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Some useful (highly selected) references:

Kalbfleisch and Prentice, The Statistical Analysis of Failure 
Time Data, 2nd Ed, Wiley

Therneau and Grambsch, Modeling Survival Data: Extending the 
Cox Model, Springer

Andersen, Borgan, Gill and Keiding, Statistical Models Based 
on Counting Processes, Springer-Verlag

Breslow and Day, Statistical Methods in Cancer Research Vol 
II, The Design and Analysis of Cohort Studies, Int’l Agency 
for Research on Cancer, Lyon

Hosmer and Lemeshow, Applied Survival Analysis: Regression 
Modeling of Time-to_Event Data, Wiley

Fleming and Harrington, Counting Processes and Survival 
Data, Wiley
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One further reference

Klein and Moeschberger,  Survival Analysis: Techniques for 
censored and truncated data.  Springer
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A Danish population of 1500 diabetics was followed up for 
about 10 years, in a given calendar period. One interesting 
issue is the relation between diagnosis age and subsequent 
age-specific death rates 

It is problematic to estimate the probability distribution of 
age-at-death from these data, since subjects are of 
different ages starting follow-up

Towards that aim, it is crucial to understand that the 
information on each person is conditional on his being alive at 
the start of follow-up

That they survived to this age is not “follow-up” information, 
since had they not, they would not have been in the study

However, for analysis of rates rather than “response times”
none of this is problematic as rates do not depend on the 
time origin

Motivating example, illustrating several 
important points --- being theme of course 
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There is much more to any reasonable 
analysis, and I recommend starting with

sts graph, by(older) hazard

Standard Cox regression (p. 22 here), showing that 
those over 20 at diagnosis have considerably lower 
death rate during the follow-up. Note that the 
“intercept” is aliased with the baseline hazard.

use diabetes 

gen exitage = entryage + futime/365.25

stset exitage , failure(status==1) enter(time entryage) 

In STATA one can start to investigate this as follows 

gen older = dxage >20

stcox older 

Log likelihood  =   -2324.0326                    

_t   |   Haz. Ratio   Std. Err.      z    P>|z| 

-----------------------------------------------------

older |    .606         .102       -2.97   0.003 

------------------------------------------------------
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The main reason survival analysis is so special is not the usual 
nonnormality, or the censoring, but that rates are so important 

For continuous time the failure rate or hazard function is

  
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( )
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Hence we have the important relation 
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Continuing with the theory now
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More generally, and importantly, 

Of course this can be written as                                  , but 
inferentially one may estimate the conditional probability 
without the unconditional ones.

It is often the case that from given data one can estimate 
only the conditional probabilities as above, and then any 
presentation involving            or the unconditional survival   
function            will be misleading.

The melanoma data is a good example of this.

( | ) exp{ ( ) }
t

s
P T t T s u du   

exp{ ( ) ( )}t s 

( )t
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Most texts start with failure times     , defining from this the 
rate or hazard function        as on slide 6. To an extent I will 
take the rate as the more fundamental object for inference, 
and will try to show you why I do this.

Also, one should as early as possible focus on the dependence 
of these on covariables. In applied statistics one is seldom 
concerned with i.i.d. observations, but some kind of 
comparisons.

A key aspect of survival data is censoring. That is, some or 
most individuals are not observed until they fail, but only until 
they are for some reason removed from observation.

The most common model for this is that for each individual 
there are two latent endpoints: failure time      and censoring 
time     , with the observation being the smaller of these along 
with identification of which it is.  This model is not without 
problems, but suffices for many needs.

T

( )t

T

W
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Censoring (right) and left-truncation (delayed entry)

Consider a study of people who enter at different ages

x

x

x

Study time End

Age 
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0 x
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The two most commonly-used “time scales” in medical studies 
are: (a) time from diagnosis, treatment, etc. and (b) age of 
subject

The most common reason for censoring is the end of study, 
although subjects are often “lost” for other reasons

In terms of time scales (a) and (b) even censoring at the end of 
study leads to different censoring “times” for individuals, since 
they usually enter the study at different calendar times, or at 
different ages.

Note that these “time scales” really differ in regard to the 
origin, not a nonlinear sense, and we shall see that rates are not 
much affected, since they are so totally conditional

Simple methods require that censoring is “uninformative”, e.g. 
that a censoring is not “indicative” of an impending failure, Kalb 
& Prent Sect. 3.2
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Elements of counting process, for case where each subject can 
respond only once. Consider first only the      individual

: 0-1 indicator of failure in [0,s]   --- right continuous

:  0-1 indicator of being at risk at (s-)  --- left continuous

failure time

thi

( )iN s

( )iY s

( )iN s

( )iY s

s

s
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Kaplan-Meier estimator: This is motivated by considering some 
fixed time intervals and using the argument considered above, 
namely that 

ˆ( ) (surv 1 interval) (surv 2 | surv 1 )S t pr st pr nd st  

As the intervals become arbitrarily narrow, this becomes the 
“product limit” estimator

:
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Nelson–Aalen estimator: Thinking again of time intervals, for 
each interval the estimate of failure rate is the number of 
failures in the interval divided by the number at risk at the 
start of the interval

As the intervals become arbitrarily narrow, we have that  

1

1

( ) ( )ˆ( )
( )( )

n

ii

n

ii

dN t dN t
t

Y tY t
 



 




0

1ˆ ( ) ( )
( )

t

t dN s
Y s

  

The Nelson-Aalen estimator of the cumulative or integrated
hazard sums these estimates over failures up to time 

This is nonzero only at failure times, and at those values it 
is (with no ties)  1 over the number at risk just before the 
failure. As with densities, it usually must be smoothed to be 
useful.

t
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These both pertain to discrete distributions, requiring the 
following alterations.
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For discrete distributions the hazard is defined as

Then at the kth ordered value of the random variable
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Many think of the K-M and N-A estimators as alternatives, but 
in fact they provide exactly the same discrete distribution and 
thus are just different representations of the same thing

 ˆ ˆ( ) exp ( )KM NAS t t 

It is true, though, then when thinking of these as estimators for 
continuous distributions, they do provide different estimates 
since then one expects to have 

 ˆ ˆ( ) exp ( )S t t 

but in fact

They are very nearly equal, though, for time ranges where 
the jumps of the N-A estimator are small

The correct relationship is the one for discrete distributions

 ( ) ( )
ˆ ˆ( ) 1 ( )KM i NA jj i
S t d t


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Variances of these estimators

Greenwood’s formula for K-M estimator: 
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Martingale-based estimator for N-A estimator 
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Distinction is essentially that of Binomial and Poisson 
distributions. The latter is based on the exact relation 
from the martingale theory
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Validity of the estimators requires that a censoring is not 
“indicative” of an impending failure, Kalb & Prent Sect. 3.2; 
perhaps main issue is “uninformative” censoring

What is referred to as “independent censoring” does not 
literally mean censoring times are stochastically independent 
of failure times, but something along the lines above

Under these conditions the likelihood function is the 
product of terms 

( )   for failures

( )   for censored obsvns

i

i

i

f t
L

S t

 
  
 

There are also important issues regarding “delayed entry”
and “competing risks” that will be emphasized throughout 
these lectures
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For staggered delayed entry as shown on the earlier slide 
there are problems. The contribution to survival estimation 
from each individual is valid only when conditioning on their 
being “alive” at age of entry. When the ages are staggered 
the overall survival function estimator has little or no 
meaning. 

