MTH 654/659 Fall 2011. Assignment 3 (lab 2)

Instructions: Please follow the instructions below and try to get through as much as possible during the lab. Ask me questions if you get stuck or need help.

Please write a (concise) lab report on your solution to Problem 1, 2b-c. You can start working on 3 for the purposes of your next regular assignment. [The assignments are designed in MATLAB but if you prefer a different language/environment, go ahead.]

Problems

1. Get familiar with Gaussian integration over triangles using the provided functions tri_quadcofs and myint2d. In particular, choose the appropriate quadrature order for the function you are integrating (see myfun in myint2d). Apply it to the integrals $\iint_{T} f(x, y) d A$ for each of $f_{1}(x, y)=1, f_{2}(x, y)=x .^{2}+y .^{2}, f_{3}(x, y)=x .^{6}, f_{4}(x, y)=$ $\sin (\pi x) y$ and to compute $\|f\|_{H^{m}(T)}$ for $m=0,1$ (check !). [Use only the appropriate order (which order do you need for optimal accuracy in each example ?) to decrease the time of computations].
2. Recall the interpolation estimates for $\left|v-I_{h} v\right|_{H^{m}(\Omega)} \leq C h^{t-m}|v|_{H^{t}(\Omega)}$ where $0 \leq m \leq t$ proved in class. Recall that the constant depends on the mesh quality i.e. the ratio $\frac{r_{2}}{\rho_{2}}$ as shown in class. First, a) verify that the function is doing what it should on a simple two-triangle grid. Next, verify the order of convergence and dependence on mesh quality experimentally with $V_{h}=M_{0}^{1}\left(\mathcal{T}_{h}\right)$ and with b) a uniform mesh \mathcal{T}_{h}, c) a distorted mesh \mathcal{T}_{h}. You can use the provided function interp2d.
To call interp $2(x, y, t)$, you need a mesh, e.g., created as follows (x, y are vectors of coordinates and t the vertices for each triangle). Some examples:
$\% \% \%$ Example as in class: two triangles
$\mathrm{x}=\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$;
$\mathrm{y}=\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]$;
$\mathrm{t}=[123 ; 423]$;
interp2($\mathrm{x}, \mathrm{y}, \mathrm{t}$)
Or, you can use
\%\%\% Uniform grid
nx = 10; ny = 10;
xx = linspace(0,1,nx+1);
yy = linspace(0,1,ny+1);
[x,y] = meshgrid(xx,yy);
$\mathrm{t}=$ delaunay (x, y);
interp2($\mathrm{x}, \mathrm{y}, \mathrm{t}$)
To solve b), you need to use a sequence of meshes i.e. varying $n x, n y$. To solve, c) you should use a distorted mesh (create one yourself $x x=g(x x)$ or ask for suggestions: any nonlinear function g from $(0,10)$ into itself will do. The higher the derivative of g^{\prime}, the better).
3. Start preparing the grid for the domain $\Omega:=$ "YourPersonalLetter" (get it from me at the beginning of class). Note: you will likely not be able to use Delaunay triangulations unless Your Personal Letter is convex.
