Homework \#3

(due Wednesday, October 18, 2023)

1. (10 pts) Recall that $\operatorname{Tr}(A)=\sum_{n} A_{n n}=\sum_{n}\left\langle\varphi_{n}\right| A\left|\varphi_{n}\right\rangle$, where $\left\{\left|\varphi_{n}\right\rangle\right\}$ is a complete orthonormal basis. Using bra-ket algebra, prove the following relations:
(a) $\operatorname{Tr}(\mathrm{ABC})=\operatorname{Tr}(\mathrm{CAB})=\operatorname{Tr}(\mathrm{BCA})$, where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are operators;
(b) $\operatorname{Tr}(|\psi\rangle\langle\varphi|)=\langle\varphi \mid \psi\rangle$, where $|\varphi\rangle,|\psi\rangle$ are state vectors.
2. $(20 \mathrm{pts})$ Consider matrices $A=\left(\begin{array}{ccc}7 & 0 & 0 \\ 0 & 1 & -i \\ 0 & i & -1\end{array}\right), \quad B=\left(\begin{array}{ccc}1 & 0 & 3 \\ 0 & 2 i & 0 \\ i & 0 & -5 i\end{array}\right)$.
(a) Are A and B Hermitian? Write down the matrices representing A^{\dagger} and B^{\dagger}.
(b) Find eigenvalues and (normalized) eigenvectors of A. What is the relationship between $\operatorname{Tr}(\mathrm{A})$ and a sum of the eigenvalues of A ? Explain.
(c) Show that the eigenvectors of A form a (complete and orthonormal) basis.
(d) Is $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$? Is $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$? Is $\operatorname{det}\left(B^{+}\right)=(\operatorname{det}(B))^{*}$? Show.
(e) Calculate the commutator $[A, B]$. Find $\operatorname{Tr}([\mathrm{A}, \mathrm{B}])$.
(f) Calculate the inverse of A , i.e. A^{-1}. What are the eigenvalues of A^{-1} ?
3. (15 pts) Consider a system whose Hamiltonian is given by $H=\alpha\left(\left|\varphi_{1}\right\rangle\left\langle\varphi_{2}\right|+\left|\varphi_{2}\right\rangle\left\langle\varphi_{1}\right|\right)$, where α is a real number having the dimensions of energy.
(a) Is H a projection operator? What about $\alpha^{-2} \mathrm{H}^{2}$?
(b) Are $\mid \varphi_{\mathrm{i}}>(\mathrm{i}=1,2)$ eigenstates of H ?
(c) Assuming that $\left|\varphi_{\mathrm{i}}\right\rangle(\mathrm{i}=1,2)$ form a complete and orthonormal basis, find the matrix representing H in this basis. What are the eigenvalues and eigenvectors of this matrix?
4. (10 pts) Show that for any two operators A and B,

$$
e^{B} A e^{-B}=A+[B, A]+\frac{1}{2!}[B,[B, A]]+\frac{1}{3!}[B,[B,[B, A]]]+\ldots
$$

5. Reading assignment: Sakurai 1.3-1.4.
