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Carbon nanotubes

Physical Properties of Carbon Nanotubes
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Value and units

Observations

of the unit

rrent density

Thermal conductivity
Young modulus
Mobility

Mean free path
{ballistic transport)

Conductance in
ballistic transport
Luttinger parameter

a= ﬁﬂc-c =249A

>10° Alem®

6600 W/imK
1 Tpa
10,000-50,000 cm*V's™!

300-700 nm gemicnnducﬁng CNT
1000-3000 nm metallic CNT

G =4e*/h=155u8
1/G = 6.5k
0.22

ac_c =1.44 A is the carbon bond
length

-1000 times larger than the current
density in copper

- Measured in MWCNTs

More thermally conductive than most
crystals

Many orders of magnitude stronger
than the steel

Simulations indicate motilities beyond
100,000 cm*V's”

- Measured at room temperature

- At least three ime larger than the best
semiconducting heterostructures

The electrons are strongly correlated 1n
CNTs

]
r Orbital magnetic 0.7 meVT' (d = 2.6 nm) The orbital magnetic moment depends
moment 1.5 meVT' (d = 5 nm) on the tube diameter
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CNT Properties

* The strongesl and most [lexible molecular
material because of C-C covalent bonding
and seamless hexagonal network architecture

* Young's modulus of over I TPa vs 70 GPa for
Aluminum, 700 GPA for C-liber
strength 1o weight ratio 500 tme = [or Al:
similar improvements over steel and
Litanium; one order of magnitude

improvement over graphile/epoxy

* Maximum strain ~ 0% much higher than any
material

* Thermal conductuvity ~ 3000 W/mK in the axial
direction with small values in the radial direction




CNT Properties (cont.)

* Electrical conductivity six orders of magnitude higher than copper

e (Can be metallic or semiconducting depending on chirality
- “tunable’ bandgap
- electronic propertics can be tailored through application of
external magnetic field, application of mechanical
deformation. ..

* Very high current carrying capacity
« Excellent field emitter; high aspect ratio

and small tip radius of curvature are
ideal for field emission




CNT: Implications for electronics

Nanotube

Carrier transport is 1-D.
All chemical bonds are

satisfied = CNT Electronics not bound to use SiO, as an
insulator.

High mechanical and thermal stability and resistance to
electromigration = Current densities upto 10° A/cm? can be
sustained.

Diameter controlled by chemistry, not fabrication.

Both active devices and interconnects can be made from
semiconducting and metallic nanotubes.
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More emphasis now is on applications
Potential Applications of Carbon Nanotubes

Large Volume Applications

- Battery Electrode Additives (MWNT)

- Composttes (sporting goods; MWNT)
-Composites (ESD* applications; MWNT)
-(*ESD — Electrical Shielding Device)

- Battery and Super-capacitor Electrodes
- Multifunctional Composites

- Fuel Cell Electrodes (catalyst support)
- Transparent Conducting Films

- Field Emission Displays / Lighting

- CNT based Inks for Printing

- Power Transmission Cables

- Structural Composites (aerospace and
automobile etc))

- CNTs 1in Photovoltaic Devices

Chapter by M. Endo, M. S. Strano, P. M. Ajayan (@ Springej
T4AP111

Limited Volume Applications
(Mostly based on Engineered
Nanotube Structures)

- Scanning Probe Tips (MWNT)
- Specialized Medical Appliances
(catheters) (MWNT)

- Single Tip Electron Guns

- Multi-Tip Array X-ray Sources

- Probe Array Test Systems

- CNT Brush Contacts

- CNT Sensor Devices

- Electro-mechanical Memory Device
- Thermal Management Systems

- Nano-electronics (FET Interconnects)
- Flexible Electronics

- CNT based bio-sensors

- CNT Fitration/Separation Membranes
- Drug-delivery Systems




Carbon nanotubes ijima 1901
Smalley 1993

2m+n

Chiral vector
C,, = na;+ma,

STM images of carbon nanotubes
T.AW. Odom, J.-L. Huang, P.Kim, C.Lieber, Nature 391 (1998)