Note that                                                           so the 
conditioning changes the lower limit from zero.  Thus 
issues related to the integrated (cumulative) hazard 
require modification for such conditioning  

It is important that the rate estimate         presents no 
problems at all, and the problem is with interpretation of the 
integrated rate. In many situations the desired inferences 
pertain to rates much more than to integrated rates 

ˆ( )t

A related issue arises when censoring is due to competing 
risks. Again, this causes no problem with rate estimates, but 
must be accounted for for integrated rates and survival

{ | } exp{ ( ) }
t

s
pr T t T s u du   
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use diabetes 

egen dxacat = cut(dxage) , at(0,20,40,60,120)

gen exitage = entryage + futime/365.25

stset exitage , failure(status==1) enter(time entryage) 

sts graph, by(dxacat) hazard

A Danish collection of diabetics was followed up for about 10 
years, in a given calendar period

Although their age, and age at diagnosis were determined, 
there was effectively “no follow-up” until the study began

In STATA one can start to investigate this as follows 

One interesting issue is the relation between diagnosis age 
and subsequent age-specific death rates 
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Note that “analysis time” here is age
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Note that the survival estimates below are totally useless. The 
contribution from each person is conditional on their being alive 
at entry age (not closely related to diagnosis age)
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For data such as these, it is important to keep in mind that 
although information at a broad range of ages is available, 
that from each person comes from an age range of only about 
10 years

This is common in medical studies, whenever it is important 
to consider a primary time scale as age as opposed to time 
since the study was started. However, the most important 
time scale for clinical studies is often time since diagnosis.

The general point is that none of this (choice of the origin 
for time scales) interferes seriously with inferences about 
rates but it must be carefully taken into account for 
inferences about survival or cumulative rates
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Some useful further analysis using relative risk (Cox) 
regression 

For groups of data  j = 0, 1, …, G-1   this reduces to 

0( ) / ( ) exp( ) for all  ; 1, , 1j jt t t j G    

Since it will not be true that the ratio is exactly 
independent of    , the parameter estimates are best 
thought of as estimating an average over  

t

t

Some further analysis is always required regarding the extent 
to which such averages are useful 

Recall that for this, the hazard for individual     is 
represented in terms of covariables       as 

i

iz

0 0( ; ) ( )exp( ) ( ) ( ; )i i it t z t RR z      

where          is left as totally unspecified 0 ( )t
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First, some basics of Cox regression: consider a 2-sample problem

For each of the ordered failure times         consider a 
Bernoulli observation               indicating whether the failure 
is in sample 0 or sample 1 , with associated probability 

( )jt

0,1jy 

1

0 1

j

j

j j

n e
p

n n e








where              are the numbers currently at risk from 
each sample

0 1,j jn n

The Cox regression estimator is then the MLE in this 
binomial regression, pooling strata defined by failure times

For more general covariates, including several, this 
generalizes directly by replacing the binomial distribution 
with a multinomial for sample size unity
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COX REGRESSION:  Hazards of form                             ,  
with       unspecified. Interest parameter a scalar function of      
with remaining coordinates as nuisance parameters  

( ; , ) ( ) zt z t e   



X
O

X

O
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X

(1)t (2)t

Risk set : those alive at failure time iR
( )it

Multinomial likelihood contribution                                   , the 
probability that it is individual (i) among these that fails.
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 
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In general, for covariate vectors       , the estimation “balances”, 
over all the failure-time risk sets, the chance of obtaining the 
observed covariate value        compared to the average z-value of 
those who might have failed at that time, using weights 
proportional to 

iz

( )jz

exp( )kz 

 ( ) ˆ ( : ' 0
j

j k j

Risk sets R

z E z over z s in R


 

In particular, the vector of estimating equations is of form

where the expectation is taken with weights proportional 
to              .  Note that nonlinear transformations of the 
time scale would have no effect on this

exp( )kz 

Through comparison of covariate values for failures, 
rather than failures themselves, this has a retrospective 
flavor that has close connections with case-control 
studies
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xi: stcox i.dxacat 

Log likelihood  =   -2323.5229                    

_t |     Haz. Ratio  Std. Err.   z       P>|z|  

-------------------------------------------------------

_Idxacat_20 |     .591        .105       -2.94      0.003  

_Idxacat_40 |     .633        .120       -2.42      0.016  

_Idxacat_60 |     .552        .124       -2.64      0.008  

-------------------------------------------------------

estimates store fullmod

gen older = dxage >20

stcox older 

Log likelihood  =   -2324.0326                    

_t |   Haz. Ratio   Std. Err.      z    P>|z| 

-----------------------------------------------------

older |        .606         .102       -2.97   0.003 

------------------------------------------------------

lrtest fullmod .

likelihood-ratio test                LR chi2(2)  =      1.02

(Assumption: . nested in fullmod)    Prob > chi2 =    0.6006

The under 20 group has greater hazard than the others, and 
there may not be much difference within the others

Application to previous example: first with 4 groups and then 2
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Although the hazard ratio, averaged over age, is significantly 
different from unity, we must consider whether this summary 
is adequate

Following are two ways to do this:

1. Allowing the ratio to vary on some specified 
intervals of age

2. Investigating a smooth age trend in the RR

The first method uses a “splitting” of the follow-up into 
intervals of the time scale, which is important in both S-
Plus (R) and Stata  (called the “counting process form” of 
Cox regression)
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stsplit agecat , at(0,30,40,50,55,60,80) 

(913 observations (episodes) created)

gen cov1 = older * (agecat==30)

gen cov2 = older * (agecat==40)

...      

gen cov6 = older * (agecat==80)  

For example, subject id = 15 had entryage = 79.98,         
exitage = 81.65, and died at that age

This command splits this into 2 records, the first with             
_t0 = 79.98 and _t = 80 and the second with                   
_t0 = 80 and _t = 81.56  
(entryage and exitage are not changed, but in analysis       
_t0 and _t created by stset or stsplit are always used for 
this purpose)

The first of these is labeled as censored and the second one 
as a death

cov5 = 1 for the first and cov6 = 1 for the second
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This shows that the hazard ratio is far from constant

stcox cov1-cov6 
--------------------------------

_t | Haz. Ratio   Std. Err.  

------+-------------------------

cov1 |    .190       .104   

cov2 |    .440       .163   

cov3 |    .602       .321   

cov4 |   1.116       .533   

cov5 |   1.00        .364   

cov6 |   20.07178          .   

