Homework \#6

(due Wednesday, November 15, 2023)

1. (10 pts) Show that $[\mathbf{R} \cdot \mathbf{P}, \mathrm{H}]=2$ iћ $\mathrm{T}-\mathrm{i} \hbar \mathbf{R} \cdot \nabla \mathrm{V}$, where \mathbf{R} is the position operator in 3D space, \mathbf{P} is the momentum operator, H is the Hamiltonian $\left(H=\mathbf{P}^{2} / 2 m+V(\mathbf{R})\right.$), and T is the kinetic energy operator $\left(\mathrm{T}=\mathbf{P}^{2} / 2 \mathrm{~m}\right)$.
2. (20 pts) Sakurai 2.10.
3. (30 pts) Consider a wave packet freely moving in 1D so that the wave function at $t=0$ is given by

$$
\psi(x, 0)=A \exp \left[-\frac{x^{2}}{2 a^{2}}+i \frac{p_{0}}{\hbar} x\right],
$$

where p_{0} is a momentum of the particle, and A is the normalization constant.
(a) What is the probability to find the particle in the region $[-\Delta, \Delta]$, where Δ is a very small parameter?
(b) What is the uncertainty of the measurement of x in this state ?
(c) Now consider the state of this system at some later time t and find $\psi(x, t)$ and the probability density $|\psi(x, t)|^{2}$.

Hint: expand $\psi(x, 0)$ in terms of the momentum eigenstates and then propagate them in time.

Make sure to check your function $\psi(x, t)$ (that at $\mathrm{t}=0$ you get the initially given $\psi(x, 0))$.

Don't be afraid of a very long expression you obtained in (c) - just rearrange the terms in a way that you can actually analyze the function in order to answer the following questions:
(d) Did the probability to find the particle in the region [$-\Delta, \Delta$] change ? If yes, how (a qualitative answer is fine)?
(e) Did the uncertainty of the measurement of x change ? If yes, how (a qualitative answer is fine)?
4.Reading assignment: Sakurai 2.1-2.2, 2.4.

