Homework \#1

(due Friday, October 6, 2023)

1. (10 pts) Are the following sets of vectors linearly independent or dependent over the complex field?
(a) $(2,-3,0),(0,0,1),(2 i, i,-i)$
(b) $(\mathrm{i}, 1,2),(3, \mathrm{i},-1),(-\mathrm{i}, 3 \mathrm{i}, 5 \mathrm{i})$
(c) $(0,4,0),(i,-3 i, i),(2,0,1)$
2. (10 pts) Are the following sets of functions linearly independent or dependent?
(a) $2+x^{2}, 3-x+4 x^{3}, 2 x+3 x^{2}-8 x^{3}$
(b) $\sinh ^{2} \mathrm{x}, 1, \cosh ^{2} \mathrm{x}$
(c) $x,(x-1)^{2},(x+1)^{2}$
(d) $\sin ^{2} x, \cos ^{2} x, \sin 2 x$
3. (20 pts) Consider the two states $|\psi\rangle=3 i\left|\varphi_{1}\right\rangle+\left|\varphi_{2}\right\rangle$ and
$|\chi\rangle=-\frac{i}{\sqrt{2}}\left|\varphi_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|\varphi_{2}\right\rangle$, where $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle$ form a complete and orthonormal basis.
(a) Calculate $\langle\psi \mid \psi\rangle,\langle\chi \mid \psi\rangle,\langle\psi \mid \chi\rangle,\langle\chi \mid \chi\rangle$. Are the scalar products $\langle\chi \mid \psi\rangle$ and $\langle\psi \mid \chi\rangle$ equal?
(b) Calculate $\langle\psi+\chi \mid \psi+\chi\rangle$.
(c) Calculate $|\psi\rangle\langle\chi|$ and $|\chi\rangle\langle\psi|$. Are they equal?
(d) Show that the states $|\psi\rangle$ and $|\chi\rangle$ satisfy the triangle inequality
(e) Show that the states $|\psi\rangle$ and $|\chi\rangle$ satisfy the Schwarz inequality
4. Reading assignment: Sakurai 1.1-1.2, Nature 1999 and Nature Comm 2011 papers