--------------------------------

estimates store tvarmod

quietly, stcox older

lrtest tvarmod .

LR chi2(4)  =     10.12  Prob > chi2 =    0.0385

Now Cox regression can be used to compute a hazard ratio 
for each of the age intervals
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use diabetes, clear

gen exitage = entryage + futime/365.25

stset exitage , failure(status==1) enter(time entryage) 

id(id)

gen older = dxage > 20 

stcox older , tvc(older) texp(log(exitage/55))  nohr
------------------------------------------------------

_t     |      Coef.   Std. Err.      z    P>|z| 

-------------+----------------------------------------

rh               |

older     |  -.3217053   .2076046    -1.55   0.121 

-------------+----------------------------------------

_t               |

older     |    2.98408    .971825     3.07   0.002 

------------------------------------------------------

The following investigates, more simply, a trend in the RR using 
covariate     older * log(age/55)

This fits the model with 

Should not take this model fit very seriously --- why?

0 1
cov cov log( / 55)RR age   
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Fitted values: compare to earlier plot of the two separate 
hazards. Although the model is useful in testing for a trend, 
it should not be used in an “extrapolative” manner
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Before proceeding we should note that there is a highly 
significant sex effect as well. In terms of average hazard ratios 
over age this can be analyzed as follows --- large sex effect 
about the same for the two diagnosis-age groups

xi: stcox i.older i.sex

Log likelihood  =   -2314.6367                    

------------------------------------------------------

_t | Haz. Ratio   Std. Err.      z    P>|z| 

-------------+----------------------------------------

_Iolder_1 |   .6008939    .100909    -3.03   0.002 

_Isex_1 |   1.497661   .1395761     4.33   0.000 

------------------------------------------------------

xi: stcox i.older*i.sex

Log likelihood  =   -2314.6193                    

------------------------------------------------------

_t | Haz. Ratio   Std. Err.      z    P>|z| 

-------------+----------------------------------------

_Iolder_1 |   .6210895   .1524749    -1.94   0.052 

_Isex_1 |   1.569123   .4198654     1.68   0.092 

_IoldXsex_~1 |   .9482587   .2708617    -0.19   0.852 

------------------------------------------------------
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gen old_by_sex = 2*older + sex

sts graph , by(old_by_sex) hazard

A plot without modeling as proportional hazards
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There is another way of approaching this, which is often 
preferable. First, though, note that it was not necessary to use 
the “xi” prefix since the categorical variables were binary

stcox older sex

Log likelihood  =   -2314.6367                    

------------------------------------

_t | Haz. Ratio   Std. Err.        z      P>|z| 

-------------+---------------------

older |   .6008939    .100909    -3.03   0.002 

sex |   1.497661   .1395761     4.33   0.000 

--------------------------------------------

gen older_by_sex = older*sex

stcox older sex older_by_sex

Log likelihood  =   -2314.6193                   

------------------------------------------------------

_t | Haz. Ratio   Std. Err.      z    P>|z| 

-------------+----------------------------------------

older |   .6210895   .1524749    -1.94   0.052 

sex |   1.569123   .4198654     1.68   0.092 

older_by_sex |   .9482587   .2708617    -0.19   0.852 

------------------------------------------------------
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The alternative way is to stratify on sex, meaning that the 
baseline hazard is allowed to differ arbitrarily by sex, whereas 
the RR parameters are common to strata. 

stcox older , strata(sex)

Log likelihood  =   -1989.5718        

-------------------------------------------------------

_t | Haz. Ratio   Std. Err.      z    P>|z|  

-------------+-----------------------------------------

older |   .5952816   .1002846    -3.08   0.002  

-------------------------------------------------------

Stratified by sex

The advantage of this is that it is no longer assumed that the 
baseline hazards for the sexes are proportional in age. The 
main disadvantage is that one cannot readily see, as before, 
how large is the sex effect in baseline death rates.

Most applications of Cox regression do use stratification in 
some manner
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It is still possible to see, parametrically, whether the RR 
parameter for older differs between the sexes

stcox older older_by_sex, strata(sex)

Log likelihood  =   -1989.4957                     

---------------------------------------------

_t | Haz. Ratio   Std. Err.      z    P>|z|  

-------------+-------------------------------

older |   .6500353   .1844718    -1.52   0.129  

older_by_sex |   .8718167   .3072994    -0.39   0.697  

-------------------------------------------------

Stratified by sex
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In the example just considered, the “time scale” for Cox 
regression was taken as age. It certainly would not be useful to 
take the time scale as time-since-study-entry, and taking it as 
time-since-diagnosis would not be ideal.

As noted earlier the choice of “time scale” for such purposes is 
not really a matter of “scale” but a matter of the origin used. 
This choice does not really affect rates, but affects the 
modeling of them. In particular, which age-time aspects are 
taken as the primary time scale, and which are used as 
covariates.

In clinical studies it is common, and usually best, to take the 
primary time scale as time-since-diagnosis, or time-since-
treatment.

Thus I will introduce such an example, leaving most of the 
analysis for it as an exercise in Set 1.
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From some bureaucratic administrative data (often not as 
good as medical-study data) we have for 1612 women the 
time from diagnosis of cervical cancer until death or end of 
study. Of primary interest is the relation of death rates to 
whether each participated in a PAP screening program.

Although there is considerable range of age-at-diagnosis, 
which is important since “death” is taken as to any cause, the 
most important time scale is probably time from diagnosis to 
death. This is often the case for clinical studies. 

With that choice, one must seriously consider using diagnosis 
age as a covariable. There is also a variable representing the 
stage of the cancer at diagnosis. 

Results of Cox regression are rather complicated, and 
perhaps unexpected.  In particular, even within stage there 
is a screening effect, whereas one might expect screening 
mainly to result in earlier detection.
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All that I will demonstrate here is some graphical methods 
without which the Cox regression is hopelessly confusing.

This consists of plotting death rates, as earlier here, for 
categories defined by stage and screening. A main point is 
that since the Cox regression models rates, rather than 
cumulative rates or survival curves, it is most helpful to plot 
the (smoothed) estimates of the hazard function itself.

Variables are: age_diag, exit_time, dead, screened {0,1}, 
stage {0,1,2,3}

stset exit_time , fail(dead)
egen categs = group(stage screened) , label
sts graph , by(categs) hazard
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sts graph , by(categs) hazard yscale(log)
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Part of the need for this type of plotting is to look into the 
proportional hazards assumption for the Cox regression 
model on p. 22.

This was considered for the diabetes example on pp. 28-32, 
but I want to consider it further here, as many users have a 
difficult time with this issue in practice.

In the exercise on this cervical cancer data, you will need to 
consider this for the Cox regressions. A main issue there will 
be the extent to which the hazards for the two levels of 
screening are proportional, for each diagnostic stage.