1.42 A

/
a, V3/n
CNT diameter: /

d=(n°+m?+nm)"”? 0.0783 nm




Types of carbon nanotubes

Armchair (n,m) = (5,9)
0 =30°

Zig Zag (n,m) = (9,0)
0=0°

Chiral (n,m) = (10,9)
0° <0 < 30°

fnml = [10.5)



Unique Properties of Carbon Nanotubes
within the Nanoworld
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« Small size: ~1 nm diameter (down to
~10 atoms around the circumference)

* Electronic Properties: can be either
metallic or semiconducting depending
on diameter and orientation of the
hexagons

» Mechanical: Very high strength,
modulus, and resiliency.

= Physics: model system forlD density
of electronic states.

= Single molecule Raman spectroscopy,
luminescence and transport properties.
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Periodic Boundary Condition

Metallic nanotube
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Rolling Up Graphene: Periodic Boundary Condition
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Nanotube: Semi-conductor




Unique One Dimensional (1D) Properties

» High aspect ratio

* Enhanced density of states in 1D

* Molecular behavior (spikes in DOS)
* Solid state behavior (tails in DOS)
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Apgl, Phys, Latt. 80 {18), 4 May 1092

Electronic structure of chiral graphene tubules

A. Saito, M. Fujita, (3. Dresselhaus, and M. 5 Uresselhaus
Massachusetts Institute af Technology, Cambridge, Muassachusetis 02139

(Recoived 27 January 1%92; accepted lor publication 4 March 19%2)
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Dashed line: graphene
Note: linear density of states at around zero in graphene —
different from either metallic or semiconducting nanotubes !!




VOLUME 81, NUMBEER 12 PHYSICAL REVIEW LETTERS 21 SEPTEMEER 1998

Universal Density of States for Carbon Nanotubes

I W. Mmntmire and C. T. White

Code 6179, U.S. Naval Research Laboratory, Washington, D.C. 20375-5342
{(Received 13 March 1998)
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MATURE |[VOL 391 | 1 JANUARY 1008

Electronic structure of
atomically resolved
carbon nanotubes

Jeroen W. G. Wildoer*, Liesheth C. Venema®,

Andrew G. Rinzler?, Richard E. Smalley* & Cees Dekker*
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Use STM to probe DOS: shifts and
broadening due to hybridization of CNT
wave functions with Au substrate



Tuning Carrier Density by Electric Field Effect
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Electrical Transport in Nanotube Devices
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Field emission: CNTs are much better than
metals

A Fowler-Nordheim
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Figure 57. ja) Picture representing the set-up of a field emission display. CMT: are deposited on a
patierned metal substrate. Field emitted electrons hit the phosphor screen and cause light emission
in a colour that depends on the chemical compound on the phosphor screen. (5) SEM image of
namube bundles projecting from the metal electrode. (c) A sealed CNT field emission display
eqmitiing Lght in three different colours. The dimensicn of the display is 4.5 in. From [Chodga).

CNT-based compact low-
power X-ray sources




Issues

Large range of production techniques: * Carbon arc discharge
* Laser vaporization or ablation
* Chemical vapour deposition

* Electrolysis

Remaining challenges: * Chemical modification
* Functionalization
* Soluabilization
* Separation into specific (n,m)
* Filling
* Doping
* Manipulation of individual tubes

Grobert, Materials Today 10, 28 (2007)



Room-temperature electrical properties of GNR devices.

16 nm width — 7 nm width —
like graphene p-type semiconductor

The all-semiconducting nature of sub-10-nm GNRs could bypass the
problem of the extreme chirality dependence of the metal or semiconductor
nature of carbon nanotubes (CNTs) in future electronics

LY Jiao et al. Nature 458, 877-880 (2009) doi:10.1038/nature07919

nature
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