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80 Photon statistics

A summary of the mathematical prop-
erties of Poisson distributions may be
found in Appendix A.

we can see that

o o ()| =

Jlim {Wi%ﬁg] ~1. (5.10)

Purthermore, by applying the binomial theorem and comparing the
result for the limit N — oo to the series expansion of exp(—7), we
can see that:

Hence:

(l—w%)Nnml—(N—n)%+%(N—n)(N—nw1) (%)2—
= exp(—7). (5.11)

On using these two limits in eqn 5.8, we find
. 1 —n —
A [P(n)] = i 1-7" . exp(—7). (5.12)

We thus conclude that the photon statistics for a coherent light wave
with constant intensity are given hy:

=n

P(n) = %Te-“, n=0,1,2 . (5.13)

This equation describes a Poisson distribution.

Poissonian statistics generally apply to random processes that can
only return integer values. We have already mentioned one of the stan-
dard examples of Poissonian statistics, namely the number of counts
from a Geiger tube pointing at a radioactive source. In this case, the
number of counts is always an integer, and the average count value 7 is
determined by the haif life of the source, the amount of material present,
and the time interval set by the user. The actual count values fluctu-
ate above and below the mean value due to the random nature of the
radioactive decay, and the probability for registering n counts is given
by the Poissonian formula in eqn 5.13. A similar situation applies to
the count rate of a photon-counting system detecting individual pho-
tons from a light beam with constant intensity. In this second case, the
randomness originates from chopping the continuous beam into discrete
energy packets with an equal probability of finding the energy packet
within any given time subinterval.

Poisson distributions are uniquely characterized by their mean value
7. Representative distributions for #=0.1, 1, 5, and 10 are shown in
Fig. 5.3. Tt is apparent that the distribution peaks at 7 and gets broader
as 7 increases. The fluctuations of a statistical distribution about its
mean value are usually quantified in terms of the variance. The variance
is equal to the square of the standard deviation An and is defined by:

oo

Var(n) = (An)? =Y (n—7)*P(n). (5.14)

nz==0
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[t is a well-known result for Poisson statistics that the variance is equal
to the mean value 77 (see eqn A.10):

(An)? = 7. (5.15)

The standard deviation for the fluctuations of the photon number above
and below the mean value is therefore given by:

An = V7. (5.16)
This shows that the relative size of the fluctuations decreases as 7@ gets

larger. If m =1, we have An =1 so that An/7=1. On the other hand, if
71=100, we have An =10, and An/n=0.1.

Example 5.1 An attenuated beam from an argon laser operating at
514 nm (2,41 eV) with a power of 0.1 pW is detected with a photon-
counting system of quantum efficiency 20% with the time interval set at
0.1 s. Calculate (a) the mean count value, and (b) the standard deviation
in the count number.

Solution
(a) We first calculate the photon flux from eqn 5.1. This gives
10738 W
= —— — =259 x 10° photon s~
241 eV photon 2

The average photon count is then given by eqn 5.2:
N =0.2 x (2.59 x 10°) x 0.1 = 5180.

{(b) We assume that the detected counts have Poissonian statistics with
a standard deviation given by eqn 5.16. With 7 = N = 5180, we
then find:

An = /5180 = T2.

Fig. 5.3 Poisson distributions for
mean values of 0.1, 1, B, and 10. Note
that the vertical axis scale changes
between each figure.
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process. This is a consequence of the invasive nature of quantum mea-
surements. The eavesdroppers must reveal their presence though the
disturbance they make through their measurements, which affects the
results of subsequent measurements on the photons that are received at
the final destination. It could be argued that the esvesdropping scheme
we have considered here is very simple and that Fve might devise a more
sophisticated way to tap in to the data stream. However, no matter how
hard she tries, she will always be subject to the general principles and
must give away something in making the measurement. We shall see how
this works in practice in the next section,

12.3 Quantum key distribution according
to the BB84 protocol

In the previous section we explained the general point that eavesdroppers
must reveal their presence through the invasive nature of the measure-
ments they make. We shall now see how this principle is used in practical
implementations of quantum cryptography. The idea is to distribute the
private key in a secure way so that Alice and Bob can subsequently use
it to encrypt secret messages transmitted over public channels. There
have been several schemes proposed in the literature and implemented
in the iaboratory, the two most important of which are:

s the Bennett-Brassard 84 (BB84) protocol,
o the Bennett 92 (B92) protocol.

In what follows we restrict our attention to the BB84 protocol, which
will be sufficient to explain the basic principles. The B92 protocol is
explored in Exercise 12.3.

