A Brief Introduction to Hilbert Spaces

A Hilbert space H is a vector space with field F and inner product $\langle \cdot, \cdot \rangle : H \to F$ that is complete with respect to the norm induced by the inner product, $||x|| = \sqrt{\langle x, x \rangle}$.

The inner product satisfies the Cauchy-Schwarz inequality:

$$|\langle x, y \rangle| \le ||x|| \, ||y||.$$

A subspace $M \subset H$ is a subset of H that is itself a vector space. $E \subset H$ is convex if it is closed under the formation of convex combinations. Subspaces are convex; subspaces shifted by a fixed element of H are also convex.

Proposition: If $E \subset H$ is convex, closed, and non-empty, then E contains a unique element x_E with

$$||x_E|| = \inf_{x \in E} ||x||.$$

If $\langle x, y \rangle = 0$, we say x is **orthogonal** to y and write $x \perp y$. For $x \in H$ we define the set

$$x^{\perp} = \{ y \in H : y \perp x \}$$

and for a set $M \subset H$,

$$M^{\perp} = \cap_{x \in M} x^{\perp}.$$

Note: If M is a closed subspace, then any $x \in H$ can be decomposed uniquely

$$x = P_M x + P_{M^{\perp}} x$$

where $P_M x \in M$ and $P_{M^{\perp}} x \in M^{\perp}$. $P_M x$ is often referred to as the projection of x into the subspace M.

The (other) Riesz Representation Theorem: If $L: H \to F$ is a bounded linear functional, then there is a unique $y = y_L \in H$ with

$$Lx = \langle x, y \rangle$$
 for all $x \in H$.

Proof: Since H is a Banach space and L is a bounded linear functional, L is continuous. If $L^{-1}(\{0\}) = H$, we can take y = 0. Otherwise, let $M = L^{-1}(\{0\})$. It is easy to see that M is a closed and proper subspace of H. Take an arbitrary nonzero $z \in M^{\perp}$ and let

$$y = \frac{\overline{Lz}}{||z||^2} \ z.$$

Notice that $y \in M^{\perp}$ with

$$Ly = \frac{\overline{Lz}}{||z||^2} Lz = \frac{|Lz|^2}{||z||^2} = ||y||^2 = \langle y, y \rangle.$$

Now take an arbitrary $x \in H$ and let

$$w = w(x) = x - \frac{Lx}{||y||^2}y$$

and notice that

$$Lw = Lx - \frac{Lx}{||y||^2} Ly = Lx - Lx = 0$$

That is, $w \in M$ so $w \perp y$ and

$$< x, y > = < x - w, y > = < \frac{Lx}{||y||^2} \ y, y > = Lx.$$

A collection $\{u_{\alpha} : \alpha \in A\}$ is **orthonormal** if $u_{\alpha} \perp u_{\beta}$ for $\alpha \neq \beta$ and $||u_{\alpha}|| = 1$ for all $\alpha \in A$. If H is contained in the linear span of $\{u_{\alpha} : \alpha \in A\}$, then we say it is an **orthonormal basis** for H. (Every Hilbert space has an orthonormal basis.)

Bessel's inequality tells us that for any orthonormal $\{u_{\alpha} : \alpha \in A\}$

$$\sum_{\alpha \in A} |\langle x, u_{\alpha} \rangle|^2 \le ||x||^2.$$

Parseval's identity tells us that, if $\{u_{\alpha} : \alpha \in A\}$ is an orthonormal basis for H, then

$$\Sigma_{\alpha \in A} | \langle x, u_{\alpha} \rangle |^2 = ||x||^2.$$

Three problems adapted from Bass.

H.1 (Bass 19.2) Let H be a Hilbert space and $\{x_n\} \subset H$ be a sequence satisfying $||x_n|| \to ||x||$ and $\langle x_n, y \rangle \to \langle x, y \rangle$ for all $y \in H$ as $n \to \infty$. Show that $x_n \to x$ as $n \to \infty$.

H.2 (Bass 19.6) Let H be a Hilbert space with a countably infinite orthonormal basis $\{u_k : k \ge 1\}$. Show that the closed unit ball in H is not compact.

H.3 (Bass 19.13) Let H be a Hilbert space with a countably infinite orthonormal basis $\{u_k : k \ge 1\}$ and let $\{v_k : k \ge 1\}$ be an orthonormal subset of H with

$$\sum_{k\geq 1}||u_k-v_k||^2<1.$$

Show that $\{v_k : k \geq 1\}$ must also be an orthonormal basis for H.