The following plot shows more clearly than above what 
results for diagnostic stage 2. 
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restore
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Age at diagnosis is likely to be an important covariate.

egen agecat=cut(age_diag) , at(0,40,50,100)
sts graph , by(agecat) hazard
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Can we see anything this way about the joint effect of 
diagnosis age and screening?

egen categs2 = group(agecat screened) , label
sts graph , by(categs2) hazard
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Some general issues about proportional hazards are:

1. Stata provides for tests and diagnostics regarding the 
assumption, but these are less useful than the following.

2. Hazard plots along lines here are usually far more useful.

3. It is less that proportional hazards are strictly required
for Cox regression, than that estimates will correspond 
to the average hazard ratios over time --- sometimes this 
is quite adequate for the needs. This is likely the case for 
the previous page, and for other stages as well.

4.   If time-averages of hazard ratios are not adequate for 
the need, then one can with Cox regression model the 
time-variation of hazard ratios using time-dependent 
covariables --- the proportional hazards assumptions is 
not strictly required for Cox regression
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Often-used example: Stanford Heart Transplant Data

Some patients are randomized to medicine therapy --- those 
randomized to transplant are under observation while they await 
the transplant --- the “transplant” covariate for them changes 
at the time of transplant

Variables are:
stime: time from treatment to death or censoring
transplant: binary indicator of transplant
wait: time until transplant
age: age at start of study
year: year of entry to study
surgery: binary indicator of prior surgery

More on Time-Dependent Covariables: Above we used time-
dependent covariables in a formal way to investigate the 
proportional hazards assumption. Often they are used in more 
fundamental ways, modeling changes in risk with follow-up that are 
of particular interest.
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use stanford

replace wait=wait - 0.1 if stime==wait   * remove some ties

stset stime , fail(died) id(id)

stsplit aftertrans , after(wait) at(0)   * the main point here

replace aftertrans = aftertrans+1 if transplant==1  * fix labeling

e.g. patient 4 with wait=36, stime=39, died=1 now has 2 records: 

one with follow-up for the first 36 days, censored at that time, 

and another with follow-up for 3 more days, with event “died” at 

that time 

stcox age aftertrans surgery 

Log likelihood  =   -291.13858                 

-----------------------------------------------

_t | Haz. Ratio   Std. Err.      z   

-------------+---------------------------------

age |   1.033254   .0144661     2.34  

aftertrans |   1.002663   .3063415     0.01  

surgery |   .3305263   .1420819    -2.58  

-----------------------------------------------

Transplant patients have same subsequent death rate as 
those with medicine treatment
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egen agecat = cut(age) , at(0,40,50,100)

keep if surgery==0     * just to simplify things

xi: stcox I.agecat*aftertrans

Log likelihood  =   -260.11109                 

-----------------------------------------------

_t | Haz. Ratio   Std. Err.      z   

-------------+---------------------------------

_Iagecat_40 |   1.090803   .5234069     0.18  

_Iagecat_50 |   1.880217   .9320849     1.27  

aftertrans |   .4841006   .3400513    -1.03  

_IageXaft~40 |   2.201334   1.738274     1.00  

_IageXaft~50 |   2.399345   1.902204     1.10  

-----------------------------------------------

One should always consider effects of age

Young patients seem to benefit from transplant, while older 
ones seem to do worse with transplant than with medicine
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stcox aftertrans#i.agecat

Log likelihood  =   -260.11109                  

------------------------------------------------

_t | Haz. Ratio   Std. Err.      z    

-------------+----------------------------------

aftertrans#|

agecat |

0 40  |   1.090803   .5234069     0.18   

0 50  |   1.880217   .9320849     1.27   

1  0  |   .4841006   .3400513    -1.03   

1 40  |   1.162433   .5442203     0.32   

1 50  |   2.183918    .991644     1.72   

------------------------------------------------

From STATA 11 new handling of factor variables

Output clearer, making me realize I was interpreting 
previous fit wrongly --- figure out why the difference
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Are the doctors getting better with time? On the contrary

egen yearcat = cut(year) , at(66,69.5,71.5,75)

xi: stcox I.yearcat*aftertrans

Log likelihood  =    -262.9827                 

-----------------------------------------------

_t | Haz. Ratio   Std. Err.      z   

-------------+---------------------------------

_Iyearcat_2 |   1.054558   .4384916     0.13  

_Iyearcat_3 |   .4521415   .2211328    -1.62  

aftertrans |   .9660618   .3947484    -0.08  

_IyeaXafte~2 |   1.180939   .6831352     0.29  

_IyeaXafte~3 |   1.721368   1.071051     0.87  

-----------------------------------------------

However, this could be due to confounding with age of 

subjects,but it seems from the following not to be.

tabulate agecat yearcat    * no remarkable correlation

|             yearcat

agecat |        66       69.5       71.5 |

-----------+---------------------------------+

0 |         8          9         12 |

40 |        20         20         26 |

50 |        27          8         18 |

-----------+---------------------------------+
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Again, stratification can be important here.  Takes underlying 
hazard as unspecified within while covariables have common 
effect over strata

In the age analysis above we took the age effect on the 
underlying hazard as simply 3 multiplicative parameters ---
stratification relaxes that assumption enormously

xi: stcox I.agecat|aftertrans , strata(agecat)

Log likelihood  =   -192.57567                  

------------------------------------------------

_t | Haz. Ratio   Std. Err.      z    

-------------+----------------------------------

aftertrans |   .6568869   .4945401    -0.56   

_IageXaft~40 |   1.432418   1.277949     0.40   

_IageXaft~50 |   1.874898    1.69942     0.69   

------------------------------------------------

Age interaction is somewhat smaller this way
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xi: stcox I.yearcat*aftertrans , strata(agecat)

Log likelihood  =   -188.73802                 

-----------------------------------------------

_t | Haz. Ratio   Std. Err.      z   

-------------+---------------------------------

_Iyearcat_2 |   1.275453   .5527938     0.56  

_Iyearcat_3 |   .4267472   .2118292    -1.72  

aftertrans |    .659119   .3022043    -0.91  

_IyeaXafte~2 |   1.575471   .9737808     0.74  

_IyeaXafte~3 |    2.16495   1.393578     1.20  

-----------------------------------------------

The following provides stronger evidence (although probably still 
not significant) that the year effect is not just confounding with 
age
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Cox regression methods are called partially nonparametric, 
since the underlying hazard             is left totally 
unspecified

Survival analysis can be done fully parametrically as 
follows. Let            be the density (before censoring), 
where the dependence on    would usually be dealt with 
through covariates.

The fully parametric likelihood for the censored data is 
then

0 ( )t

( ; )if t 

i

1

1

1

1

1

( ) ( ; ) ( ; )
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
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 
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Where       is the indicator of failure and      is the entry 
time

i ie
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There seem to be only 3 ways of doing this in practice.

