguing this theoretically since the beginning.

Theoretically, result expected not just for RERF setting but for all 

cancer studies.

Brings into question the value of Monte Carlo for assessment of 

uncertainties (in cancer risk estimation) due to dosimetry errors.

However, the cost of needing the information for the calibration is 

not negligible.

The effect on SEs, and other aspects, would be greater for 

endpoints that are not “binary-like”, e.g. binomial.



18

RERF will probably turn to 40% Msmt error and 20% Averaging 

error.

The 40% is a “uncertain”. Are reasons to think that 35% was 

optimistic --- the 20% Avging error is not consequential.

Attempts to directly estimate these things can be misguided, 

and assumptions/sensitivity analysis more useful

For Msmt error levels much greater than 50% unexpected 

things develop, as below.

What appears to be nearly linear response may when 

corrected show so much downward curvature that linear risk 

estimation becomes of limited interest.
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In many other studies, the RERF method may be overly 

elaborate, and one may want to rely on the result of slide 6 

regarding lognormal distributions of true dose.

Then, on the log scale, E(x | z) is a weighted average of z and 

E(x), with weights depending on 

With Averaging error, may be able to take  E(x) as  E(z)  for this, 

but not var(x) = var(z) since Averaging error decreases the 

variance of dose estimates .

/ (log )M SD x
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What has been learned at RERF is useful in that: (a) such precise 

risk estimation is possible, and (b) there is such continued 

interest in the cohort.

Was important to learn that the naïve bias is not really large, in 

view of other uncertainties.

Many useful side effects, e.g. becoming cognizant of “residual 

confounding”.

For example, we knew right away why those reporting acute 

effects had apparently higher radiation risk for cancer --- not 

that they were “more sensitive to radiation’ but … 
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