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Abstract

We discuss computational engineering and science (CES) methodologies and tools applicable to a variety of subsurface models

and their couplings. First we overview both basic and widely recognized multiphase and multicomponent models. In the CES

methodologies area we focus on accurate and robust numerical algorithms and linear and nonlinear solvers with parallel scalability.

In the CES tools area, we discuss a few representative programming tools and technologies. We present several simulation examples

which reflect the experiences of the research group at the Center for Subsurface Modeling at The University of Texas at Austin.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The emergence of terascale computing capabilities

and web technologies has given promise to significant

advances in computational engineering and science. In

theory, such capabilities and technologies should make
possible simulations of physical phenomena of unprec-

edented sophistication and detail, depicting events that

occur in many different spatial and temporal scales, that

involve diverse physics and which involve interrogative

and interactive collaborations among researchers at

distinct and distant locations. It is expected that the 21st

Century will bring the integration of system software,

programming tools, and the seamless coupling of and
communication between state-of-the-art simulation

tools for use in a wide range of porous media applica-

tions. These include data structures and scalable soft-

ware tools for adaptive modeling and meshing of

coupled simulations, all complying with modern stan-

dards for verification of code and models. The purpose

of this paper is to identify and briefly review a few of the

currently promising computational engineering and
science (CES) methodologies and information technol-

ogy (IT) tools applicable to a variety of subsurface

models and their couplings. Our selection of certain

methodologies and tools reflects our own research ex-

periences at the Center for Subsurface Modeling (CSM)

at The University of Texas at Austin. We realize that

most likely, we have neglected important results from

other research groups; however, a broader perspective

requires a monograph.

We start in Section 2 by recalling a few basic and

widely recognized multiphase and multicomponent
models of flow and transport in the subsurface. These

form the basis for our subsequent discussion of selected

numerical methods and IT tools. In addition, we discuss

some new and important nonlinear extensions of these

models, including couplings of models commonly called

multiphysics couplings. There are two major types of

such couplings. The first type is concerned with multiple

phenomena occuring simultaneously in one domain; for
example, flow and geomechanics must be coupled when

modeling subsidence occuring from pumping water

or hydrocarbons from a reservoir. The second type is

concerned with phenomena occuring in separate con-

tinua which are interacting with each other through an

interface; such splitting is defined in order to increase the

speed of computations. Finally, we discuss additional

modeling elements which form a multiphysics computa-
tional framework for general subsurface applications.

The numerical discretization of these models and the

multiphysics couplings gives rise to major algorithmic

challenges. These challenges include the issues of stability

and accuracy of spatial and temporal discretizations. We

are concerned with the robustness, efficiency and scala-

bility, of the implementation of individual models and

their couplings. In Section 3 we present results of our
research on relevant algorithms. In particular, we focus
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on two of the advanced discretization methods: (i) the

expanded mixed methods applicable to multiblock non-

matching grids and the couplings of multiphase flow

models, and (ii) the application of the Discontinuous

Galerkin method for reactive transport. Furthermore,
we discuss (iii) time-stepping issues and (iv) relevant

findings in linear and nonlinear solvers; these issues are

critical to the success of any simulation and, in particu-

lar, to those involving multiple models. Finally, we mo-

tivate and address the aspects of parallel implementation

of the underlying algorithms.

Consider now a scientist or an engineer who, on an

everyday basis, deals with the simulation of complex
subsurface phenomena occuring at multiple scales with

data coming from real-life applications. From their

perspective, the models and discretizations, albeit fun-

damental to simulation, may be taken for granted, and

their selection takes but a fraction of the total simula-

tion time. The majority of their time is spent on general

pre- and post-processing of simulation input and output

data. Traditional tasks include mesh generation, incor-
poration of data from reservoir characterization, data

management and manipulation, data exploration, visu-

alization and interpretation. We devote Section 4 to

modern dynamic IT tools which are beginning to re-

place, or to complement, traditional ‘‘manual’’ tasks.

Specifically, we briefly discuss an example in which a few

IT tools and technologies have been coupled to our

simulator for application specification, program com-
position and optimization, adaptive runtime application

management, collaborative and interactive application

monitoring and steering, and active data management.

This choice is, again, very particular, as it reflects our

own research experience.

Our presentation of the ideas presented in this paper

is accompanied by illustrations which demonstrate the

capabilities of simulation tools developed at CSM.
These illustrations are included in an attempt to moti-

vate the presentation. Unfortunately, detailed discussion

of these simulation results is outside the scope of this

paper.

Last, but not least, we would like to mention several

active research directions which are not, for lack of

space, covered in this paper. These include in particular

a range of multiscale algorithms. Here we refer the
reader to research on mortar spaces [126] and other

techniques of upscaling for example those in [15,74]. In

the area of IT tools, we neglect several important areas;

mesh generation and refinement tools, parallel perfor-

mance analyses, verification and validation tools.

2. Modeling elements of a computational framework

Physical models are fundamental to any simulation.

In the past, popular groundwater simulators like

MODFLOW, FEMWATER or MT3D were built with

one specific model in mind. In addition, it was com-

monly believed that most of the subsurface phenomena

of interest occur in fully saturated formations below the

water table. Discoveries of hazardous and radioactive
chemicals transported through unsaturated zones [6],

as well as high-profile disasters involving dams, earth-

quakes, and land subsidence due to groundwater pump-

ing [129,188], have changed many such assumptions and

have posed challenges to researchers designing and

building subsurface simulators. It is now postulated [6]

that such simulators should take into account a plethora

of geological, geomechanical, hydrological, thermal,
chemical and biological processes. In the meantime,

similar challenges have affected simulators in the pe-

troleum and gas industries. In particular, the use of

sophisticated geomechanics models coupled to flow as

opposed to the use of constant compressibility coeffi-

cients, is now considered to be a correct way to account

for subsidence, cavity generation and other phenomena

[59,114,116,151]. In general, since modeling of coupled
phenomena is poorly understood, the simulators must

allow for easy inclusion of new processes as well as the

incorporation and assimilation of new data.

These are the motivations for the construction of a

multiphysics computational framework which is intended

for general purpose subsurface applications, including

both environmental and resource recovery. With the

emergence of new computational methodologies and
with dramatic increases in computational power, such

general purpose simulators with multiphase multicom-

ponent physical models motivated by diverse applica-

tions are becoming popular in industry, government and

academic research centers. These include: oil industry

simulators Eclipse [148,149], Powers [66], VIP [92], and

ACRES [2], as well as environmental simulators like

TOUGH2 [130] STOMP [101,181] and UTCHEM [10]
and many others not listed here. However, in spite of the

progress in modeling and in computational techniques,

frequently, still, only simple and, at times outdated,

models are used to simulate a wide range of phenome-

nona (see discussion in [7]). In practice, users comfort-

able with the terminology, units system, and input/

output tools of an established simulation tool are likely

to remain loyal to that tool in spite of its limited com-
putational capabilities.

To overcome some of these constraints and leverage

resources, several groups have created general purpose

computational frameworks, or PSE (Problem Solving

Environments), which were developed with a broad

scope of applications in mind. Models and applications

are built on top of a set of common building blocks

which handle memory management as well as I/O and
visualization, provide parallel communication tools and

a suite of solvers etc. Examples include general-purpose

simulators like Sierra [5] or UG [26]. In our group we
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have developed the IPARS framework (Integrated Par-

allel Accurate Reservoir Simulator) [119,166,177] which

is equipped with general multiphysics multiblock capa-

bilities and was designed for subsurface applications

[104,125,126].
The fundamental modeling elements of such a com-

putational framework are described below. First, we

recall a few models of flow and transport in the sub-

surface which provide a background for the advanced

discretization methods discussed in Section 3. Second,

we motivate and discuss the concept of model couplings

which we refer to as multiphysics and which can be split

into two categories: (A) couplings of models defined in
separate domains which interact across a common in-

terface and (B) couplings of models defined in the same

or, in general, in overlapping domains. Finally, we dis-

cuss other elements of a general purpose computational

framework for subsurface applications in which multiple

physical models can coexist and be coupled in various

ways. Our exposition is illustrated by simulation exam-

ples which were obtained with our framework IPARS
[119,166,177].

2.1. Models

Consider a porous medium of porosity / with general
anisotropic nonhomogeneous (intrinsic) permeability

tensor K. Other measurable quantities like hydraulic

conductivity can be used instead of K, and porosity can
be combined with the moisture content variable. Here D
denotes depth and G is the gravity constant. For sim-

plicity we assume isothermal conditions. Multiple flow-

ing phases are denoted by the subscript m, each with

associated pressure Pm, density qm, saturation Sm, rela-

tive permeability km and viscosity lm, with mobility

km ¼ ðkm=lmÞ. Note that
P

m Sm ¼ 1. Dissolved and

flowing multiple components are denoted with subscript
M . Since a component can exist in more than one phase,
we define nmM as the mass fraction of component M in

phase m and the total concentration of a component as

NM ¼
P

m qmSmnmM . Also, since one phase can consist of

more than one component we have
P

M nmM ¼ 1. This is

a standard formulation which is discussed in [48,98,121]

(see also review [145]).

Assuming isothermal and local equilibrium condi-
tions, the conservation of mass is written for each

component as follows:

oð/NMÞ
ot

þr � VM ¼ qM þ
X
m

/SmRmM : ð1Þ

The source term qM represents injection/production

wells; the terms RmM denote chemical reactions. Flux VM

is the overall mass flux of component M ,

VM ¼
X
m

qm nmMUmð � /SmDmMrnmMÞ; ð2Þ

where Um is the velocity of phase m, and the remaining
term is diffusive/dispersive flux. The definition of Um

comes from momentum conservation which is given by

either Darcy�s law

Um ¼ �KkmðrPm � qmGrDÞ; ð3Þ

Forchheimer, Navier–Stokes, or yet another law, e.g.

[85].

The system is closed by adding capillary pressure re-
lationships Pcm1m2 ¼ Pm1 � Pm2 with Pcm1m2 determined

experimentally along with relative permeabilities km,
both typically fluid and rock-type specific functions of

saturation. Note that kmðSmÞ is typically a nondecreasing
function. Additionally, equations of state (constitutive

laws) specify the dependence of density qm and viscosity

lm on pressure Pm and composition nmM .