1. Fully parametric proportional hazards models

where the baseline hazard             is fully-specified by 
parameters, and for example

2. Accelerated failure-time models, where            
corresponds to taking                        , where       has density 
fully-specified by a parameter    , typically a distribution 
with mean zero and possibly unknown variance (often normal)

3. Poisson Regression as indicated on the next slide, and 
taken up again later in these notes

Approaches 1 and 2 are generally better than Cox regression 
for “time” inferences rather than “rate” inferences

0( ; ) ( ; ) ( , )i it t RR z    

( ; )o t 

( , ) exp( )i iRR z z 

( ; )if t 
log i it z    





59

Except for very special cases evaluating the likelihood for 
methods 1 and 2 requires numerical integration, which Stata 
will carry out for a number of parametric model forms (will 
return to this later)

However, it is clearly possible to do this relatively simply if 
the hazard function              for approach 1 is replaced by a 
piecewise-constant approximation, defined on fixed 
intervals of time

It turns out that calculations for this approach can be done 
through what is called “Poisson regression”

Subject to the approximation made, which involves small 
error if the number of time intervals used is large, this 
provides a very flexible approach to survival analysis

Further, the essence of Cox regression can be regained in 
this approach, as will be shown

0 ( ; )t 
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For individuals define                     as earlier, and let          be 
the hazard functions

( ) , ( )i iN s Y s ( )i s

The martingale defining property can be stated as that 

 ( ) | history of process up to 0E dM t t  

( )M t

The two most important derived properties are that

 

   
1

1

var ( ) | history to ( ) ( )

and hence  var ( ) ( ) ( )

n

i ii

n

i ii

dM t t Y t t dt

dM t E Y t t dt









 







Increments of          over disjoint 
intervals are uncorrelated

(a)

(b)

The (mean zero) counting process martingale is then

 1 0
( ) ( ) ( ) ( )

tn

i ii
M t N t Y s s ds


  

where the second term is called the compensator of ( )N t

I will now indicate briefly some of the main issues in the 
martingale theory (but that for Cox regression is different)
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Property (a) holds only for continuous time processes, and means 
that the process is “Poisson like”, with variance equal to mean 
(there is analogous “binomial like” theory for discrete time 
processes). Note: (a) can be re-expressed as

With the extension on the next slide, this property is very 
useful for finding variances of various statistics

Property (b) means that for deriving limit theorems one can 
take the uncorrelated “contributions” to the loglikelihood as 
being from successive failures, rather than from individuals 
(contributions from individuals are not uncorrelated for Cox 
regression)

This was used by several authors (Greenwood, Cox) before the 
martingale theory became popular 

   

 

var ( ) | history to var ( ) | history to 

( ) | history to 

dM t t dN t t

E dN t t

  

 
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Let         be a function that is nonrandom, given the history up 
to         , (referred to as “predictable”), and 

( )H t
t 

0
( ) ( ) ( )

t

L t H s dM s 

   2 2

0 0
var ( ) ( ) var ( ) ( ) ( ) ( )

t t

L t H s dM s ds E H s Y s s ds  

Then since                            are uncorrelated, 1 2( ) , ( )dM s dM s

For the N-A estimator

 
0 0

1 1ˆ ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

t t

t t dN s Y s s ds dM s
Y s Y s

     

  20 0

1 1ˆvar ( ) ( ) ( ) ( )
( ) ( )

t t

t E Y s s ds E s ds
Y s Y s

    
so

which can be estimated by

20

1
( )

( )

t

dN s
Y s



63

Likelihood scores and martingales (fully-parametric models)

The contributions to the loglikelihood are of form

 
0

log ( ) ( )

log ( ) ( ) ( ) ( )

i i i i i i

i i i i

l f t t

s dN s Y s s ds



 


 

 

Contributions to the score are then 

 
0

/ log ( ; ) ( ) ( ) ( ; )i i i i il s dN s Y s s ds    


 
   



which are of form                  and hence are martingales( )i iH dM s
Further, we have from above results that 

 
2

var( / ) log ( ; ) ( ) ( ; )i i i il E s Y s s ds    



  



Analogous results for Cox regression are derived very 
differently from this (Flemington & Harrington text)

indicator of failureif
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Now returning to Poisson Regression: Consider grouping data 
into fixed time intervals                   so that for the     
individual

1, ,j k
thi

0 1 indicator of failure in interval 

time at risk in interval  

ij

ij

c j

t j

 



Consider a failure time model (with censoring) where the 
hazard functions              are piecewise constant at          on 
the above time intervals

( ; )i t 

It is well known that the likelihood function under the 
survival data model is identical to that under a Poisson 
regression model

 ( ) , for all  ( , )ij ij ijc Psn t i j 

( )ij 

Often the covariate values are in groups and these data 
may be reduced by summing over the groups
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Suppose for example that one wishes to take the hazard 
function, before this piecewise-constant approximation, as

2

0 0 1 2( ) log( ) {log( )}t t t     

This can be implemented either in the proportional hazards 
setting, or more generally. We will consider in detail here only 
the proportional hazards formulation

rather than allowing it to be totally free. Using any other 
specified parametric smooth function would involve no 
essential changes to what follows

For our diabetes data this can be done in Stata as 
follows
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use diabetes , clear

gen exitage = entryage + futime/365.25

gen older = dxage > 20

stset exitage , failure(status==1) enter(time entryage) id(id)

stsplit agecat , at (10(10)100)

gen died = _d

gen risktime = _t - _t0

collapse (rawsum) died risktime (mean) dxage exitage [w = risktime] 

, by(agecat older)

gen logage = log(exitage/55)

gen logage2 = logage*logage

poisson died logage logage2 older , exposure(risktime)
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Log likelihood = -45.126123                      

---------------------------------------------------

died |      Coef.   Std. Err.     z     P>|z|  

---------+-----------------------------------------

logage  |   3.764782   .2429372    15.50   0.000  

logage2 |    .975292   .4171822     2.34   0.019  

older |   -.502885   .1655882    -3.04   0.002   

_cons |  -3.395595   .1377553   -24.65   0.000  

risktime | (exposure)

---------------------------------------------------

Now we can add the time-dependent covariable used 
before, in a much more straightforward way --- one of 
the many advantages of the Poisson regression approach
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gen older_by_age = older * logage 

poisson died logage logage2 older older_by_age, exposure(risktime)

Log likelihood = -37.283704                      

------------------------------------------------------

died    |      Coef.    Std. Err.    z     P>|z| 

-------------+----------------------------------------

logage   |   1.950482   .5541518     3.52   0.000    

logage2  |  -1.725914    .915486    -1.89   0.059 

older |  -.5267626    .189471    -2.78   0.005 

older_by_age |   3.706481   1.024495     3.62   0.000 

_cons |  -3.279235   .1481355   -22.14   0.000 

risktime | (exposure)

------------------------------------------------------



69

0 exp( )ij j iz  

If the time intervals are narrow use of this profile likelihood  
is essentially equivalent to Cox regression; exactly so if they 
are narrow enough to isolate each failure

