Please show all your work. Use proper mathematical notation. Turn in 2), 3) for credit. 5) can be used for extra credit. Use 1), 4) as an exercise.

- 1. Verify whether the following functionals on $C^{1}([0, 1])$ is linear i) $J(y) = \int_0^1 yy' dx,$ ii) $J(y) = \int_0^1 \int_0^1 K(x,t)y(x)y(t)dxdt,$ iii) $J(y) = \int_0^1 ysin(x)dx,$ $J(y) = \int_0^1 ysin(x)dx,$

 - iv) J(y) = y'(1/2) + y(0). v) J(y) = f(y(0)), where f is a given function.
- 2. Find, if possible, the solution to

a)
$$\inf_{u \in V} \int_{0}^{1} x^{2} (u'(x))^{2} dx. V = \{ v \in C^{1}(0,1) : v(0) = 0, v(1) = 1 \}$$

b)
$$\inf_{u \in V} \int_{1}^{2} x^{2} (u'(x))^{2} dx. V = \{ v \in C^{1}(1,2) : v(1) = 0, v(2) = 1 \}$$

Interpret your findings properly.

- 3. Solve Laplace equation on a region between two circles of radii r_A , r_B , with $r_A < r_B$. Use boundary conditions $u|_{r=r_A} = A$, $u|_{r=r_B} = B$, where $A, B \in \mathbb{R}$.
- 4. Provide details of finding the fundamental solution to Laplace equation in \mathbb{R}^3 .
- 5. Solve Laplace equation on a circle and rectangle using the method of separation of variables.

On the rectangle $(0,1)^2$, use homogeneous boundary conditions everywhere except $u(x, 0) = sin(\pi x), x \in [0, 1].$

On the circle (radius a = 1) use boundary conditions $u(r, \theta)|_{r=a} =$ $1 - |\theta| / \pi$.

Note: this solution can be looked up in many sources so if you want to turn it in for credit, please supply some value-added information such as plots of the first few terms of the Fourier series, discussion of convergence etc..