A standard approach for including complicated
equilibrium and nonequilibrium adsorption in the sys-

tem (1) and (2) is to make species in a stationary phase

assume a new identity M 0 different from one (denoted by

M) that they have in flowing phases. To this end one
needs to rewrite (1) for a stationary phase with / re-

placed by 1� /. Obviously, VM 0 ¼ 0 and qM 0 ¼ 0. With

this convention the adsorption, desorption, dissolution

and precipitation, or any other exchange between sta-
tionary and flowing phases, are modeled by reaction

terms [22].

A specific physical model arises from general Eqs. (1)

and (2) by adding assumptions, modifications, or sim-

plifications. Examples follow:

2.1.1. Two-phase flow model

For a simple two-phase (oil–water or air–water or

oil–gas) flow model we assume that reactive terms in (1),

as well as dispersive terms in (2), are zero. Further-

more, we assume immiscibility or, in other words, that

‘‘phase’’ is identified with ‘‘component’’ for both the

wetting fluid (w 	 W ) and the nonwetting fluid (n 	 N )
and therefore that nnN ¼ 1; nwW ¼ 1; nnW ¼ 0; nwN ¼ 0.

The mass conservation equation following (1) is

oð/NW Þ
ot

þr � ðqwUwÞ ¼ qW ; ð4Þ

oð/NN Þ
ot

þr � ðqnUnÞ ¼ qN : ð5Þ

Definition of phase velocities follows Eq. (3) or is

modified to account for high gas velocities. Application

specific parameters and terminology, e.g. hydraulic head

instead of pressure, suction instead of capillary pressure,
or moisture content instead of saturation times porosity,

can be defined and applied. Values of relative perme-

abilities and capillary pressure as well as the scale of a

problem are strongly dependent on a given application.

Still, the main difference between the two-phase models

discussed here comes from state equations for liquids
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(oil, water) and gases (air, hydrocarbon gas). For ex-

ample, the water phase is incompressible or slightly

compressible whereas air can be assumed to satisfy the

real gas law. Some models assume that the air phase is

under atmospheric pressure and derive Richards equa-
tion [135] which collapses the system (4) and (5) to one

nonlinear equation. In addition, the choice of units for

each NM may be critical in implementation: the gas

phase/component may be three orders of magnitude

lighter than liquid phases. As a result, the residuals

formed in the linear/nonlinear solution process may

differ by orders of magnitude. To make them com-

patible, one may simply divide equations (4) and (5) by
standard (reference) density values. Concentration

variables are modified as NM 7!NM ¼ ðNM=qm;refÞ. Re-
maining terms are changed as well, for example

qM 7!qM ¼ ðqM=qm;refÞ, and one may use the notion of
pressure (and in general, composition) dependent on

formation volume factors Bm ¼ ðqm;ref=qmÞ. As a result,
we obtain

o /NW

� �
ot

þr � 1

Bw
Uw

� �
¼ qW ; ð6Þ

oð/NN Þ
ot

þr � 1

Bn
Un

� �
¼ qN : ð7Þ

Applications of this two-phase model are multi-fold

as they apply to the unsaturated zone (air–water) or

waterflooding in high pressure oil reservoirs or to low

pressure gas reservoirs. See Fig. 1 for simulation results

in an oil–water reservoir and Fig. 4 for results of cou-
pling this model with reactive transport.

2.1.2. Three-phase model

A more complex example is the three-phase model

which accounts for the flow of three distinct phases:

water, liquid (mainly hydrocarbon components) and

gaseous (air or hydrocarbon). The easiest such model is

immiscible, and it is composed of the system (6) and (7),

where the nonwetting phase N is the liquid phase iden-

tified with the nonwetting component n, which is com-
plemented with the gas component equation

oð/NGÞ
ot

þr � 1

Bg
Ug

� �
¼ qG: ð8Þ

In this model, the gas component is identified with

the gas phase. Appropriate models for three-phase rel-

ative permeabilities and capillary pressures [60] which

exploit existing two-phase data complement the system
(see [86,100]).

In this paper we are interested in more general three-

phase flow models which are relevant to the following

two significant applications: (i) the water–NAPL–air

model [86,101,181] used for the simulation of oil spills

and associated remediation efforts, and (ii) the black-oil

(water–oil–gas) model popular in the petroleum industry

[31,48,98,110,121,162]. In these applications there can be
several components, including aqueous W , heavy hy-

drocarbon O, light hydrocarbon G or air A, which can
exist in multiple phases. For example, the water com-

ponent can exist in the liquid (water) phase as well as in

the vapor phase which is mixed with air and/or hydro-

carbons. In general, the components become fully or

partially miscible with others depending upon the pre-

vailing pressure and temperature conditions. This de-
pendence is quantified by thermodynamic equations of

state specific to the application [160]. In addition, vis-

cosities can be made composition dependent.

In some cases, some of the three phases may disap-

pear in some parts of the reservoir. For example, con-

sider the black-oil model (Fig. 2) and assume

that nwW ¼ 1, ngG ¼ 1, noW ¼ 0 [98,104,106]. This model

can be cast in the form similar to (6) and (7) with
N ¼ O; n ¼ o, which is complemented by the gas com-
ponent equation

Fig. 1. Pressure contours for the simulation of (two-phase) primary depletion from a reservoir. Reservoir (A) is in contact with an aquifer that is

represented by the Dirichlet condition (left) and (B) is situated over impermeable strata which are represented by the Neumann no-flow condition

(right). The same contour levels are used for both cases.
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oð/NGÞ
ot

þr � 1

Bg
Ug

�
þ Ro

1

Bo
Uo

�
¼ qG: ð9Þ

Here we use an auxiliary thermodynamic quantity Ro

to denote the ratio of dissolved gas amount to oil

amount. At pressures higher than the bubble pressure, the

gas is entirely miscible in the oil phase with Ro ¼ NG=NO

and Sg ¼ 0, from which it follows that kg ¼ 0 and

Ug ¼ 0 (two-phase conditions).

In some cases, the appearance and disappearance of

the phases can be predicted. In other words, it can be

localized in space and in time. In such cases it is ad-
vantageous to use a reduced model locally. This concept

of local reduction of a model is exploited in our multi-

physics couplings described in Section 2.2.

Fig. 2. Water pressure contours (top) and oil concentration contours (bottom) superimposed over isosurfaces of gas saturation in a black-oil res-

ervoir with 20 wells. Simulation uses black-oil model and 501,401 unknowns. Note the position of 10 injection wells (high pressure ¼ red) and of 10

production wells (low pressure ¼ blue). Visible are coning effects as well as influence of impermeable faults: one fault is located to the right of the well

in the lower left corner, another is between two wells closest to the right upper corner.
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2.1.3. Reactive transport in saturated zones

Here we consider a single phase multicomponent re-

active transport model, in which the dependence of the

density of the water phase on pressure and composition

is ignored, i.e. qw ¼ qw;ref . Water can be treated as one of
the components, but since it is the only phase, the notion

of saturation Sw and of relative permeabilities kw is ob-
solete. Darcy�s law then is written using l ¼ lw, P ¼ Pw,

q ¼ qw, as

U ¼ �K 1
l
ðrP � qGrDÞ ð10Þ

Furthermore, if the rock formation is incompressible

(o/=ot ¼ 0) we obtain the following mass conservation

equation for water, with qW 7!qW ¼ ð1=qw;refÞqW ¼ q:

r �U ¼ �r � K 1
l
ðrP � qGrDÞ ¼ q: ð11Þ

Effects of adsorption, dispersion, as well as chemical
reaction, are modeled by the following equation written

for concentration of each species cM ¼ nwMqw (not in-

cluding the water component):

/
ocM
ot

þr � UcMð � /DMrcMÞ ¼ qM þ /RM : ð12Þ

In general, the diffusion–dispersion tensor DM ¼ DwM

is dependent upon the velocity U ¼ Uw, and it includes

molecular and Fickian diffusion as well as transverse

and longitudinal dispersion. Eq. (12) is a well-known

reactive transport model used to simulate the transport

and fate of chemicals, remediation and biodegradation

(see [145,183] and references therein).

2.2. Multiphysics

As explained above, it has been recognized that

simulation of flow and transport in the subsurface must

be accompanied by simulation of all the coupled phe-

nomena that influence, or are influenced by, the flow

and transport [6,188]. The strength of the coupling

between some phenomena can become apparent only

at some particular spatial and temporal scales or only in
some special application-dependent cases. In addition,

some of the most complicated phenomena may be very

localized. Therefore it is important to design a simulator

which allows for the selection of simpler local models

whenever appropriate, and, at the same time, would

enable couplings whenever necessary. These days, as an

alternative to large comprehensive models which ac-

count for all of the phenomena at once, one sees the
emergence of the multiphysics couplings which enable

the local-in-space or local-in-time couplings of individ-

ual models which sometimes can be considered ‘‘black

boxes’’. At times, these ‘‘black boxes’’ can arise as (parts

of) legacy code capable of simulating certain individual

isolated processes. They can be incorporated in the

multiphysics simulator without the need to invest major

resources in the development of a comprehensive model.

Such a general modular strategy allows for incremental

updates to the simulator whenever new measurements

and theory become available. Finally, the multiphysics
couplings can be used as a first step in deriving a com-

prehensive model to gather information on how to tune

its individual pieces.

Research on combining local-in-space and local-in-

time couplings is underway. However, in this paper, we

divide multiphysics couplings into two types. First, in

Section 2.2.1, we discuss the local-in-time couplings of

models which are defined in the same domain or in
general, in overlapping domains. Next, in Section 2.2.2

we discuss the local-in-space phenomena which practi-

cally means that the models can be defined in adja-

cent domains with physically meaningful conservation

properties specified across their interface. Discretization

in space and time as well as solvers are a challenge here

(see Sections 3.1.1 and 3.5 for discussion). Both types of

couplings can be realized in a loose (staggered-in-time)
fashion or more tightly, where a solution is obtained by

iterating between models. Time-stepping challenges

arising in these couplings are discussed in Section 3.3.