We can also carry out the analogue of Cox regression with this 
approach, by allowing the baseline hazard to be totally free on 
the specified time intervals, that is

Further, if the       are evaluated at their MLEs for fixed       
the resulting profile likelihood is the analog of the partial 
likelihood, agreeing exactly for narrow time intervals

For the 10-yr age intervals used above, the results can be 
obtained simply by the following command

0 j 
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xi: poisson died i.agecat older , exposure(risktime) nocon

Log likelihood = -124.31356                      

-------------------------------------------------------

died |      Coef.   Std. Err.     z      P>|z|  

-------------+-----------------------------------------

_Iagecat_10 |  -6.612124          1    -6.61   0.000  

_Iagecat_20 |  -5.627886   .4473565   -12.58   0.000  

_Iagecat_30 |  -3.888499   .1970353   -19.74   0.000  

_Iagecat_40 |  -3.706132   .2133077   -17.37   0.000  

_Iagecat_50 |  -3.060482    .183424   -16.69   0.000  

_Iagecat_60 |  -2.317894   .1784671   -12.99   0.000  

_Iagecat_70 |  -1.541279   .1812111    -8.51   0.000  

_Iagecat_80 |  -1.166253   .2031198    -5.74   0.000  

_Iagecat_90 |  -1.317222   .4411247    -2.99   0.003  

older |  -.4135063   .1671058    -2.47   0.013  

risktime | (exposure)

-------------------------------------------------------
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gen older_by_age = older * log(exitage/55) 

xi: poisson died i.agecat older older_by_age, 

exposure(risktime) nocon

Log likelihood = -53.199815                   

---------------------------------------

died |      Coef.   Std. Err.      z

-------------+-------------------------

_Iagecat_10 |  -6.612124          1    -6.61 

_Iagecat_20 |  -5.570925   .4472849   -12.45 

_Iagecat_30 |  -3.652769   .1984815   -18.40 

_Iagecat_40 |  -3.482641   .2239435   -15.55 

_Iagecat_50 |  -3.186232   .2072845   -15.37 

_Iagecat_60 |  -2.882984   .2896004    -9.96 

_Iagecat_70 |  -2.485169   .3923227    -6.33 

_Iagecat_80 |  -2.430896   .4970603    -4.89 

_Iagecat_90 |  -2.864424   .7045398    -4.07 

older |  -.4064962   .1921386    -2.12 

older_by_age |   2.818797   .9743427     2.89 

Introducing the age-dependent covariable as before
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 ( ) ˆ ( : ' 0
j

j k j

Risk sets R

z E z over z s in R


 

Cox regression and rank tests: Clearly the estimating equations 
for Cox regression have nothing to do with actual failure times 
--- only their ordering and the covariate values at failure times

This means that Cox regression is invariant to monotonic 
transformations of the time scale

Generally statistical methods with this character are 
referred to as rank methods, the most well-known being 
the Wilcoxon test

In Cox regression for the “two-sample” setting (one 
binary treatment), the score test of no treatment effect 
is an alternative to the Wilcoxon test called the logrank 
test

In the following example, the small difference between 
these is due to minor conventions
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use "c:\aarhus data\melanoma.dta" 

stset survtime , failure(status==1) id(id)

sts test ecells, logrank

Log-rank test for equality of survivor functions

|   Events         Events

ecells  |  observed       expected

--------+-------------------------

absent  |        16          26.16

present |        41          30.84

--------+-------------------------

Total   |        57          57.00

chi2(1) =       7.30

Pr>chi2 =     0.0069

stcox ecells, iterate(0)

Log likelihood  = -279.3844    LR chi2(1)      =      7.63 

Prob > 

chi2     =    0.0057

---------------------------------------------------------

_t | Haz. Ratio   Std. Err.      z    P>|z|    

-------------+-------------------------------------------

ecells |   2.174292   .6411342     2.63   0.008    

---------------------------------------------------------
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When there is no censoring, Cox regression corresponds exactly 
to regression based on ranks, i.e. reduction of data to 

 ( , ) , 1
jj rr z j n

where for ordered response times       we define ( )jt ( )jr jt t

In fact, the Cox partial likelihood, as a function of the 
data, is exactly the probability distribution of the ranks

With censoring, these results maintain under a censoring 
model where a given number are censored between successive 
failures (Type II progressive censoring)

These notions give some idea of why residuals are of so 
little value in Cox regression ---- one might suspect they 
would be of limited value for rank-based methods
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Fully parametric models: proportional hazards and otherwise

0 0( ; ) ( )exp( ) ( ) ( ; )i i it t z t RR z      

In the formulation  

can specify a parametric model            rather than leaving 
this totally free

0 ( ; )t 

Most common choices are exponential and Weibull, and all 
the packages handle this (with censoring and delayed entry)

As indicated above, if data are “grouped” by taking the 
underlying hazard as piecewise constant, then quite general 
parametric forms can be utilized (essentially as a GLM)

In the proportional hazards framework, the distributions for 
all i  are also Weibull 

For the Weibull 0 1 2log ( ) logt t   
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It might be said that the exponential distribution bears a 
similar relation to survival data as the normal distribution does 
to measurement data --- analysis using this model is often 
surprisingly adequate

The Weibull is a useful generalization, but only allows (partially) 
for hazard functions that are monotonic in time – often they 
are not

A useful way of testing the adequacy of the Weibull is to use 
the piecewise constant hazard formulation and fit models 
such as

2

0 1 2 3log ( ) log (log )t t t     

or regression splines with 2-3 knots

This indicates very nicely the usefulness of the Poisson 
regression approach
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Accelerated failure time models: an alternative to 
proportional hazards (in addition to Cox regr with TDC)

log i it z   

With censoring concepts as usual, the general form takes 
the distributions of response times of form 

where      is a r.v. with mean zero and possibly unknown 
variance: most important case is lognormal



There is some disagreement about whether this is more or 
less generally useful, and natural, than models in terms of 
hazard functions

The interpretation is likely to be problematic when there 
are more than one important time scale (e.g. age and time 
since trtmt), or when there is staggered delayed entry

That is, the effect of covariates on time is a scale change
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To the melanoma data I will fit a Weibull model, using both the 
proportional hazards and accelerated failure time 
parametrizations.  This is fairly confusing

In the PH formulation we can write the Weibull survival 
function as 

( )
p zt eS t e



We can re-express this as a scale parameter (i.e. AFT) 
model as

/

( )

p

z p
t

eS t e



 
 
 
 






