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Abstract. Computational modelling of processes at pore-scale allows to get detailed insight
into their nature. It also provides tools to improve coarse-scale models in which porous medium
is considered as a permeable continuum. In this paper, we use the simulations at microscale
combined with an upscaling procedure and describe the impact of small changes in the pore
morphology on the macroscale parameters such as porosity and permeability. The changes in pore
geometry may occur due to different hydrogeological, geochemical, and biological mechanisms,
and may result in significant variations of the permeability. Our computations are based on
realistic geometries with randomly simulated effects of pore clogging. Experiments are performed
for a wide range of flow rates, thus contributing to further study of nonlinear flow models.
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1 Introduction

The multiscale nature of the porous medium is considered depending on the scale or the resolution
of observations. At the coarse scale, in the sequel referred to as the core-scale, the porous medium
is treated as a continuum characterized by some effective parameters with permeability considered
as the most important. The core-scale is commonly used in modelling processes related to flow
and transport occuring in subsurface.

At the pore-scale, the porous medium is represented as a complex structure consisting of a
solid skeleton and void spaces or pores where the flow occurs. The flow at this scale is governed
by a system of Navier-Stokes equations. Thanks to an increase in available computing power in
the last years, it has become possible to study flows at micro scale by numerical simulations.
Moreover, thanks to recent developments in computed microtomography technologies [6, 18, 28],
realistic high resolution three dimensional geometries have become accessible. Pore-scale imaging
provides data which would be much more difficult, or impossible, to obtain using traditional
measurements methods. Pore-scale models cannot replace flow and transport models defined at
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the core-scale and covering domains of hundreds of meters or kilometers. They are however very
useful since they deliver detailed insight into processes occurring at the pore-scale.

One of the characteristic features of models at pore-scale is an extremely large size of data
needed to describe the complex geometrical structure of the medium. This huge amount of data
is correlated with a large number of velocity and pressure unknowns needed to describe the
flow in Direct Numerical Simulations (DNS), i.e., finite element or finite volume discretizations
of Navier-Stokes equations at pore-scale. In this paper we use DNS for the flow simulations,
following our previous work [13, 14, 15, 16] where we use a direct discretization of Navier-Stokes
equations by finite volume method. DNS fall in the category of continuum models. Realistic
geometries require complex computational meshes with large numbers of degrees of freedom,
and therefore a robust numerical solver is needed. DNS have not been used in the past due to
high computational costs, but recently they have been gaining increasing interest [6, 29], see also
[14] for references. The main advantage of DNS is the natural and consistent way that the flow
models can be extended to model processes other than just the flow.

Alternatively, there exist models that are a-priori discrete. In this paper we review the basic
principles behind two discrete classes of models, the Pore Network (PN) [3, 12], and Lattice
Boltzmann (LB) [18, 22]. In the pore network models, the original geometry of a porous medium
is represented by a network of pores (nodes of the network), and throats (connections), all
characterized by volumes and conductivities. The Lattice-Boltzman approach is based on a
simplified kinetic model which when averaged, obeys the macroscopic Navier-Stokes equations.

Computational simulations of flows at microscale performed for a large range of flow rates
provide a tool to experimentally study nonlinear extensions to Darcy’s law; this creates a virtual
or an in silicio laboratory. By means of upscaling techniques, detailed information about flow
computed at the pore-scale is translated into a description relevant at the core-scale [9]. Darcy’s
law describes a linear relationship of flow rates and pressure gradient at core-scale but is valid
only for small flow rates. In the case of higher flow velocities, nonlinear corrections should be
taken into account. Based on results of computer simulations we present a power-type fully
anisotropic model for high velocities rates introduced in [14].

In this paper our virtual laboratory is used to study and quantify coarse-scale effects due to
microscale modifications of geometry of porous medium. In computations we use realistic 3D
geometries obtained by computed microtomography, courtesy of Dorthe Wildenschild [18]. We
simulate the effects of clogging by special random modifications of pore-scale. The present study
is a step towards pore-scale simulations based entirely on measurement data combined with the
reactive transport models describing the clogging coupled to the flow.

The paper is organized as follows. In Section 2 we summarize flow models at pore and
core-scales. Section 3 provides a description of discrete methods of simulating flows at pore-
scale. Section 4 presents a short review on modelling of processes leading to changes in pore-
scale geometries. Section 5 presents the main ingredients of the computational laboratory, and
Section 6 summarizes computational experiments. Closing remarks and discussion are given in
Section 7.

2 Models of flow at pore and core-scales

Porous medium Ω ⊆ Rd, d = 2, 3, at pore-scale consists of a porespace ΩF , complemented with
a solid matrix ΩS , and Ω = ΩF

⋃
ΩS
⋃

Γ where Γ = ΩF
⋂

ΩS is the rock-fluid interface. At
pore-scale, flow is considered in ΩF only and is governed by the Navier-Stokes equations:

ρv · ∇v − µ∇2v = −∇p, x ∈ ΩF , (1)
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∇ · v = 0, (2)

with unknowns p pressures and v velocities Here ρ denotes fluid density, and µ kinematic viscosity
of fluid and are considered known. In (1-2) we assume there are no volume forces present, gravity
is ignored, fluid is considered to be incompressible. We assume flow is saturated and only one
phase is present. Moreover, within this paper we consider a steady-state model, which is sufficient
for the range of flow rates under consideration. A no-slip boundary condition v = 0 is imposed
on Γ.