Parallel scaling and launching of different models on

different remote platforms poses challenges (see Section

3.4).

2.2.1. Couplings in the same domain

Various geoscience applications have relied upon

couplings of codes which operate in more or less the

same or overlapping computational domains. These in-

clude 3D or 4D seismic models coupled to flow models

which deliver information about permeability and
other basic reservoir data. On the other hand, history-

matching of reservoir simulation results relies on the

coupling of flow models with sophisticated optimization

packages [67,107,110]. Here we give two examples of

couplings in the same domain: (i) geomechanicsþ flow

and (ii) reactive transportþmultiphase flow. Both can

be thought of as a form of ‘‘operator-splitting’’ and as

such, are subject to many delicate time-stepping prob-
lems.

The two couplings are similar in that they both in-

volve a multiphase flow model. The major difference is

that in case (i) an iterative (tight) two-way coupling

between models is used whereas in case (ii) one-way

coupling is used (flow influences the transport but not

vice-versa).

Geomechanics + flow: It is well known that the state
of stress affects the flow in porous reservoirs and that the

fluid flow influences the mechanical behaviour of the

rock formation. The basic models for coupled flow and

geomechanics come from the classical theory of poro-

elasticity. The Biot model [33] of diffusion in elastic

media describes laminar flow of a single-phase, slightly
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compressible fluid through a purely elastic structure.

Such models were historically developed in soil science

and have been refined considerably for the increasingly

more demanding needs of engineering and geophysics.

The traditional use of a constant rock compressibility
can be seen as a very special case of the Biot model but it

has been shown to be inadequate for modeling the

subsidence, fracturing and collapse of the structure.

In particular, a major subsidence research effort by

the US Geological Survey [129] paralleled unprece-

dented growth in the use of ground water in North

America, especially in California, Texas, and Arizona.

Air–water systems coupled with geomechanics have
been shown to be extremely important in applications to

dam behavior during earthquakes, and the results are

generally relevant to water transport in the vadose zone

of soils [188]. In oil and gas reservoirs, the prediction of

reservoir subsidence and formation of cavities is a highly

nonlinear and difficult problem, and it requires plasticity

models.

Numerical models of coupled flow þ geomechanics
involve one-way or staggered-in-time computations; see

[62,102,113,115,116,150,151,172] (see also analysis in

[152–154]). See Fig. 3 for an example of results from

geomechanicsþ flow coupling which was run using an

IPARS black-oil flow model and a geomechanics model

in two-way coupling. In our approach, both models, the

multiphase flow and the geomechanics model, can be

seen as ‘‘black-boxes’’ which are accompanied by rou-
tines necessary to realize the two-way coupling.

Reactive transport + multiphase flow: In order to

model the transport and fate of chemicals in the vadose

zone, a reactive transport model has to be coupled to a

multiphase flow model. Developments of this kind were

discussed in excellent review papers [145,183]. Our

model is based on our prior work [18,22,120,128].

In many instances, the assumption of (constant)
equilibrium partitioning of components between multi-

ple phases is valid. In such cases, a phase-summed (or

other) model for reactive transport can be derived and

coupled to any multiphase flow model. A phase-summed

reactive transport model has a generic structure similar

to the one in (12). Therefore both models, the multi-

phase flow model, and the reactive transport model, can

be assumed to be ‘‘black-boxes’’. Obviously, additional

post-processing and driver routines have to be added.
An example of the results of such a coupling is shown in

Fig. 4.

It turns out that such a coupling of an existing and

complex multiphase flow model with a reactive trans-

port model is a convenient way to investigate and test

many modeling assumptions and numerical techniques.

One of its features is that it allows for separate time-

stepping. Moreover, it allows for the use of different
grids, approximations and solvers for flow and transport

(see discussion in Section 3.2.1).

Finally, the coupling allows the investigation of var-

ious types of feedback between reactive transport and

flow. In particular, porosity, or permeability of the

porous medium, may be affected by the transported re-

active components (weak feedback). Moreover, the vis-

cosity and density of the flowing phases may be
dependent upon the concentration of the fluid (strong

feedback).

2.2.2. Couplings across an interface

Couplings of models or codes across interfaces has

become a research topic in several disciplines, including

aerospace and engineering mechanics [34,79] and bio-

medical applications [30]. Such couplings are frequently

referred to as ‘‘heterogeneous domain decomposition’’

[131]. In geosciences, such couplings have been used in

regional climate models. Another important area is that

of couplings of hydrodynamics (shallow water) with
groundwater models of saturated or unsaturated zones

[64,112,175]. Another example arises in resource recov-

ery applications; namely, high-velocity pipe flow models

and near-wellbore models are coupled to reservoir sim-

ulation models [103,163].

The main motivation behind this type of coupling is

the expected reduction of overall computational cost of

the simulation by individually selecting the most

Fig. 3. Results of geomechanicsþ flow coupling in a reservoir with an injection well in the lower left corner and a production well in upper right

corner. Shown are displacement (left), gas saturation contours (middle), and pressure (right), in one of the middle layers of the reservoir after one

year of production. The maximum absolute displacement shown is 3% of the reservoir dimensions and may cause well or reservoir damage.
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appropriate code to be executed in a given subdomain.

In our reseach we have coupled different multiphase flow

models. Fig. 5 shows a simulation using the coupling of

a black-oil model, a two-phase model and of a single-

phase model. The reservoir is nonuniformly dipping

with layered permeability. Shown are grid and distri-
bution of fluids and pressure and concentration con-

tours initially, and after 2000 days of simulation. The

initial (equilibrium) distribution of fluids follows the

gravity direction: oil and gas prevail in upper parts of

the reservoir and disappear towards the bottom where

mostly water is present. Oil and gas in this reservoir are

produced from the top, and several water injection wells

are placed in the bottom part of the reservoir. The sin-
gle-phase model denoted by ‘‘1’’ is assigned to the bot-

tom part, the two-phase model denoted by ‘‘2’’ and the

black-oil model denoted by ‘‘3’’ are assigned to the

middle and the top part, respectively. The models are

coupled across interfaces which are located in the re-

gions where one or more phases are absent, or where

because of residual conditions it is legitimate to consider

a simpler model on one side and a more complex one
on the other. Furthermore, in the assumed production

conditions, the overall direction of the flow during the

simulation stays fixed so that these residual conditions

are not violated. If the flow direction changes, the model

assignments can be changed and solver parameters can

be adaptively modified.

The coupling conditions imposed on the interface

come from physical principles of conservation of mo-

mentum and mass. Note that the interfaces between the

subdomains are ‘‘artificial’’ and that they arise only as
a computational concept, therefore the matching of

quantities across an interface arises naturally. This

would not be the case if the interfaces were ‘‘real’’ and

arose between two distinctly different media. The

coupling conditions are realized, respectively, by the

matching of phase pressures (or some other variables)

and by the matching of component mass fluxes (see

formulation in Section 3.1.1). The system is tightly
coupled and is solved by iteration, with sophisti-

cated discretization methods, time-stepping strategies

[124,172] and solver techniques [186,187]. In addition,

several modeling issues are handled: these include the

matching of constitutive relationships and state equa-

tions on the interface, including proper initialization,

and the choice of primary unknowns [104,105,123,125,

171] (see also Section 3.5).
The solutions obtained with the multiphysics proce-

dure can be validated by comparison to results obtained

from solving the above problem on the same grid (with

or without domain decomposition) with one model only

Fig. 4. Transport in an unsaturated zone: 2D domain with high permeability zone around depth 125 ft (top left) subject to water table at depth 150 ft

raised to 100 ft on left-hand side. Pressure head and saturation contours after 1000 days are shown on the top center and the top right figure. A

conservative tracer plume is initially in the variable permeability zones at depths between 120 and 130 and at 206 y6 25. It is advected in three
different equilibrium partitioning scenarios. Bottom: tracer profiles and phase-summed velocity after 1000 days for tracer soluble in nonwetting phase

only (left), tracer soluble in wetting phase only (middle), and tracer evenly partitioned between nonwetting and wetting phase (right). Note that the

nonwetting phase travels left and up while the wetting phase travels left and down.
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(in this case with black-oil model ‘‘3’’ which includes all

of the other models). While pointwise values of primary

unknowns can be difficult to compare, well production

and injection rates are an excellent basis for validation,

see discussion in [126] and results in [104,125].

2.3. Multiphysics computational framework for subsur-

face applications

In this Section we discuss several modeling concepts
which are useful in the construction of general purpose

subsurface simulators designed for general applications.

First, as mentioned above, a general subsurface sim-

ulator should allow for modular inclusions of multi-

ple models as well as additional processes and features

which are important for either one of the intended ap-

plications. Important examples include such phenomena

as density-driven flows important for environmental
applications, non-Darcy flows important in high-ve-

locity regions in gas reservoirs, and hysteresis, which

should be accounted for both environmental and energy

applications.

As another example, relative permeability and cap-

illary pressure relationships are frequently assumed

to have a fixed functional form (van-Genuchten or

Brooks–Corey) whose parameters are determined by

least-squares fitting of experimental data. The exclusive

use of such functional relationships may limit the ap-

plicability of the simulator. For example, the entry-

pressure data, which is important in simulating flow

through rock formations of different types, cannot be
used with van-Genuchten curves. Moreover, the use of

such rational expressions verbatim with noninteger

powers is not computationally efficient. As an alterna-

tive, one may use piecewise splines which offer a desired

level of smoothness, and, at the same time, can be made

to fit data exactly, are not computationally expensive,

and can include, as special cases, any of the desired

functional forms [170].
Moreover, one of the primary differences between the

capabilities of simulators is in how they initialize vari-

ables and interact with source terms. Researchers in-

volved with the modeling of environmental problems

impose various boundary conditions to drive the flow in

the unsaturated zone. At the same time, they frequently

treat wells as point sources. This may lead to inaccurate

flow path predictions if the pressure drop in the wells,
rather than the volume or mass rate, is specified. On

Fig. 5. Multiphysics simulation of oil recovery in a dipping reservoir. Grid, domain decomposition and nonuniform dipping character of the field are

shown on top left. Initial oil concentration is shown on top right. Pressure and oil concentration contours shown bottom left and right. For technical

reasons, dip cannot be shown for pictures other than the first.
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the other hand, in petroleum reservoirs and other en-

ergy applications, boundaries are usually ill-defined

and no-flow boundary conditions are used while the

source terms are typically associated with wells. We

believe that simultaneous inclusion of well models, as
well as of boundary conditions, is desired. This fa-

cilitates validation with analytical or analytical/ex-

perimental results and numerical studies as well as

simulation of cases from both energy and environment

applications.

