
MTH 655, Winter 2013, LAB7
The goal of this assignment is to implement an iterative solver in parallel.
Get experience using 1 during the lab, and later work on (and turn in) one of 2 or 3 (or both for

extra credit).

1. Please follow the class demonstration how to run the mypi.f example on the cluster.
Then mimick the steps and run the myjacobi.f example.

• Compile the code

• Create a new submit script by modifying mypi submit, and give the job a new name, e.g.,
yourname myjacobi, so it can be easily seen in the queue. Same thing as concerns the log file.

• Submit the job to the queue, and watch when it runs.
You can use
qstat | grep yourusername

to see how it runs

• Play with different numbers of processors, different sizes of the problem, and watch the time it
takes to complete.

2. Implement Richardson’s iteration for solving Ax = b for the same matrix A as coded in
myjacobi.f (You can replace the entire Jacobi update by this iteration).

The iteration is very simple

xk+1 = xk + αrk = xk + α(b−Axk) (1)

You should use an optimal α which for the spd matrix A equals 2
λmin(A)+λmax(A) . (We covered these

eigenvalues in class so you should be able to find out what they are, or experiment in MATLAB).
Run the code in parallel using an odd number of processors, report the number of iterations, the timings,
and the middle value of the solution for the middle processor.

For timings, you can use the MPI function

double precision mytime1, mytime2

mytime1 = MPI Wtime()

iterations ....

mytime2 = MPI Wtime()

if (p.eq.1) write(*,*) ’Proc.’,p,’used ’,mytime2-mytime1,’ wall time’

Do you see the speedup ? Experiment with different n, p. When changing n, watch out for conver-
gence of iteration !

3. Instead of Richardson’s iteration as in Pbm 2, you can implement a block-Jacobi iteration.
To do this, consider the following when there are only p = 2 processors. Solving

Au = f (2)

when n = mp is equivalent to the following block system[
A11 A12

A21 A22

] [
u1
u2

]
=

[
b1
b2

]
(3)
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where each of the matrices A11, . . . is of size m×m.
Note that the “off-diagonal” matrices A12, A21 are very sparse.
Thus, it makes sense to write the above system as

[
A11

A22

] [
u1
u2

]
=

[
b1 −A12u2
b2 −A21u1

]
(4)

Since the matrices A12, A21 are very simple, it is very easy to get the right hand sides for

A11u
k
1 = b1 −A12u

k−1
2 (5)

A22u
k
2 = b2 −A12u

k−1
1 (6)

and iterate until convergence. (Do you see now why this is called “block Jacobi” ?).
You see that you could simply solve each of the “sub-systems” (5), (6) using a direct solver such as

DGESV (or a more appropriate function you found in LAB3). Or, some solver from Krylov subspace
family from LAB5. Or, some other solvers from other labs . . .
Note: to take advantage of any of the solvers in LAPACK family, you will have to compile the code

similarly as you did in LAB3, except now you must use mpif77 instead of f77 for compilation.
Test your parallel performance as in Pbm 2. Of course, use more than just p = 2 processors.
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