So if the RR is        , then the scale parameter should be   ze  *ze 

where 
* / p  
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use melanoma, clear

stset survtime , fail(status==1)

stcox ecells , nohr

------------------------------------------------------

_t |      Coef.   Std. Err.      z    P>|z| 

-------------+----------------------------------------

ecells |   .7774218   .2949166     2.64   0.008 

------------------------------------------------------

streg ecells, dist(weibull) nohr

Weibull regression -- log relative-hazard form 

------------------------------------------------------

_t |      Coef.   Std. Err.      z    P>|z| 

-------------+----------------------------------------

ecells |   .7931742   .2948689     2.69   0.007 

_cons |  -10.19779   1.050353    -9.71   0.000 

-------------+----------------------------------------

/ln_p |   .0905778    .118339     0.77   0.444 

-------------+----------------------------------------

p |   1.094807   .1295583                  

1/p |   .9134032   .1080912                  

------------------------------------------------------

streg ecells, dist(weibull) time

Weibull regression -- accelerated failure-time form 

------------------------------------------------------

_t |      Coef.   Std. Err.      z    P>|z| 

-------------+----------------------------------------

ecells |  -.7244879   .2805435    -2.58   0.010 

_cons |   9.314693   .2849617    32.69   0.000 

-------------+----------------------------------------

/ln_p |   .0905778    .118339     0.77   0.444 

-------------+----------------------------------------

p |   1.094807   .1295583                  

1/p |   .9134032   .1080912                  

------------------------------------------------------
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In using the Cox model where 

0 0( ; ) ( )exp( ) ( ) ( ; )i i it t z t RR z      

0 ( )twith        totally unspecified, the primary inference is about the 
RR.  Although it is possible to compute a nonparametric estimate 
of the baseline survival time distribution, using this is usually 
unwise in practice.

If the aim is inference about the distribution of survival 
times, rather than the RR, then Cox regression is usually the 
wrong approach.

Using one of the parametric models just described can be 
useful, but considerable checking is required regarding the 
adequacy of the model.

The more flexible approach arising from the Poisson 
regression is a useful alternative to this. 
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Residuals in Cox regression: there are several definitions of 
these, and largely they are much less useful than in ordinary 
regression. Recommend referring to Therneau & Grambsch

Martingale residuals
ˆ( )

0
0

ˆ ˆ( ) ( ) ( )iz s

i i iM N Y s e d s




   
with no TDC or delayed entry these are

ˆ

0
ˆ ˆ ( )iz

i i iM N e t


  

ˆ1 iMwith             being related to censored observations from a 
unit negative exponential distribution 

These are useful neither for “checking error distribution”
nor for plotting against fitted values

Although they do have some limited uses, matters are 
extremely subtle



82

Deviance residuals: an attempt to modify martingale residuals 
to make their distribution somewhat more normal. In practice 
this has not been very useful

Score residuals:  an matrix of dimension n by p = dim(beta)  
----- recall that the estimating equation has form 

 ( ) ˆ ( : ' 0
j

j k j

Risk sets R

z E z over z s in R


 

These are useful for influence analysis, and for computing 
“robust” variance estimates

  ˆ

01 0 ˆ
ˆ( :risk set at time ) ( ) ( ) 0

i
i

tn z

i ii
z E z s dN s e d s




    

This can be expressed as

and the score residuals are the contributions to the left 
side from each individual
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Schoenfeld residuals: these are intended for investigating the 
proportional hazards specification. Recall the earlier example 
where we fit the model

stcox cov1-cov6 
--------------------------------

_t | Haz. Ratio   Std. Err.  

------+-------------------------

cov1 |    .190       .104   

cov2 |    .440       .163   

cov3 |    .602       .321   

cov4 |   1.116       .533   

cov5 |   1.00        .364   

cov6 |   20.07178          .

where covj was the product of the indicator of an age interval 
with the primary covariable older . 

If we take the age intervals narrow enough to isolate 
failures, and compute the score test (of no effect) rather 
than fitting the model, the results are the vector of 
Schoenfeld residuals

This is useful, but then what was done above may often be 
easier to understand and explain
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For the diabetes data, these are Schoenfeld residuals colored by 
the two levels of older. The point is that as exitage increases, 
points are first more dense for older = 0 , gradually then becoming 
more dense for older = 1 . This indicates, although none to clearly, 
departure from proportional hazards 



85

-1
5

-1
0

-5
0

5
1
0

s
c
a
le

d
 S

c
h

o
e

n
fe

ld
 -

 o
ld

e
r

20 40 60 80 100
exitage

bandwidth = .2

Lowess smoother

Perhaps the best way to interpret a plot of this nature is to fit a 
“smooth” to the entire dataset.  This indeed shows what was said 
about the shifting density from one set to the other.
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These are the score residuals for the same dataset. I am not 
certain what all this means, but in fact the few largest values 
correspond to persons with a young diagnosis age, and who were 
censored at a fairly old age. They are not fitting the model so 
well. 
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Recently, I have found that “influence” diagnostics can be 
particularly useful in Cox regression. A type often referred 
to as DFBETAs was added to Stata in version 11. It turns 
out that these are essentially the same as the score 
residuals, so you can do this with Stata 10.

The point is that one would want to know if some small set 
of observations in the dataset are having inordinately large 
effect on the parameter estimates.

To see how this is used, I will apply it to the diabetes 
dataset. Setting up the data as before, we find 

stcox older , nohr

Log likelihood  =   -2324.0326                    
-------------------------------------------------------

_t |      Coef.   Std. Err.      z    P>|z|  
-------------+-----------------------------------------

older |  -.5008126   .1686263    -2.97   0.003  
-------------------------------------------------------
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And from the commands below obtain a plot similar to that 
from the score residuals. In fact, DFBETA is simply 
SCORE_resid * cov(betahat).  Plots of influence against other 
variables is usually more useful than simply a histogram.

predict influence , dfbeta
scatter exitage influence
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The largest DFBETA is about 0.05, and this is for a man who 
was diagnosed at 15 years old, exiting this study alive at 76 
years old. This is slightly peculiar, although the “influence”
of 0.05 is not so large as to be really problematic.

When we omit that person the fit is as below, we find that 
the 0.05 is the approximate effect of including rather than 
excluding this person.

preserve
keep if influence < 0.04

(1 observation deleted)
stcox older , nohr

Log likelihood  =   -2322.2933                    
-------------------------------------------------------

_t |      Coef.   Std. Err.      z    P>|z|  
-------------+-----------------------------------------

older |  -.5495589   .1708115    -3.22   0.001  
-------------------------------------------------------
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I am adding this topic after recently finding it very useful in 
the A-bomb survivor work. There, the Cox regression for age 
at death to cancer included in the RR terms of form

Where the neutron component is only about 1% of the total, 
and the two components are very highly correlated.

Therefore, the ratio             is usually just fixed at about 10 
or 20, and our recent interest was in the feasibility of 
estimating that ratio.

We were greatly surprised to find that the data seemed far 
more informative on this than expected, and that the MLE 
was around 100. 

