#15. Def: \(c = \max S \) iff \(c \in S \) and \(c \) is an upper bound for \(S \).

Lemma: \(S \) has a maximum iff it is bounded above and \(\text{sup} S \in S \).

Proof: \(\Rightarrow \) Let \(S \) have a maximum \(c \). Then from def. \(c \) is an upper bound \(\Rightarrow \) \(S \) is bounded from above.
To show \(\text{sup} S \in S \) we show \(c = \text{sup} S \). We must have \(x \leq c, \forall x \in S \), hence \(\text{sup} S \leq c \) (\(\text{sup} S \) is the l.u.b.).
Since \(c \in S \), we have \(c \leq \text{sup} S \) (\(\text{sup} S \) is an upper bound).
From \(\text{sup} S \leq c \) and \(c \leq \text{sup} S \) we conclude \(c = \text{sup} S \).

\(\Leftarrow \) Let \(S \) be bounded from above, and \(\text{sup} S \in S \).
Set \(c = \text{sup} S \in S \). This \(c \) satisfies the def above hence \(c = \max S \), and \(S \) has a maximum.

q.e.d.