Instructions: Please solve 2 problems or more for extra credit. Preferred selection: solve at least one of problems 1-3 and at least one of 4-5.

Show all the relevant work. Group work is allowed on $4-5$ but you have to write/type all your solutions yourself. The same concerns any (new pieces of) code you implemented.

In write-up, you are welcome to use LaTeX; see class website for the file(s).
In computational assignments, you are welcome to use the code fem1d.m posted at http://www.math. oregonstate.edu/~mpesz/code/cmatlab/mth655/fem1d.m When reporting on your computational experiments, provide a concise summary of what you have observed/determined. [Do not just staple a bunch of graphs and papers together]. Convergence of a method is best shown by plotting the error in function of h using a log-log plot, or by computing the order of convergence, as dicussed in class.

Problems

1. Consider $f(x)=\max \left(x^{2}, \sqrt{x}\right)$ and compute its weak derivative for $x>0$. To which of the spaces $C^{k}(\Omega), H^{m}(\Omega), W^{m, p}(\Omega)$ does f belong on $\Omega=\left(\frac{1}{4}, 2\right)$?
2. Work out details of the example $f(x, y)=\log \log \frac{2}{r}$ (eq.1.8/p31 in text).
3. To which spaces $C^{k}, L^{p}, H^{m}, W^{m, p}$ does $g(r)=|r|^{\beta}$ belong on unit disk: $\{|r|<$ $1\} \subset \mathbb{R}^{d}$ in $d=1, d=2$? Consider in particular $\beta=1,2,-1,1 / 2,-1 / 2$.
4. Implement FE to solve the problem $-u^{\prime \prime}=f(x), u(0)=u(1)=0$ where f is chosen so that $u(x)=x(1-x) \sin (x)$.
Compute the approximate solution and error for different values of h in H^{1} and L^{2} norms (use numerical integration). Compare with the discrete norm

$$
\max _{i}\left|u\left(x_{i}\right)-u_{h}\left(x_{i}\right)\right| .
$$

What you see is the phenomenon of superconvergence.
5. Consider the problem $-a u^{\prime \prime}+c u=f$ with homogeneous Dirichlet boundary conditions, where $a>0, c \geq 0$. Implement FE solution for this problem using linear elements. Use $a=\epsilon, c=1, f \equiv 1$ with $\epsilon=1,1 e^{-1}, 1 e^{-2}$ etc.. Derive the analytical solution and test for convergence in H^{1}, L^{2}. What h do you have to use for small ϵ to get a decent behaving numerical solution ?
What you see is an example of a singularly perturbed problem.

