Homework \#4

(due Wednesday, October 25, 2023)

1. (10 pts) Consider a physical system whose Hamiltonian and initial state are given by $H=\varepsilon_{0}\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1\end{array}\right), \quad|\psi\rangle=\frac{1}{\sqrt{6}}\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$, where ε_{0} has the dimensions of energy.
(a) What values will we obtain when measuring the energy and with what probabilities?
(b) Calculate the expectation value of the Hamiltonian in both ways: (i) using the results of (a), i.e. eigenvalues and probabilities, and (ii) using the definition of an expectation value and given matrix H and the initial state.
2. (15 pts) Consider a system whose Hamiltonian and an operator A are given by the matrices $H=\varepsilon_{0}\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1\end{array}\right), \quad A=a_{0}\left(\begin{array}{lll}0 & 4 & 0 \\ 4 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.
(a) If we measure the energy, what values will we obtain?
(b) Suppose that when we measure the energy, we obtain a value of $-\varepsilon_{0}$. Immediately afterwards, we measure A. What values will we obtain for A and with what probabilities?
(c) What is the expectation value of A ?
3. (15 pts) Consider a physical system whose state and two observables A and B are represented by
$|\psi\rangle=\frac{1}{6}\left(\begin{array}{l}1 \\ 0 \\ 4\end{array}\right), A=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 1 & i \\ 0 & -i & 1\end{array}\right), B=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right)$
(a) We first measure A and then B. Find the probability of obtaining a value of 0 for A and a value of 1 for B.
(b) We first measure B and then A. Find the probability of obtaining a value of 1 for B and a value of 0 for A.
(c) Compare the results of (a) and (b) and explain.
4. (15 pts) Consider a physical system which has a number of observables that are represented by the following matrices:

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), B=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & i \\
-1 & -i & 4
\end{array}\right), C=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 3 \\
0 & 3 & 1
\end{array}\right)
$$

a. Which among these observables are compatible? Find the results of the measurements of the compatible observables.
b. Give a basis of eigenvectors common to these observables.
c. Do the following constitute a C.S.C.O.: $\{A\},\{B\},\{C\},\{A, B\},\{B, C\}$, $\{\mathrm{A}, \mathrm{C}\}$?
5. Reading assignment: Sakurai, 1.1-1.5.