In the simplest version of the BB84 protocol, the data are encoded as
the polarization states of single photons, with binary ‘1’ and ‘0’ repres-
ented by orthogonal polarization states. Thus we could represent 1 by
the 6 = 0 vertical polarization state and 0 by the 6§ = 90° horizontal
polarization state, where the polarization angle § is defined in Fig. 12.2.
However, we are not restricted to choosing the axes of the polarization
states to be horizontal or vertical, Any orthogonal pair of angles will do.
In the BB84 protocol two sets of polarization states called the @ and &
bases are used:

The ¢ basis: Binary 1 and 0 corresponds to photons with polarization
angles of 0° and 90°, respectively.

The ® basis: Binary 1 and 0 corresponds to photons with polarization
angles of 45° and 135°, respectively.

The two polarization states for the & basis can be represented in Dirac
notation by |1}, | «), while the two states for the ® basis are represented
by {7, and [N) respectively. These assignments are summarized in
Table 12.1.

Table 12.1 Data representa-
tion values in the BB84 pro-
tocol for the two choices of
polarization basis. @ is the
polarization angle as defined
in Pig. 12.2.

Basis Binary 1 Binary 0

e D | )
p=0° 8=090°

® | "
0 =45° 8=135°

See C. H. Bennett and G. Brassard
in Proceedings of IEEE International
Conference on Computers, Systemns
and Signal Processing, Bangalore,
India, December 1984, IEEE, New
York (1984), p 175, and C. H. Bennett,
Phys. Rev, Lett. 88, 3121 {1992).

The orthogona! polarization states
form the foundation for considering the
photon as a quantum bit (qubit). See
Section 13.2.
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A Pockels celt is an electro-optic device
which rotates the polarization vector
of the light passing through it in pro-
portion te the applied voltage. Many
recent implementations of the BB84
protocol do not use Pockels cells any
more, See Exercises 12.4 and 12.5,

H ! 3
,: - | Transmission PRS 2
t | Single- ; :
B a A e B S R
i source ! i ;
: ®0°,90° ! @0 A ;
: Al ®45°, 135° ! | ®-45° i Bob |
H 1ce ! ! i O \
: : ! Cj D2 i

Fig. 12.4 Data encoding scheme according to the BB84 protocol. Alice has a source
of vertically polarized photons and a Pockels cell PC1. PC1 rotates the polarization
vector by angles of 0°, 45°, 90°, or 135° for each photon at Alice’s cholice, The photon
that has passed through PC1 is then transmitted to Bob who detects it by using a
PBS and two single-photon detectors D1 and D2 similar to the arrangement shown
in Fig, 12.2. Bob’s apparatus includes a second Pockeis cell PC2 which can rotate
the polarization vector of the incoming photon by an angle of either 0° or —45° a$
Bob's choice.

An experimental scheme for quantum cryptography according to the
BB84 protocol is shown in Fig. 12.4. Alice’s apparatus consists of a
source of vertically polarized photons and a Pockels cell PCL. Alice syn-
chronizes her Pockels cell with the single-photon source and applies the
correct voltages to produce polarization rotations of 0°, 45°, 80°, or
135°. In this way she can send a string of binary data which is encoded
in either of the two polarization bases at her choice.

The photons emerging from Alice’s apparatus are received by Bob who
has a polarization measurement arrangement similar to the one showsn
in Fig. 12.2. Bob’s apparatus includes a second Pockels cell PC2 in front
of the PBS. Bob applies the correct voltage to this Pockels cell to rotate
the polarization vector of the incoming photon by either 0° or —45° at
his choice. These two choices are equivalent to detecting in the @ and ®
hases, respectively.

Bob does not know the basis that Alice has chosen to encode the
individual photons. He therefore has to choose the detection basis at
random. If he guesses the right basis, he will register the correct result.
This occurs when Alice chooses the @ basis and Bob chooses the 0° detec-
tion angle, and also when Alice chooses the @ basis and Bob chooses the
--45° rotation angle. If Alice’s choice of basis is random, this correct
matching of bases will ocour 50% of the time. For the remaining 50% of
the time Bob will be detecting in the wrong basis and will get random
results. Thus, for example, if the incoming photon is polarized at -+-45°
and Bob is detecting in the @ basis (rotation angle = 0°), he will regis-
ter results on either of his detectors with an equal probability of 50%.
(cf. eqn 12.2.)

In the BB&4 protocol the following steps are taken.