2.3.1. Initialization

Most problems derived from the general Eqs. (1) and

(2) are transient. Therefore, it is necessary to define the

initial condition of a reservoir, A specific numerical
model needs to initialize its primary unknowns as well

as its auxiliary variables. In general, there are two ap-

proaches to initialization: the first one assumes that the

reservoir is in hydrostatic equilibrium under given pres-

sure and fluid content conditions from which the values

of primary unknowns are computed; the second allows

for ad-hoc values of the primary unknowns. While the

latter is easier to implement and it makes comparison
and validation studies of different models and simulators

easier, it assigns the responsibility of defining a physically

meaningful problem to the user. On the other hand,

implementation of hydrostatic equilibrium may be te-

dious. Its advantage is that it initiates a model in a

manner consistent with the physics, and therefore the

problem is consequently easier to solve. For example, in

a realistic model with a gravity component, it is unlikely
that the initial pressure of the reservoir is higher at the

top than it is at the bottom. Such specification will make

the pressure solution work unnecessarily hard in order to

find the correct physical solution.

In general, it is useful to have both options––eqilibi-

rium and nonequilibrium––available to the user of the

simulator. In all examples shown in this section we as-

sume hydrostatic equilibrium at the beginning of the
simulation.

2.3.2. Boundary conditions

For incompressible single-phase flow problems as in

Eq. (11), the most commonly used boundary conditions

are of Dirichlet or Neumann types. These generally

(in smooth domains) lead to well-posed problems if

(smooth enough) Dirichlet pressure data is specified on

at least one part of the boundary, or if the net flux is

zero and pressure at a point (or its average) is given.
For general compressible multiple flowing phases

(e.g. the two-phase flow problem described by the Eqs.

(4) and (5)), the well-posedness has only been estab-

lished for a few special cases, [13,16,41] and there is no

theory for the black-oil model (4), (5) and (9). There-

fore, the question of appropriateness of given boundary

conditions is answered on a case-by-case basis. The dif-

ficulties arise from the hyperbolic nature of the problem

and from the nonlinearities involved. For example,

specification of two of the phase pressures as boundary

conditions may be incorrect if, for example, their dif-
ference falls outside the capillary pressure range. On the

other hand, the parabolic terms in the multiphase

problems, which arise from compressibility components,

may help to smooth the solutions locally. For example,

in a reservoir which is not initially at hydrostatic equi-

librium and which is governed by two-phase flow model,

the no-flow boundary conditions may lead to physically

meaningful solutions.
A separate issue arises in convection-dominated

problems where incorrect specification of boundary con-

ditions can induce artificial boundary layers. Specifica-

tion of boundary conditions is especially tricky for

nonlinear convection problems as it is generally difficult

to predict the position of the saturation or concentration

front or the location of the free boundary or the seepage

boundary.
These difficulties are amplified by the fact that

boundary conditions of interest to an applications group

may be fairly sophisticated and may lead to numeri-

cally difficult problems (see [32,127,165]). Therefore, the

question of what kind of conditions should be made

available to the users of a simulator need to be evaluated

for each model and each multiphysics coupling sepa-

rately. Again, the responsibility to ensure that these
conditions are physically meaningful may have to be left

to the user.

2.3.3. Wells

In order to accurately describe the predominantly ra-

dial character of the flow(s) in the vicinity of wells, well

models are required. These are frequently based on the
well-known Peaceman correction [122]. Such well models,

or well boundary conditions take into account the actual

geometrical parameters of a well––its radius, so called

‘‘skin’’ etc.––and they are directly applicable to single-

phase flow models and finite differences, or equivalently

mixed FEM discretizations. Extensions exist for different

discretizations and nonstandard flow models [63,78].

Multiphase flow well models based on Peaceman cor-
rection have been derived and tied to reservoir models to

account for different types of injection and production

wells which are either pressure- or rate- (volume or mass)

specified or which impose constraints on both pressure

and rate [3]. Also, there exist new models applicable to

horizontal or multilateral wells [40], and there is research

underway on smart and intelligent wells [163].

2.3.4. Simulation examples

In this Section we present simulation examples to il-

lustrate some of the modeling concepts discussed above.

All were obtained with IPARS [119,166,177].
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Multiphysics examples are shown in Figs. 3–5, dem-

onstrating the couplings of geomechanicsþ flow, reac-

tive transportþmultiphase flow, and of multiphase

models coupled across interface, respectively. An ex-

ample of the use of boundary conditions in a two-phase
flow model is in Fig. 4. Both boundary conditions and

wells are used in the example shown in Fig. 1 which

demonstrates primary recovery production in a two-

phase reservoir which is either connected to an aquifer

or isolated. An example of the use of wells in a black-oil

model is in Fig. 2.

3. Computational engineering and science methodologies

It is widely recognized that one cannot achieve sim-

ulation goals merely through increases in hardware

systems or advances in computers alone and that smart
methods and algorithms are a key ingredient. In this

section we will describe a collection of locally conser-

vative algorithms, namely, mixed finite element (MFE)

and discontinuous Galerkin (DG) methods, which have

been employed for treating flow and reactive transport

in porous media. Clearly there exist other well known

schemes such as higher order Godunov, Muscle, ENO,

control volume, collocation, and characteristic Galerkin
methods that have been applied to subsurface flow and

transport problems. In general, the latter schemes pos-

sess one or more major deficiencies. They either have not

been extendable to unstructured and/or nonconforming

grids, are at best second order convergent in regions

with smooth solutions, involve dual grids which are very

complicated in three dimensional simulations, or are not

locally conservative. On the other hand MFE and DG
methods can be defined such that they do not have any

of these deficiencies. The results presented in this paper

reflect that we have more experience with MFE than

with the DG methods.

Other topics addressed in this section include the use

of mortar spaces for coupling multiphysics multinum-

erics MFE applications, linear and nonlinear iterative

solvers for solving the discrete systems, and parallel
scalability of algorithms on terascale computers.

3.1. Mixed and hybrid finite element methods

Mixed and hybrid finite element (MFE) methods [36]

are based on a variational principle expressing an

equilibrium (saddle point) condition that can be satisfied
locally on each finite element. In particular for elliptic

problems, the MFE formulation involves solving for

both the scalar variable and the flux. Approximating

spaces for the MFE method can be chosen to satisfy

three important properities: local mass conservation,

continuous fluxes, and the same order of convergence,

and in some cases superconvergence, for both the scalar

variable and the flux [77,117].

The application of MFE methods to modeling un-

stable miscible displacement in porous media was first

introduced and analyzed in [69,70]. In [89] MFE and
conforming Galerkin methods were compared for

computing saturated groundwater flow in a heteroge-

neous porous media; results demonstrated that the

Galerkin method can yield nonphysical behavior, i.e.

streamlines end on the no-flow boundaries, whereas the

MFE scheme produced physically meaningful results.

Major reasons for this difference in behaviour of the two

methods can be attributed to the fact that unlike con-
forming Galerkin, the MFE method is locally con-

servative and fluxes are continuous. Namely, the

appropriate physics is satisfied for the MFE method

even on coarse grids. Similar results were observed in

[142] for the DG method, which is described below. The

DG method is also locally conservative and has aver-

aged fluxes which are continuous. Mixed methods have

been successfully applied to many applications including
mass conservation equations in multiphase flow

[124,125,127], Stokes flow [36] and electromagnetics [61].

The MFE procedure is also used as a projection

method for constructing mass conservative velocity

fields from one grid to another [44]. This is extremely

important in modeling of environmental surface and

subsurface flow problems. For example, flow and multi-

species transport are often solved separately using
completely different numerical methods and grids due to

differences in length and time scales of the phenomena

involved. For accurate transport, it is desirable for the

velocities to be locally conservative on the transport

grid.

There is a well established relationship between the

MFE on rectangular meshes and cell-centered finite

differences (CCFD) for diffusion problems [146,167];
namely, the two are equivalent ‘‘modulo the use of

appropriate numerical quadrature’’. This observation

provides a useful approach of applying well models

from CCFD formulations, which are used extensively in

the petroleum industry, to MFE formulations and as

well as using MFE formulations for tensor coefficients

and general boundary conditions to CCFD methods

[20].
For example, consider discretization of Eq. (10) with

the lowest order Raviart Thomas space RT0 [161] on a

rectangular grid in 3D whose elements are indexed by ijk
with cell dimensions denoted by dxi, dyj, dzk, re-
spectively. Phase pressures P ¼ Pm are approximated by

discontinuous piecewise constants in each cell. The

phase velocity U is approximated by the tensor product

of discontinuous piecewise constants and continuous
piecewise linears with the requirement that the cor-

responding fluxes be continuous––the x (y, z) compo-
nent is a continuous piecewise linear in x (y, z) and a
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discontinuous constant in both y and z (x and z, x and y).
For example, choose a test function viþ1=2;j;k satisfying
these requirements, which is continuous in x direction
over cells i; j; k and iþ 1; j; k, and discontinuous in

j; k direction. We multiply (10) rewritten as lK�1U ¼
�ðrP � qGrDÞ by viþ1=2;j;k and integrate by parts.