1 2
gammaraydose neutrondose 

2 1
/ 
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Hiro: with age-dep ERR
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Ratios where the Deviance is less than about 4 comprise a 
95% confidence interval. MLE is nearly 100.
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This is DFBETA vs neutron dose, for inference on the ratio                
. The upper-right 3 points correspond to totally 

implausible dose estimates. After omitting these 3 out of 
60,000 individuals, the deviance plot above becomes 
essentially constant.

2 1
/ 
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We now want to introduce the data on excess cancer among 
A-bomb survivors, because this illustrates ways in which 
the standard approach to Cox regression requires 
extensions

The most important of these relates to needs is likely to be 
found in any dose response study

It develops that the needs cannot be met using any of the 
standard software packages (STATA, S-PLUS, etc), and I 
will briefly introduce the package that was developed 
specifically to meets the needs of interest here
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A-bomb survivors: the main RERF dataset consists of follow-up 
for cancer of about 100,000 survivors with individual radiation 
dose estimates

We usually analyze this in grouped form, mainly because it 
encourages exploratory analysis with such a large dataset

Interest is in dose-response analysis, requiring methods 
rather different from usual survival analysis methods 

This is because of need to focus on the excess risk due 
to radiation exposure, how it depends on dose level, and 
how factors such as sex and exposure age modify this

Will do a little bit in STATA, but mainly will demonstrate 
use of software that we developed for the needs (and is 
rather widely used elsewhere)
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The usual approach would consist of modeling the cancer rates, 
relative to those for unexposed persons, in the form 

exp( )RR z 

where     is constructed from underlying covariables dose, 
sex, exposure age, time since exposure, (possibly) attained 
age

z

exp( ) 1RR d d  

First consider only dose      . We might start with form d

Adding a sex term has no effect since the baseline risk 
must be allowed to depend on sex --- thus one must 
consider something like 

1 2exp( )RR d d s   

This is not unreasonable, but as one adds interactions 
with further factors the multiplicative form becomes 
quite unsatisfactory for studying the excess risk
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What one really wants to analyze is more like how does the 
parameter       in models as below depend on sex, exposure age, 
etc



1

1 ( )

RR d

RR g d





 

 

where a form for         might be developed in exploratory 
analysis (including formal parameterizations)

( )g d

A starting point is the generic form

1 1 2 21 ( )exp( )RR z z   

with an instance we use often

1 2 31 exp( )RR d s agex     

The class of models used in EPIWIN is much broader, but 
this form will do for our needs this week

In EPIWIN these are employed for Cox, Poisson, and 
Logistic regression 



97

Another feature involves baseline “stratum” parameters such as 
those for age category above

Usually one wants far more of these --- stratifying also on other 
factors such as sex, calendar time, etc

Dealing with all these parameters in the ordinary fitting process 
would be infeasible

However, for fixed values of the RR parameters, the MLE of 
the stratum parameters is of closed form

The approach taken is iteratively to (a) fix the RR parameters, 
(b) compute the MLE of stratum parameters, (c) update the RR 
parameters holding the stratum parameters as fixed, then 
return to step (b), and so forth   (a Gauss-Seidel algorithm) 
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The following example is for cancer mortality in the cohort, 
arriving at the model with age-dependent RR

1 2 3 41 exp{ log( )}RR d s agex age       

These data are publicly available from the website 
rerf.or.jp , and I can loan you the Epiwin program if you 
would like to try it (with some help from me)

For this, the baseline risk follows a stratified model 
using categories of:  city, sex, age, birth cohort, and 
calendar time

 , , , , 1 2 3 41 exp{ log( )}c s a bc trate d s agex age        

Thus the model for cancer rates becomes
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tran agex30 = agex-30 @

tran lage60 = log(age/60) @

cases solid @

strata city sex agxcat agecat time @

The current model has 13260 strata

linear 1 sex*dose @

fit @

Product additive excess model { T0 * ( 1 + T1 + T2 + ...) }

Stratification on city sex agxcat agecat time with 1767 strata

# Name                            Estimate     Std.Err.  P value

-- ---------------------------- ---------- --------- --------

Linear term 1

2 sex_1 * dose.............         0.3560     0.06542   < 0.001

3 sex_2 * dose.............         0.6658     0.08139   < 0.001

Deviance    12672.504

loglinear 1 agex30 @

fit @

-- ---------------------------- ---------- --------- --------

Linear term 1

2 sex_1 * dose.............         0.3779     0.06892   < 0.001

3 sex_2 * dose.............         0.6478     0.08746   < 0.001

Log-linear term 1

4 agex30...................       -0.04465    0.007761   < 0.001

Deviance    12636.834
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null @

loglinear 1 +lage60 @

fit @

# Name                            Estimate     Std.Err.  P value

-- ---------------------------- ---------- --------- --------

Linear term 1

2 sex_1 * dose.............         0.3959     0.07271   < 0.001

3 sex_2 * dose.............         0.6665     0.08975   < 0.001

Log-linear term 1

4 agex30...................       -0.03761     0.00924   < 0.001

5 lage60...................        -0.6537      0.5042     0.195

Deviance    12634.934

lrt @

LR statistic       1.900      Degrees of freedom      1

P value       0.168

profile 5 @

2-sided          Bounds                exp(Bounds)

Level      Lower       Upper      Lower        Upper

_______________________________________________________

25.0%     -0.7990     -0.5061      0.4498      0.6028

50.0%     -0.9599     -0.3395      0.3829      0.7121

68.3%      -1.105     -0.1842      0.3311      0.8318

75.0%      -1.172     -0.1115      0.3097      0.8945

90.0%      -1.391      0.1323      0.2489       1.141

95.0%      -1.529      0.2918      0.2168       1.339

97.5%      -1.652      0.4375      0.1917       1.549

99.0%      -1.798      0.6148      0.1656       1.849

99.5%      -1.899      0.7404      0.1498       2.097



101

This includes a time-dependent covariable (log age), although in 
the Poisson regression this is less of a special issue than for 
Cox regression organized as usual

Although these data cannot be readily analyzed in STATA, I have 
prepared a version where some things can be done there.

The dataset  a_bomb_dat.dta  is a cross-tabulation including 
estimates for baseline rates that I have computed using 
EpiWin  (given on the log scale in  lbkrate)

You can do then some analysis by using Poisson regression 
with the “offset” in the linear predictor computed as       
offst = log(pyr) + lbkrate

For example, useful results follow the command

poisson  cases  dose  , offset(offst) nocon
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Some Key Points of Summary

There are common settings where analysis of rates is much 
more feasible than analysis of response times (or survival 
functions), esp in settings involving delayed entry and 
competing risks

Cox regression does not require proportional hazards (even 
though that is important), since non-proportionality can be 
modeled in terms of time-varying covariables 

If interest is primarily on rate ratios then Cox 
regression is usually the method of choice, but when 
interest is on survival times then Cox regression with 
nonparametric estimation of the baseline hazard is 
often not so useful

Although one might turn to (usual) “fully parametric” models, it 
will often be much better to use the Poisson regression 
approach with exploratory parametric modeling of the baseline 
hazard


