MTH 480/Peszynska. Snow day credit
 (5 points to be added to Midterm score). Due Friday February 14 NAME:
 Please show all relevant work to get full credit.

Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)$. It can be shown that A is similar to $\Lambda=\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right)$.
(1) What is the solution to $Y^{\prime}=\Lambda Y, Y(0)=(0,0)^{T}$? ?
(2) What is the solution to $X^{\prime}=A X, X(0)=(0,0)^{T}$? ?
(3) What are the eigenvalues of Λ ? (you should be able to read them off Λ)
(4) What are the eigenvalues of A ? (no surprises here since Λ is similar to A)
(5) What are the eigenvectors w of Λ ? (since Λ is in canonical form, these are fairly simple.)

Write $w=$
Write them as $w=$ Rew $+i I m w=$
(6) What are the eigenvectors v of A ? (some work is needed this time).

Write them here $v=$
Write them as $v=\operatorname{Rev}+i \operatorname{Im} v=$
(7) Consider $Y^{\prime}=\Lambda Y$ and, starting with the general complex valued solution, describe in detail how to derive the general real valued solutions to $Y^{\prime}=\Lambda Y$. (Use w and eigenvalues of Λ here, Euler formula etc.)
(8) Find the transformation T which gives $A=T \Lambda T^{-1}$. (Use v)
(9) Write the general real valued solution to $X^{\prime}=A X$.
(10) Now apply all the above to finf the solution to $X^{\prime}=A X, X(0)=(0,1)^{T}$. (On opposite side).