Spatial integrals are approximated using a trapezoidal

quadrature rule which results in a CCFD scheme for the

velocity component in the x direction on the edge be-
tween cells i; j; k and iþ 1; j; k:

ldyjdzkdxiþ1=2;jkK�1
iþ1=2;jkUiþ1=2;jk

¼ dyjdzkðPiþ1;jk � Pijk � Gqiþ1=2;jkðDiþ1;jk � DijkÞÞ;
ð13Þ

where dxiþ1=2;jk; qiþ1=2;jk are arithmetic averages and

Kiþ1=2;jk is a harmonic average of K between these cells as

in

Kiþ1=2;jk

dxiþ1=2;jk
¼ 2

dxi
Kijk

�
þ dxiþ1
Kiþ1;jk

��1

: ð14Þ

Of course, this formula assumes K is invertible and

therefore it cannot be applied directly to general sub-

surface problems and, in particular, to multiphase

problems. An extension of the mixed method referred to

as the expanded mixed method [104,106,119,125,172,177]

bypasses these difficulties by introducing extra ‘‘velocity-

like’’ unknowns which in practical calculations are

eliminated. Extensions, also to full tensor coefficients,
general geometry, and nonmatching multiblock grids are

treated in [17,19,20] respectively. The hybrid form is

quite similar to the so-called local discontinuous Galer-

kin method (LDG) [39,49]. In addition, a new coupling

approach to discretizing flow in porous media via mixed

finite element methods on nonmatching multiblock grids

has been formulated and analyzed [168,177]; this can be

viewed as an enhanced velocity interface coupling. The
velocity space along the interfaces is enhanced to give a

flux-continuous approximation. No additional matching

conditions need to be imposed. The computational

complexity of the resulting multiblock algebraic problem

is comparable to a single block case. This method yields

optimal convergence for pressures and interior velocities

but no superconvergence.

Consider now the three-phase model of flow given by
(6)–(8). Extensions to black-oil model or water–NAPL–

air models are immediate. The appropriate modification

of (13) is for m ¼ w; n; g

dxiþ1=2;jkUm;iþ1=2;jk ¼ Kiþ1=2;jkkmðPm;iþ1;jk � Pm;ijk

� Gqm;iþ1=2;jkðDiþ1;jk � DijkÞÞ; ð15Þ

where km is the mobility of phase m evaluated at

iþ 1=2; jk by upwinding, that is, from the values of

saturations at i; j; k or iþ 1; j; k depending on the gra-
dient of potential [169]. Here we adopt the convention

that, if K is zero on a cell i; j; k, then Um;iþ1=2;jk and

Um;i�1=2;jk are set to zero. This is a standard CCFD for-

mulation for multiphase flow which can be shown to be

equivalent to the expanded mixed formulation [127].

The complete set of discrete equations for the general
three-phase flow model (6)–(8). is obtained by multi-

plying each of them by a piecewise constant test function

and integrating. Also, discretization in time is applied.

Here we use the backward Euler method in time. The

discrete form reads

dxidyjdzkð/NMÞnþ1ijk þ dtnþ1
Z

Xijk

r � 1

Bm
Um

� �nþ1

¼ dtnþ1qnþ1
M ;ijk þ dxidyjdzkð/NMÞnijk ð16Þ

for m ¼ w; n; g as corresponds to Eqs. (6)–(8), respec-

tively. For black-oil equations, modification to include

Ro as in (9) is immediate.

This system, complemented by all the necessary

auxiliary relationships including capillary pressure and

volume balance
P

m Sm ¼ 1, is solved for a set of primary

unknowns. These can be chosen in many ways, for ex-

ample, for the black-oil model, we consider ðPw;NN ;
NGÞ. Such a choice of unknowns of one pressure and
two other unknowns, such as concentrations or satura-

tions, is a popular choice for mixed elliptic–parabolic–

hyperbolic problems in reservoir simulation. The cou-

pled system is linearized by Newton�s method. A

GMRES solver with multi-level preconditioner [53,96,

97], or an LSOR is then applied to solve the linear

system at every Newton step (see discussion on solvers
in Section 3.5).

In the next section, we describe a mortar mixed for-

mulation for three phase flow.

3.1.1. Multiblock mixed mortar method for three-phase

flow

Consider now a three-dimensional reservoir domain

X which has been divided into nbl nonoverlapping sun-

domains (blocks) Xk, k ¼ 1; . . . ; nbl. These blocks can be

chosen to approximate geological faults, geometry ir-

regularities, variations of rock properties, physical/
chemical properties of flow, and distribution and types

of wells, etc. A grid is constructed locally on each block

and can be nonmatching on the interfaces between

neighboring blocks. Fig. 6 illustrates a typical geometry

of a three dimensional domain decomposition. The in-

terfaces between blocks are filled with ‘‘mortars’’, ele-

ments of a finite element space called the mortar space,

which is constructed on the two dimensional interfaces.
While our formulation permits the treatment of general

rock properties and geometries, we will assume for

convenience that the reservoir has only one rock type

and that it consists of a union of rectangular blocks,

each having it own smooth rectangular tensor product

grid as shown in Fig. 6. In addition, for the sake of
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simplicity, we do not take into account the occurence of

hysteresis or other nonlocal in time effects.

Each subdomain Xk can have associated with it a

different physical or numerical model which could be

one of the models in Section 2.1 or some other model

which can be fully implicit, sequential or explicit in time.
In order to couple the subdomain problems, additional

equations are required for ensuring mass and momen-

tum conservation across the interfaces. This is done,

respectively, by imposing matching conditions both on

the phase pressures and the component fluxes. Specifi-

cally, on each interface Ckl; 16 k < l6 nbl, we impose

PmjXk
¼ PmjXl

; m ¼ w; o; g ð17Þ

½VM � m�Ckl
¼: VM jXk

� mk þ VM jXi
� ml ¼ 0;

M ¼ W ;O;G ð18Þ

This approach is motivated by a domain decomposition

algorithm for single-phase flow developed originally

for conforming grids [83], and later generalized to

nonmatching grids coupled with mortars [17,185], and

used for multiphase models [104,106,119,125,172,177].

The conditions (17) and (18) can be reformulated as

‘‘find the value of w ¼ ðPw; Po; PgÞ at every point of Ckl so

that BðwÞ ¼ ð½VW � m�; ½VO � m�; ½VG � m�Þ ¼ 0’’. In the dis-
crete form, these conditions are imposed in the weak

sense and are discretized using the mortar spaces con-

structed on the grids defined on all Ckl. The use of

mortar spaces amounts in practice to averaging of the

interface primary unknowns w and of the jumps in the

fluxes BðwÞ. In implementation, these averaging opera-
tions are handled by inexpensive projections between

mortar grids and subdomain grids.
Multiple scales: Obviously, since the grids on sub-

domains do not need to match across Ckl, the mortar

approach is well suited for handling locally refined grids

around wells or in other regions where one wants to

capture fine scale phenomena.

Moreover, the choice of mortar grid Ckl has conse-

quences for the accuracy of the overall problem and

thereby, in addition to subdomain grid size, it introduces

another discretization parameter associated with the
mortar space. On the other hand, very fine mortar grid

has many degrees of freedom on the interface for which

the interface problem is solved. Therefore, the presence

of mortar grid introduces multiscale resolution, and leads

to a novel approach to upscaling [126]. Adaptivity of

mortar grids is currently under research.

Interface primary unknowns: Because of the assumed

homogeneity of rock type and the lack of nonlocal-
in-time effects, the equality of phase pressures (17) on

Ckl, which is an ‘‘artificial’’ interface, is equivalent to the

equality of all phase saturations across that interface.

This means that, in order to express momentum con-

servation, instead of pressures as in Eq. (17), we can

match a different set of variables, for example, we can

use w similar to the set of primary unknowns of the

three-phase model or of the black-oil model: w ¼
ðPw;NO;NGÞ. We remark that, in the general case of

different rock properties, the pressure and fluxes would

still be continuous; however, instead of one, two mortar

spaces should be used for saturations to reflect satura-

tion discontinuities.

In summary, the (discrete) subdomain problems (15)

and (16) are coupled with a nonlinear (discrete) interface

problem BðwÞ ¼ 0 (we supress the discrete notation on w
and BðwÞ). This interface problem is solved for w by the

following iterative procedure. It assumes an initial guess

for w on the interface to be used after projection as

a Dirichlet boundary condition on subdomains. The

subdomain problems are then solved and the jump in

the component fluxes is calculated on the interface. If

the jump is less than a given tolerance, the current time

Fig. 6. Multiblock decomposition: actual grid used in one of simulations (left), idealization with three blocks and with mortars between blocks

(right).
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step is completed; otherwise, the interface unknowns w
are updated and the procedure is repeated until con-

vergence. More precisely, the interface problem is solved

by an inexact Newton method [53,76,91] in which

derivatives are computed using a forward difference
GMRES iteration. More details and results can be

found in [119,126,172,174,184,186,187] (see also discus-

sion in Section 3.5).

Coupling of models: The formulation presented in this

Section can be extended to the coupling of different

physical or numerical models. An example and related

modeling issues have been discussed in Section 2.2.2. In

particular, in the case of coupling different multiphase
models, the treatment of the missing phase must be

handled. Mortar finite elements also lend themselves to

multinumerics, (e.g. different time steps in different do-

mains, coupling of implicit and explicit approaches etc.

[124]).

Also of interest are coupling approaches which do

not require mortar spaces. In particular, the DG meth-

ods described below may be used in conjunction with
mixed finite element or continuous finite element meth-

ods, for the purpose of coupling different physical phe-

nomena and/or different grids [55,137]. Here one can

take advantage of the fact that DG methods do not

require element interfaces to align, to allow for non-

matching grids at the interface between methods.

3.2. Discontinuous Galerkin methods

There are a variety of methods based on the use of

discontinuous approximating spaces. Examples include

the Basey and Rebay method [25] and the LDG [12,49]

methods, the Oden, Babuska, Bauman [118] method,
and the interior penalty Galerkin methods [180], and the

NIPG methods [143]. In [23] a general framework of

these methods is presented. Application of these meth-

ods to a wide variety of problems can be found in [4].

DG methods are of interest because they have several

appealing properties: (1) they are element-wise conser-

vative; (2) they support local approximations of high

order; (3) they are robust and nonoscillatory in the
presence of high gradients; (4) they are implementable

on unstructured and even nonmatching meshes; and, (5)

with the appropriate meshing, they are capable of de-

livering exponential rates of convergence. As an exam-

ple, Fig. 7 demonstrates the ability of DG methods to

compute solutions on nonmatching grids; here we have

computed the solution of an elliptic equation like (11)

using a DG method which is highly refined on part of
the domain. Notice that the symmetry of the solution is

maintained.