1. Alice encodes her sequence of data bits according to the scheme in
Table 12.1, switching randomly between the @ and ® bases without
telling anyone what she is doing. She then transmits the photons to
Bob with regular time intervals between thern.
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2. Bob receives the photons and records the resuits using a random
choice of @ and & detection bases as determined by the rotation
angle of his Pockels cell.

3. Bob communicates with Alice over a public channel (e.g. a telephone
line) and tells her his choice of detection bases, without revealing his
results.

4, Alice checks Bob’s choices against her own and identifies the subset
of bits where both she and Bob have chosen the same basis. She tells
Bob over the public channel which of the time intervals have the same
choice of basis, and both Alice and Bob discard the other bits. This
leaves them both with a set of sifted data bits,

5. Bob transmits to Alice over a public channel a subset of his sifted bits.
Alice checks these against her own and performs an error analysis
on them.

6. 1f the ervor rate is less than 25%, Alice deduces that no eavesdropping
has occurred and that the quantum communication has been secure.
Alice and Bob are then able to retain the remaining bits as their
private key.

Table 12.2 shows an example of how these six steps of the protocol
are implemented. The first line shows the original set of the data that
Alice wishes to send to Bob. The second line shows the random choice
of polarization basis that she makes, which gives rise to the polarization
angle encoding of the photons shown in the third line using the crite-
ria given in Table 12.1. The fourth line gives Bob’s random choice of
detection basis. This will coincide with Alice’s for half of the bits on
average. In these cases Bob will register the correct result, provided no
eavesdropper is present (see below). In the other haif of the cases, Bob
will only get the right result with a probability of 50%. This does not
matter, however, because these data are never used for the key.

The next step involves the comparison of the two bases. Bob pub-
licly announces his choice of bases without revealing his results. Alice

Table 12.2 Representative sequence of data choices according to the B384 pro-
tocol, @ is the polarization angle according to the encoding scheme given in

Table 12.1.

A's data 1 0 ¢ 1 1 1 0 0 1 0 0 1
A’s basis e @ ¢ 9 2 & H @ & @ ® @
8 (%) 0 135 90 45 45 0 90 135 0 135 138 O
B’s basis R ® ¢ & @ @ & & @& B o B
B’s result 1 0 0 0 1 1 0 1 1 0 i 1
Seme basis? n vy Yy n y ¥y n n vy y n n
Sifted bits 0 ¢ T 1 1 0

Data check 7 ¥ n y n y n

Private key 0 1 0
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checks this against her choices and identifies the cases where the two
choices coincide. These are identified with the ‘y’ label in the sixth row
of Table 12.2. Alice tells Bob which bits these are, and they discard the
other bits. This now leaves them both with the sifted bits shown in the
seventh row of the table. Bob now sends a subset of his sifted bits to
Alice, again over a public channel. In the example shown, he sends every
other bit. Alice can check these against her own list, and carry out an
error analysis,

This is the stage at which the eavesdropper reveals her presence. It is
easiest to understand what happens if we assume that Eve has the same
apparatus as Alice and Bob. She can then detect the photons sent by
Alice using a copy of Bob’s apparatus, and transmit new photons to Bob
using a copy of Alice’s apparatus, as shown schematically in Fig. 12.5.
Since she cannot know what choice of basis Alice is making, she must
choose her detection basis randomly. Half the time she will guess com
rectly and accurately determine the polarization state of the photon.
She can then send an identically polarized photon on to Bob without
anyone knowing about it. For the remaining half of the bits, she will
guess incorrectly, and register a result on either of her detectors with
an equal probability of 50%. She will then send a photon to Bob which
is polarized with her choice of detection basis, rather than Alice’s. This
means that Eve will alter the polarization basis angle by 45° for 50%
of the bits, In the cases where Bob has chosen the same basis as Alice
and Eve has guessed incorrectly, Bob will register random results on his
detectors with a probability of 50%. He will thus register errors even
when he has guessed Alice’s basis correctly. The error probability Perror
is given by:

Perror - PEve has wrong basis X PBob gets wrong result

= 50% x 50%,
= 25%. (12.3)

This high error rate of 25% will be easily recognizable when Alice carries
out her error analysis in the final step of the process. She will thus be able
to detect the presence of the eavesdropper, and therefore know whether
the private key distribution has been secure.

Alice Eve Bob
Polarization
Singie-photon detector Polarization
source + single- detector
] photon source 8

Fig. 12.5 An eavesdropper between Alice and Bob iries to measure the polarization
angle 6 of the photon sent by Alice and send an identical photon on to Bob, She
reveals her presence because the polarization angle 8 of the second photon will be
different from & for 50% of the photons.



