RANDOM CASCADES:
A Stochastic Model
Meets Some Data

Mina Ossiander
Department of Mathematics
Oregon State University
(with acknowledgements to David Rupp, Richard Keim, Marcela Brugnach, John Selker, and Ed Waymire among others)
January 28, 2005
INFORMATICS:

extracting conceptual information from data

Today's talk: A stochastic model

What is its correspondence with data?

CAN ONE INFORM THE OTHER?
Definition of **MODEL**:

Equation with variables representing physical quantities

Stochastic model incorporates random variability

Look at ‘random cascade’ model in 2 physical settings:

- *Energy dissipation in turbulence*

- *Precipitation intensity over time*
IDEA MOTIVATING MODEL:

total energy splits randomly repeats independently • • • until inertial range
A more mathematical sketch...

- Total energy
- Splits randomly
- Repeats independently
ORIGINATION OF IDEA: Kolmogorov in the early 1940’s

PHYSICAL SETTING: energy dissipation in turbulence

Russian school: 1940’s -1960’s ... turbulent fluids

French mathematicians: 1970’s ... mathematical rigor

Since then: appeared in different physical contexts

- precipitation intensity

- internet traffic intensity
BUILDING MODEL: Divide region into pixels successively

\[\Delta_n: \text{nth stage pixel, area } b^{-n}, \text{ } b \text{ integer reflecting dimension} \]

\[R_n(\Delta_n) = \frac{1}{b} \sum_{i=0}^{b-1} W_i(\Delta_n) R_{n+1}(\Delta_{n+1}) \]

\(W \)'s are random "splitting" weights

\(R_n \)'s "fine scale" unobservable random structure

Assumptions:

- this structure

- \(W \)'s independent with same variability across region and scale
Observable data: Random measure of pixels

\[R_0(\Delta_n) = \prod_{k=0}^{n-1} W(\Delta_k) \frac{1}{b} \sum_{i=0}^{b-1} W_i(\Delta_n) R_{n+1}(\Delta_{n+1}) \]

Properties

- intermittency
- stochastic self-similarity
- multi-fractal structure
Model produces a random measure for region ... who is interested and why?

Mathematicians: What are the distributional and geometric properties of model?

Physicists: modeling energy dissipation in turbulence: What is the distribution of the random splitting mechanism?

Hydrologists: Can this model be used to simulate realistic precipitation fields?

Electrical engineers: Does a model of this nature reflect internet usage patterns?

Mathematical statisticians: What estimation and testing procedures can be applied to data to help inform the questions above?
Start with the physicist’s question:

Rephrased, it becomes ... Can the distribution of the W’s be reclaimed from data on the random measure over a given region?

$$R_n(\Delta_n) = \frac{1}{b} \sum_{i=0}^{b-1} W_i(\Delta_n) R_{n+1}(\Delta_{n+1})$$

OBSERVABLE DATA:

$$R_0(\Delta_n) = \prod_{k=0}^{n-1} W(\Delta_k) \frac{1}{b} \sum_{i=0}^{b-1} W_i(\Delta_n) R_{n+1}(\Delta_{n+1})$$
KEY MATH TOOL: knowledge of $E(W^h)$ for all h close to 0 determines the distribution of W

Get at this by looking at:

$$M_n(h) = \sum_{\Delta_n} R_0^h(\Delta_n)$$ empirical moments

Log transform easier to work with: $$\hat{\chi}_n(h) = \frac{\log_b M_n(h)}{n}$$

Gives estimates of the STRUCTURE FUNCTION:

$$\chi(h) = \log_b(EW^h) - (h - 1)$$
Kolmogorov: the W’s in turbulence are log-normal
CORRESPONDS TO A QUADRATIC χ
STRUCTURE FUNCTION
Does observed data follow this pattern?

data from Anselmet et al, 1984
She and Levesque give an alternate hypothesis in 1994; results in log-Poisson W's (and a different structure function)
Mathematicians weigh in: \(\hat{\chi}_n(h) \) DOESN’T ESTIMATE \(\chi(h) \) FOR ALL \(h \)!
So, are the \(W \)'s log-normal or not?

Problem: available data is all in the form of the average empirical moments \(M_n(h) \)'s

Need estimates of the variability of the \(M_n(h) \)'s

Mathematicians have the necessary central limit theorem ready and waiting!
Model produces a random measure for region ... who is interested and why?

Mathematicians: What are the distributional and geometric properties of model?

Physicists: modeling energy dissipation in turbulence: What is the distribution of the random splitting mechanism?

Hydrologists: can this model be used to simulate realistic precipitation fields?

Electrical engineers: Does a model of this nature reflect internet usage patterns?

Mathematical statisticians: What estimation and testing procedures can be applied to data to help inform the questions above?
Precipitation question simulating rainfall data.
First step: time-warp

Observed and normalized Corvallis daily rainfall, 1995-99.
Typical diagnostic: \(\hat{\chi} \) versus log of \(\Delta_n \) area
In another setting:
Another diagnostic: look at ratios $R_0(\Delta_{n+1})/R_0(\Delta_n)$

Partition coefficients for temporal rainfall intensity
15 minutes (upper left) to 64 hours (lower right)
Alternate model

Distribution of random weights depends on scale

\[R_n(\Delta_n) = \frac{1}{b} \sum_{i=0}^{b-1} W_{n,i}(\Delta_n) R_{n+1}(\Delta_{n+1}) \]

Note: this is a harder estimation problem.

Question (for the geophysicists): Is there an underlying physical argument that can justify this?
Idea: spatial random cascade moving over landscape
A simulation:
Model

⇓

Data Analysis

⇓

Re-examine model ⇒

⇔ New Model

⇑

Inform understanding of underlying phenomena

⇑

Re-examine data