DG methods are of particular interest for multi-

scale, parallel implementation. They allow for varying

the order of approximation over an element, thus they

are capable of resolving multiple scales within the ele-

ment. Moreover, they are highly local: typical DG

methods only require communication between elements
which share faces, thus they are well-suited for parallel

computation. CSM researchers have developed, ana-

lyzed, and implemented DG methods for a variety of

problems and applications, including single and two-

phase flow in porous media [136,138,143,144], contam-

inant transport [12,40,52], shallow water flow [11], and

elastic and acoustic wave propagation [141].

An important porous media application where DG
methods could prove important is reactive transport.

When dealing with general chemistry and transport, it is

imperative that the transport operators be monotone

and conservative. While a number of monotone finite

difference methods have been proposed for structured

grids, many of these approaches have not been extended

to unstructured grids. With the use of appropriate nu-

merical fluxes, approximate Riemann solvers and sta-
bility post-processing (slope-limiting), DG methods can

be used to construct discretizations which are conser-

vative and monotone.

3.2.1. DG transport formulation

We now briefly describe the DG method for modeling

reactive transport. Let X be a polygonal domain boun-

ded in Rd , d ¼ 2; 3 and let U be a velocity field that

satisfies (11). We decompose the boundary of the do-

main into an inflow part Cin and an outflow part Cout,
oX ¼ Cin [ Cout, where Cin ¼ fx 2 oX : U � n < 0g; and
Cout ¼ fx 2 oX : U � nP 0g. The transport of a con-

taminant through a porous medium is modeled by the

following equation which is a special case of Eq. (12),

with boundary and initial conditions completing the

system:

Fig. 7. DG solution to an elliptic model problem on a nonmatching

grid.
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/ct þr � ðUc� DðUÞrcÞ ¼ f ðcÞ; in X � ð0; T �;
ð19Þ

ðUc� DðUÞrcÞ � n ¼ U cin � n; on Cin � ð0; T �; ð20Þ

�DðUÞrc � n ¼ 0; on Cout � ð0; T �; ð21Þ

cð0; �Þ ¼ c0; in X: ð22Þ

Corresponding to (12) c ¼ cM is the concentration of

the contaminant, f ðcÞ ¼ qM þ /RM a general nonlinear

reaction source function, DðUÞ a diffusion–dispersion

tensor lumped with porosity /.
We now establish some notation for the spatial dis-

cretization. Let Eh ¼ fEgE be a nondegenerate subdivi-

sion of X, made of triangles in 2D and tetrahedra in 3D.

We allow for a nonconforming partition of the domain.

Let h be the maximum diameter of the elements. Let C
be the skeleton of the mesh of X, that is the union of the
open sets that coincide with interior edges (or faces) of

elements. We also associate with each set ck in C, a unit
normal vector nk. For ck in oX, the vector nk is outward

to oX.
As shown in Fig. 8, we define for w sufficiently

smooth, the jump ½w� and the upwind w� value. We as-

sume below that nk is outward to E1k .

fwg ¼ 1
2
ðwjE1k Þ þ

1
2
ðwjE2k Þ; ½w� ¼ ðwjE1k Þ � ðwjE2k Þ;

8ck ¼ oE1k \ oE2k ;

fwg ¼ ðwjE1k Þ; ½w� ¼ ðwjE1k Þ;

8ck ¼ oE1k \ oX;

w� ¼
wjE1k if u � nk P 0;

wjE2k if u � nk < 0:

(
8ck ¼ oE1k \ oE2k :

Let r be an integer. The finite element subspace

consists of discontinuous piecewise polynomials:

DrðEhÞ ¼ fv : vjE 2 PrðEÞ 8E 2 Ehg;

where PrðEÞ is a discrete space containing the set of

polynomials of total degree less than or equal to r on E.
We introduce the bilinear form bNS : HsðEhÞ�

HsðEhÞ ! R, s > 3=2, and the linear form L : L2ðXÞ !
R:

bNSðU;w; vÞ ¼
X
E2Eh

Z
E
DðUÞrw � rv�

X
E2Eh

Z
E
Uw � rv

�
X
ck2C

Z
ck

fDðUÞrw � nkg½v�

þ
X
ck2C

Z
ck

fDðUÞrv � nkg½w�

þ
X
ck2C

Z
ck

U � nkw�½v� þ
X

ck2Cout

Z
ck

U � nkwv:

ð23Þ

Lðc; vÞ ¼
Z

X
f ðcÞv�

X
ck2Cin

Z
ck

u � nkcinv: ð24Þ

The discontinuous Galerkin approximation CDG in

L2ð0; T ;DrðEhÞÞ satisfies the formulation:

/
oCDG

ot
; v

� �
þ bNSðU ;CDG; vÞ ¼ LðCDG; vÞ;

t > 0; 8v 2 DrðEhÞ; ð25Þ

ðCDGð0Þ; vÞ ¼ ðc0; vÞ; 8v 2 DrðEhÞ: ð26Þ

Remark. It should be noted that the approximation of

the concentration satisfies on each element E the fol-

lowing mass balanceZ
E

/
oCDG

ot
�
Z
oE
fDðUÞrCDGg � nE þ

Z
oE
U � nECDG

�

¼
Z
E
f ðCDGÞ:

This property is a unique feature of the DG methods.

DG hp error estimates involving mesh size h and
degree of approximation p were established in [143]

for elliptic problems and in [139,140] for an upwinded

scheme for modeling transport with nonlinear reaction.

In both papers, optimal rates of convergence in the en-

ergy norm were obtained for meshes which can be

nonconforming and for approximations that can vary

locally over each element. In the transport paper, both

continuous time (semidiscrete problem) and discrete
time procedures were considered.

3.2.2. DG simulation examples

Two numerical examples are presented in this section.

The first example involves simulating flow in the geo-

logical L-site, that is located in the south-eastern United

States. The L-site consists of a large fly ash disposalFig. 8. DG jump.
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pond located adjacent to a river. A cross section is given

in Fig. 9. There are five different types of rocks. The

hydraulic conductivity ranges from 0.31 m/day to 17.2

m/day.

The flow is modeled using a quadratic approxima-
tion, or r ¼ 2. The boundary conditions are the fol-

lowing: no flow on the top and bottom boundaries and

Dirichlet boundary conditions on the vertical bound-

aries. We impose a constant pressure at the inlet that is

higher than the one at the outlet. For this problem with

D defined to be the absolute permeability in Eq. (23) the

DG solution satisfies:

bNSð0;P; vÞ ¼
Z

X
fv 8v 2 DrðEhÞ ð27Þ

The pressure solution is shown in Fig. 10. Details re-

garding this computation as well as applying an hp
adaptive procedure are discussed in [142].

A second example is a linear transport benchmark

problem. Here we compare the DG method with three

well known transport schemes, Godunov (first and

higher order) and the characteristic mixed method. Re-

sults are shown in Fig. 11. Note that sharpest contours
are obtained with DG.

3.3. Time stepping approaches

Effective time stepping schemes are essential for

multiphysics applications and coupled systems. This is a

topic that has not received adequate attention in either

research or in application areas. It is critical to modeling

large scale coupled multiphysics problems accurately

and efficiently. Practical questions arise concerning

global and local time step control, the use of different
spatial grids and time steps in subdomains, and the use

of different timesteps for different physical models de-

fined on different subdomains. Preservation of con-

servation of material volumes across the space-time

boundaries as well as conservation of mass and similar

properties also effect the time step.

3.3.1. Fully implicit and time-split approaches

Numerous scientific papers on reactive transport in

porous media have appeared in the literature, in par-

ticular in Water Resources Research and Journal of

Contaminant Hydrology. In general, these papers em-
phasize computational and experimental results. The

authors wish however to point several papers which

address theoretical issues. In [57,173] a priori error es-

timates both in space and time for an operator splitting

technique modeling advection, diffusion, and reaction

systems were established and, in [58], the effectiveness of

this approach for treating in situ biodegradation prob-

lems in porous media was demonstrated. This theo-
retical work was extended to treating nonequilibrium

adsorption kinetics in [56]. In addition, this approach to

kinetic and local equilibrium using an interior point

method was extended in [147]. More recently, a consis-

tent split algorithm for semi-discrete nonlinear reactive

transport problems was analyzed in [90].

In reactive transport, it is not clear a priori how

tightly equations should be coupled. In particular an
adaptive time-implicit/time-split approach may be war-

ranted, whereby certain terms are adaptively modeled

either fully implicitly or through a split step. This type of

adaptive approach could vary spatially as well; i.e., the

method of time-stepping may vary across the physical

domain. Research on the use of various adaptive, higher

order, and local time-stepping for the advection/reac-

tion/diffusion schemes is clearly needed.
In many energy and environmental applications,

large systems of coupled partial differential equations

arise, such as geomechanical reservoir simulation and

4D seismic. Depending on the nature or time scales of

these equations and the feedback between equations,

these couplings can be ‘‘loosely’’ or ‘‘tightly’’ coupled in

time. For loosely coupled models, in many cases it is

appropriate to time-lag or time-split the equations,
whereby certain terms are evaluated at previous time-

levels, or split off from the equations and solved in a

separate step. An example for such time-splitting is the

coupling of IPARS and the SNL mechanics code

JAS3D. For tightly coupled models, such time-lagging

or splitting may lead to severe temporal errors. In these

Fig. 9. Geology of the L-site.

Fig. 10. Quadratic approximation of the pressure field.
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cases, a more fully implicit approach may be warranted.

Thus sophisticated linear and nonlinear solution tech-
niques must be developed.

In a similar fashion it is a standard practice to de-

couple the system of multiphase flow equations into a

pressure equation and a system of concentration equa-

tions. Examples of such approaches are IMPES (implicit

pressure and explicit saturation), streamlines (satura-

tions solved along flow streamlines), and sequential

(implicit pressure and implicit saturation). These tech-
niques can also be employed as preconditioners for the

fully implicit system as discussed below.

Similar to IMPES or sequential techniques for mul-

tiphase flow are the Chorin [46,47] and Glowinski

[82] splittings for the incompressible Navier–Stokes

equations which involve decoupling the system into

transport and second order elliptic (pressure) equa-

tions, and splitting techniques for transport [134]
and Stokes equations [132]. The former approach has

also been used as a preconditioner for the fully implicit

system.

3.4. Parallel solution techniques

The advances in computing technologies have given

promise to all disciplines in computational engineering

and science. In recent years, the processing speed of

workstations has been increasing at the rate predicted by

Moore�s law which states that, every 18 months, the data
density on integrated circuits doubles; this trend is ex-

pected to hold for at least another decade. In fact, in-

dividual workstations available these days, off-the-shelf,
have an associated peak performance of several GFlops

as measured by standard benchmark tests based on

Linpack [68]. On the other end of the spectrum, the peak

performance of computing equipment is measured these

days in Teraflops, and it comes mainly from massively

parallel systems [111]. While these systems are not nec-

essarily accessible to geoscientists on a daily basis, their

structure, contrary to that of supercomputers of yes-
terday, is similar from applications point of view to the

structure of low-cost configurations available to many

research groups.

Fig. 11. Simulation of tracer propagation using characteristic mixed method, first order Godunov, higher order Godunov and DG methods (from

left to right, top to bottom). Peclet number ¼ 102. Same grid 50� 50 used in all examples.
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Along with the increase in the processor speeds of

individual machines, came the improved ability and

interest in putting them together in ‘‘do-it-yourself’’,

inexpensive, Beowulf clusters or other parallel configu-

rations. While parallel computing is not a new concept,
the ability to get supercomputer-like performance from

low-cost machines is relatively recent [24]. As a measure

of the success of the cluster approach, the prestigious

Gordon Bell prize in computing in 1997 was awarded to

a project developed on a 16 processor Intel cluster

(http://research.microsoft.com/gbell). Finally, the con-

cept of Grid [1] as well as of the peer-to-peer computing

at www.seti.org provide another paradigm of low-cost
parallel computing. In summary, it is not clear what

future will bring to computing, but it appears that par-

allel processing will remain its essential component.

As it has been confirmed in the past, advances in

hardware alone and in particular, in processor speed

only, do not guarantee dramatic reductions in compu-

tational time. In general, parallel performance of a code

depends on the efficiency of hardware, the communica-
tion software of a given (parallel) platform, and the

performance of the numerical algorithms implemented.

The development of parallel scalable algorithms is an

essential ingredient of any large-scale computing pro-

ject. The notion of scalability [14] is related to the ex-

pectation that the computational time necessary to solve

a given problem should decrease with an increasing

number of processors. More precisely, it is expected that
speedup––defined as the ratio of computational time on

one processor to the computational time on p proces-
sors––in an ‘‘ideal’’ case should be linear, that is, equal

p. In practice, thanks to the caching of some of the

processor data, the speedup can be superlinear. Obvi-

ously, the time spent on computations versus the time

spent on communication between processors, as pre-

dicted by Amdahl�s law [14], constrain the speedup. In
fact, close-to-linear speedup is obtained only for large

enough problems such that communication costs are

much smaller than computation costs. In another di-

rection, a notion of scaled speedup is considered, in

which the problem size is increased linearly along with

the number of processors. In an ideal case, such scaled

speedup would be equal to 1 [87].

Information on the scalability of a given computing
system is based on various benchmark tests. The most

widely applied benchmarks use linear algebra package

Linpack [68] which, among other features, has the ad-

vantage of being easily portable between different ma-

chines. Unfortunately, efficiency measures obtained

with Linpack cannot be extrapolated in a straightfor-

ward way. In particular, in subsurface applications, the

complexity of computational algorithms is rarely a lin-
ear function of the number of unknowns, and the in-

crease in the problem size is frequently local and/or

associated with a change in the physics of the problem.

A typical example is a convective front travelling with a

given velocity. Some local phenomena (reactions etc.)

may be associated whose computational complexity re-

mains fixed regardless of the size of the reservoir. On the

other hand, if the size of the reservoir is fixed but the
computational grid is refined, we do not only increase

the number of unknowns but we also change the con-

ditioning of the associated linear and nonlinear system.

In summary, there is a need for the development of new

and improved parallel computational techniques for

subsurface applications as well as for the development

of performance measures tailored to these applications.

Our group has over a decade of experience in the
parallel computation and the development of scalable

parallel algorithms. This expertise includes the devel-

opment of domain decomposition methods for the so-

lution of elliptic and parabolic equations [50], parallel

iterative solvers for multiphase flow [53], development

of parallel shallow water and water quality simulators

[45,54], development of parallel contaminant transport

simulators [18,22,45] and the development of the mul-
tiphase multicomponent simulator framework IPARS

[119,124,125,166,172,177]. In recent studies, we evalu-

ated the scalability of IPARS for problems of fixed size

with increasing number of processors for both single-

block simulations [176] as well as for multiblock simu-

lations [126]. Here we include some scalability results

which are shown in Fig. 12.

3.5. Linear and nonlinear solvers

The choice of linear and nonlinear solvers is clearly

dependent on the time stepping and/or time splitting

chosen for the coupled system. If the time splitting in-
volves breaking up the coupled system into a sequential

system involving modeling either elliptic and/or trans-

port equations, then robust and efficient solution tech-

niques can be applied to each equation. For transport

dominated problems explicit time stepping is frequently

employed and for diffusion dominated problems if the

time step is not too large, block preconditioning tech-

niques. In the case of the elliptic equations (in-
compressible), it is well known that for accuracy and

efficiency the corresponding discrete system must be

solved implicitly.

Beginning with the first international domain de-

composition conference in Paris in January 1987, there

has been an extensive development of robust parallel

domain decomposition techniques based on Krylov

subspace or multilevel preconditioners for elliptic scalar
equations. Both overlapping domain decomposition al-

gorithms such as additive Schwarz, multiplicative Sch-

warz, BPX, BEPS [156] and nonoverlapping domain

decomposition such as Balancing [50] and multigrid on

the interface [179] have been investigated both theoret-

ically and computationally. It has been shown that for
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problems with coefficients that are not ‘‘too rough’’ the

condition number for these methods behaves like

Cðlogð1þ H=hÞÞ where H is diameter of the domain and

h denotes the mesh size and C is a constant independent

of H and h. Thus by fixing H=h, i.e. the number of
subdomains grows as the number of unknowns grows,

the condition number remains constant and thus the

number of conjugate gradient iterations remains con-
stant.

In this section we discuss two terascale linear solver

approaches, preconditioned Krylov subspace methods

and multilevel/multigrid methods, for solving the fully

implicit in time discretized coupled nonlinear multiphase

system. We assume the system has been linearized by a

Newton or inexact Newton method. While fully implicit

time-stepping schemes are the most robust, they are the
most expensive in the subsurface flow simulation since

they result in nonlinear systems being solved at each

time step. Thus one is confronted with solving many

times very large nonlinear nonsymmetric systems which

are ill-conditioned. However, good initial guesses for

system are generally available; namely, either the last

time step solution or a guess obtained by extrapolation

over previous time steps.
For simplicity we will assume that the underlying

discretization method of a given multiphase flow model

like the one discussed in Section 2 is implicit Euler in

time and mixed finite element or cell-centered finite

differences in space. In addition we shall restrict our

attention to the preconditioned generalized minimum

residual (GMRES) approach in which the precondi-

tioner is based on a family of two-stage decoupling
techniques.

The first scheme is based on two-stage precondition-

ing techniques. At the first stage a decoupling precon-

ditioner is introduced which decouples a given pressure

from saturations or concentrations. This decoupling

allows for a second stage, a preconditioning of the di-

agonal pressure block of the Jacobian independently of

the saturation blocks. Different techniques for decou-

pling and pressure block preconditioning have been

considered and implemented. The set of available pres-

sure block preconditioners comprises LSOR and trun-

cated Neumann series methods based on the red-black
ordering, parallel solvers for a discrete separable oper-

ator, and algebraic multigrid methods [96,97].

The second approach [97] is based on algebraic and

geometric multigrid (agglomeration) method [35,88,109,

164] for the fully implicit and IMPES schemes [75,96,

169]. This approach employs a super coarsening strategy

to obtain the coarsest level mesh. The finest grid is three

dimensional. The next grid is obtained by using a two-
by-two coarsening of the areal cross section of the

original grid; i.e. the two dimensional points are ob-

tained by a vertical averaging of the columns. The

nongradual coarsening from grid one to grid two re-

quires an efficient smoother which was chosen to be line

SOR with vertical blocking. The remaining intermediate

and coarse grids are obtained by two-by-two coarsening

of the previous grid. This multigrid approach can also
be applied as a preconditioner.

Both of these approaches share a low arithmetical

complexity per iteration (optimal or nearly optimal or-

der with respect to the number of unknowns) and a good

convergence rate. In [97] parallel numerical results ob-

tained with these solvers for modeling three phase flow

with vertical wells is presented.

Interface solvers and preconditioners: There are two
main approaches for solving the multiblock algebraic

system: (1) reduction of the global system to a mortar

interface problem as described in Section 3.1.1 and (2)

solution of the coupled subdomain-mortar system. The

Fig. 12. Parallel scaling of black-oil model in IPARS on parallel Linux cluster with (fast) Myrinet switch or (relatively slow) Ethernet switch. Figure

on the left shows decomposition of the computational domain between 20 processors for the grid from Fig. 2. Figures in the center and on the right

show speed-up ¼ computational time on one processor divided by time on p processors vs number of processors p for two cases: 500,000 cells and
1,000,000 cells (1.5 M and 3 M unknowns, respectively). Center: speed-up for 500 K cells with Myrinet and Ethernet. Right: speed-up for 500 K and

1 M cells and only Myrinet. Close to ideal (linear) speed-up is achieved for large problems and with fast network Myrinet switch.
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main advantage of the former approach, which involves

solving both subdomain problems and an interface

problem and which is currently implemented in IPARS,

is that the subdomains are loosely coupled and it is easy

to implement in parallel couplings of different physical
and numerical models. The solution of the interface

problem may, however, be expensive, especially for

nonlinear problems, due to several nested iteration

loops. On the other hand, solving the coupled system

eliminates one of the loops and is potentially faster, but

is less flexible.

In the case of single phase flow the interface problem

leads to a symmetric positive definite linear system and
an efficient multigrid solver with conjugate gradient

(CG) smoothing has been developed and analyzed [179].

Various types of preconditioners for CG on the interface

have been developed for matching grids, including bal-

ancing and Neumann–Neumann domain decomposi-

tion [50,51,99,108], Robin-type algorithms [9,21,71,73],

three-field formulations [37,95], and approximation of

the Steklov–Poincar�ee operator [8,182].
Our current approach in the multiphase flow case

[178] leads to a nonlinear interface problem which

provides the loosest subdomain coupling and great-

est flexibility (see Section 3.1.1 for its description). This

algorithm can be viewed as a nonoverlapping counter-

part of some overlapping nonlinear domain decom-

position methods [38,72,158]. Some efficient interface

multilevel Newton-GMRES solvers and preconditioners
have been developed [184,186,187]. Although these

methods behave well in practice, some theoretical

questions regarding their convergence are still open. An

additional complication here is due to the coupling of

different physical models. Choosing primary interface

variables and imposing correct matching conditions are

critical in this case [123].

4. Information technology tools

With the increase of computational speed came the

increase in the size and resolution of simulation data.
While the amount of time that is spent on computations

may decrease, or may stay fixed at worst, the amount

and complexity of operations on simulation data and

adapting the underlying physical and numerical models

has increased at least linearly. Hence the need for so-

phisticated IT tools which address tasks beyond simple

pre- and post-processing of simulation data. This need

has been recognized by a number of leading groups in
computer and computational sciences throughout the

world.

One objective of the IT tools effort is the realization

of a collaborative software environment. Such an envi-

ronment may enable scientists and engineers to collec-

tively and collaboratively specify, compose, configure,

manage, and visualize a new generation of accurate,

adaptive, interactive and immersive simulations. Spec-

ifying, composing and managing these applications

is nontrivial. Furthermore, managing, accessing, and

manipulating the large volumes of distributed multi-
resolution data associated with these applications is a

significant challenge. Both these issues require the de-

velopment of an integrated software infrastructure

providing tools and technologies that can support ap-

plication developers.

Below we first give an example of how selected IT

tools can benefit subsurface simulations. Next we give a

few details and references on a few selected IT tools
which were used.

Example of the coupling of IPARS with IT tools: In

general, geological data necessary for simulation have

been traditionally extremely difficult to obtain, as in-

formation has been limited to well logs and generally

low resolution seismic information restricted to the po-

sition of faults, pinchouts and fractures. However,

modern 3D and 4D seismic and sensor technologies are
beginning to deliver not only high resolution perme-

ability and porosity data but also details on the presure,

temperature and composition of fluids present in a field.

Still, large data uncertainties, which require stochastic

studies, remain. For example, hundreds or thousands of

Monte Carlo simulations may be performed for which

the permeability data is generated with geostatistics and

which incorporate all the available well log, seismic and
other ‘‘real’’ field data. Simulation results can help to

identify the best or the worst well pattern or to find an

expected economic yield from a given field; all of this is

with an assigned uncertainty level.

As an example (see Fig. 13), we consider a relatively

simple data set [93]. The permeability field in this set is

geostatistically generated. This relatively coarse data set

has 9000 cells but, when hundreds of geostatistical re-
alizations are run, possibly terabytes of data are possibly

generated. Such data is analyzed in order to determine

for example the ‘‘worst’’ and ‘‘best’’ recovery scenarios

and an ‘‘average’’ economic value of a field. The amount

of data that needs to be processed is overwhelming for

an individual and therefore the use of the data man-

agement tool such as active data repository (ADR) is

very useful (see description below).
Furthermore, assume that geological data about a

field is given and that we wish to optimize recovery from

such a field, or to play ‘‘what-if’’ scenarios. In such a

case, we may run multiple cases and collect all the data

as explained above. Or, we can interact with the simu-

lation and change some of the parameters ‘‘on-the-fly’’.

Such actions may need to be coordinated between dif-

ferent scientists collaborating on the same project. In
this direction, the use of interactive steering software

such as DISCOVER portal proved to be promising. We

implemented the coupling between IPARS and DIS-
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COVER and explored ‘‘what-if’’ scenarios by changing

well parameters.

Programming environments and application develop-

ment tools: Programming environments enable scientists

and engineers to specify and compose applications at

a high-level using ‘‘keywords’’ and programming ab-

stractions. It is a major motivation in the development

of the UG software at the University of Heidelberg [26–
29], the SIERRA system at Sandia National Laborato-

ries (SNL) [5] and much of the work at the Texas

Institute for Computational and Applied Mathematics

(TICAM) at The University of Texas, in particular, the

work on IPARS.

Adaptive computational engines: The goal of adaptive

computational engines is to provide a unifying substrate

to enable interoperability between application frame-
works and solution methodologies. Parallel and dis-

tributed implementations of these techniques lead to

interesting problems in dynamic data-distribution, load

balancing, communications and coordination, and re-

source management. Furthermore, complex simulation

on highly irregular domains may require hybrid tech-

niques combining multiple adaptive solution methods

and, correspondingly, different data-structures in dif-
ferent parts of the domain. Prototypes for this work

are GrACE/MACE (www.caip.rutgers.edu/TASSL/

Projects/ACE/) adaptive computation engines which are

currently being used to support large scale adaptive

simulations in subsurface modeling, computational fluid

dynamics, geophyiscs, numerical relativity, and relativ-

istic hydrodynamics. In particular, MACE was used for

IPARS multiblock data structures and has achieved

excellent parallel scaling [126].

Adaptive runtime management for dynamic applica-

tions: Adaptive runtime management infrastructure

manages and optimizes application execution using

current system and application states, and predictive

models for system behavior and application perfor-

mance: see work on the Armada framework [133,155,

157] (www.caip.rutgers.edu/TASSL/arm.html) that pro-

vides system and application sensitive adaptive runtime

support for adaptive mesh refinement applications.
Distributed interactive steering and collaborative visu-

alization environment (DISCOVER): DISCOVER is an

attempt to develop a generic framework that will enable

interactive steering of scientific applications and also

allow for collaborative visualization of data sets gener-

ated by such simulations. It leads to the development of a

computational infrastructure that will have the potential

of transforming large-scale distributed scientific and en-
gineering simulations into interactive and collaborative

simulations where numerous scientists, geographi-

cally distributed, will monitor, analyse and steer scien-

tific computations. IPARS has been coupled with the

DISCOVER framework, and it has served as a proto-

type implementation that has the following features:

(1) IPARS application control from remote, geographi-

cally distributed clients monitoring the application; (2)
Central server that bridged the connection between dis-

tributed clients and the IPARS application; (3) Collab-

oration among clients; (4) Regular and automatic

updates from the application about the global compu-

tation parameters to all clients; (5) Plots of well data for

various well parameters at the clients� desktops. Other
work in this direction includes [65,81].

Active data repository: An example of a software tool
for data-management and manipulation techniques for

assimilating, interpreting, disseminating, and interacting

with very large (petabyte), diverse and multi-resolution

datasets is the ADR [80,94]. In ADR, datasets can be

described by a multidimensional coordinate system. In

some cases, datasets may be viewed as structured or

unstructured grids; in other cases (e.g. multiscale or

multiresolution problems), datasets are hierarchical with
varying levels of coarse or fine meshes describing the

same spatial region. ADR is designed to make it possible

to carry out data aggregation on processors that are

tightly coupled to disks. Since the output of a data ag-

gregation is typically much smaller than the input, the

use of ADR can significantly reduce the overhead as-

sociated with obtaining postprocessed results from large

datasets. In a project underway, ADR is being used to
combine an existing fluid dynamics (shallow water) code

with an existing groundwater model under the IPARS

framework. Modeling challenges include accounting for

Fig. 13. Top: traditional set up of simulations. Bottom: coupling of a

reservoir simulator (IPARS) with data managenent tools (ADR) and

interactive sterring software (DISCOVER). Data shown: geostatistical

permeability field associated with the SPE9 data problem (left) and

simulated oil contours (right) after 1000 days of recovery. Note cor-

relation of preferential water paths (right, blue spots) and oil pockets

(right, red spots) with high (left, red) and low (left, blue) permeability

regions.
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the flux of phases between domains (e.g. overland flow

of water seeping into the vadose zone and then into an

aquifer) and flux of species between domains, since the

transport mechanisms can change at domain bound-

aries. Moreover, different chemical reactions may be
important in different parts of the domain.

Visualization: There is a need for a range of visual-

ization techniques and tools for exploring multi-resolu-

tion data including high quality images and animations,

‘‘desktop’’ analysis tools for runtime data interpreta-

tion, and collaborative ‘‘portal-based’’ visualization for

global access, real-time monitoring and control. Note

that with today�s technology and today�s commercial
software it takes hours to postprocess and produce

complicated images like the one in Fig. 2. Still, these

images may not yet possess the quality or the resolution

adequate for high-end visualization hardware. On the

other hand, images of well rates as in Fig. 1 or images of

low resolution 2D slices through a field, as in Fig. 4, can

be obtained fast enough so that they can even be dis-

played in real-time in remote locations. These issues are
the subject of current research [42,43,159].

5. Conclusions

The future holds many exciting computational chal-

lenges. Huge increases in computational power provide

an opportunity for developing an understanding of the

correct physical description of certain phenomena at

various scales. Computing hardware, systems software,

and simulation tools and algorithms, can be utilized in
accounting for a wide range of physical processes in a

model. The need for close cooperation and collabora-

tion among interdisciplinary teams of engineers and

scientists, computational scientists, and applied mathe-

maticians for treating multiscale and multiphysics

problems has been recognized by a number of lead-

ing groups in computer and computational sciences

throughout the country.
In this paper we have provided examples, mathemat-

ical and computational, demonstrating the coupling of

various codes and algorithms for modeling multidomain,

multiphysics applications in porous media. In addition,

we have noted that there is a commonality of many

multiphysics applications. e.g. time splitting involving

diffusion, transport and reactions. Moreover, we have

discussed the creation of comprehensive frameworks
which allow the integration of system software, pro-

gramming tools, and the seamless coupling of and com-

munication between state-of-the-art simulation tools.
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