If the overall flow rate is sufficiently small, then (1) is approximated well by the Stokes
equation:

−µ∇2v = −∇p, x ∈ ΩF . (3)

At core-scale, the flow is assumed to occur in the whole domain Ω and to obey the Darcy’s
law which for macroscopic pressures P and velocities V reads as follows:

V = −K∇P = −k

µ
∇P, x ∈ Ω, (4)

where K = k
µ denotes conductivity, and k the absolute permeability. Mass conservation holds

at macroscale by ∇ ·V = 0. Equation (4) is the macroscopic limit of (3) as the characteristic
length of pore → 0, [5, 23].

The Darcy’s law is valid only for relatively slow flow rates. For high flow rates, the upscaled
model (4) should be extended in order to take into account inertia effects. In spite of extensive
theoretical work applying rigorous mathematical upscaling techniques and homogenization, there
is no agreement on practical and universal non-Darcy model at coarse-scale.

Historically the oldest, the Forchheimer equation [4] extends (4) with the term β |V |V :

(1 + β |V |)V = β |V |V + V = −K∇P, x ∈ Ω, (5)

where coefficient β is responsible for non-linear effects. It is assumed that K and β depend only
on the geometry of porous media. In a general case properties of fluids are incorporated by

β = β̄
ν and K = k

µ . The model (5) requires two parametrs (K, β).

The model (5) may be further modified by adding a correction of power α 6= 1

(1 + β |V |α)V = −K∇P, x ∈ Ω, (6)

with 1 ≤ α ≤ 3. This model requires three parametrs, (K, β, α). Our prior works in 2D [15, 13]
confirmed the applicability of this model.

A natural consequence of anisotropic features of a medium should be to take into account
anisotropic properties of β. The anisotropic version of (6) is written componentwise as

3∑
j=1

βij |V |
α
Vi = −

3∑
j=1

Kij
∂p

∂xj
, i = 1, . . . , 3 (7)

with β and K tensors. For other nonlinear extensions, see [4].
The link between the two scales is established by upscaling. The results of simulations at

pore-scale are averaged to determine the conductivity K for a wide range of flow rates, which in
turn are used to identify the non-Darcy model. For upscaling in this paper we use the volume
averaging algorithm first proposed in [15] and later refined in [13, 16] for d = 2 cases, and in
[14] for d = 3; it is a practical implementation of standard volume averaging definitions of K
[4]. Our algorithm interprets and calculates the macroscopic gradient of pressures in a way that
allow computing K as a full tensor, which leads to a proper identification of non-Darcy model.
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3 Pore-scale simulation methods

Rapidly growing available computer power along with recent developments in 3D imaging tech-
niques [6, 18, 28] made it possible to model flows at the pore-scale in realistic geometries. As
we mentioned above, there are two classes of computational modelling strategies for pore-scale
simulations, the continuum models and discrete models. In this section we briefly review the
methodologies behind the two common discrete methods, the Pore Network (PN) and Lattice
Boltzmann (LB). In Section 5 we discuss the continuum DNS model used for simulations in this
paper; details can be found in [14].

Pore Network method. The PN method is one of the most common to use to model flows at
pore-scale [3, 12, 24]. In this approach the porous medium is idealised and reduced to a network
consisting of a finite set pores and pore throats.

Mass conservation is imposed in each pore i of the network, what in case of incompressible
flow reads as: ∑

j

qij = 0, (8)

where qij denotes volumetric flow rate between pore i and j, i, j = 1, . . . , N , and N denotes a
total number of pores in a network. Next, qij is expressed in terms of unknown pressures in
pores, which become independent variables of the problem. In case of slow flow rates the flow
rate qij is assumed to be linearly proportional to the pressure drop,

qij = cij(Pj − Pi) (9)

with Pi, Pj denoting pressures in pores i and j respectively, and cij denoting the conductivity
of a throat. To be more precise, cij should rather be represented as cij = kij/µ, however for
simplicity we assume µ = 1. Pressure drop in pores is neglected. After boundary conditions are
imposed, the system of N linear equations (8) is solved for the unknowns Pi.

The PN model must be completed by assigning conductivities to throats. Assuming ide-
alized shapes of throats, it is possible to derive formulas for hydraulic conductance per unit
length. For instance, for a circular tube the conductivity cij is given by the Poiseuille’s law,
cij = 0.5 r2

i Ai, with ri a radius, and Ai cross-sectional area. Since, in reality, the porous
medium has a converging-diverging pore space, therefore axisymmetric sinusoidal ducts may be
also used to represent pore throats better [3]. Formulas for other shapes of cross-sections are
also available, including square or triangular cross sections, possibly with sharp corners. These
shapes, cross-sectional areas and volumes may be obtained from the three dimensional pore-space
representations based on X-ray microtomography data, [19].

The linear relationshop (9) is valid only in Stokes’ flow regime, and should be modified for
high velocity flows [3, 12], or when non-Newtonian fluids are considered [24]. In [3] an empirical
nonlinear equation in q is used as an extension to (9). These introduces nonlinearities to the
whole system of equations. However, the particular nonlinear model is introduced already at
the pore-scale as an Ansatz, and this pre-determines the type of core-scale model obtained from
upscaling.

The main advantage of the PN approach is its computational efficiency allowing to perform
pore-scale simulations on samples of sizes over orders of magnitude larger than samples that
may be treated with other numerical techniques. It also gives a relatively straighforward way to
extend the model to even the finer scales of nanopores. However, the essential features of porous
medium are represented in the PN approach by means of simple geometries what can lead to loss
of geometrical and topological information. On the other hand this allows to treat the porous
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medium in a hierarchical manner, taking into account only elements of structure which are within
the range of feasible resolution.

When PN models are applied to reactive transport, and in particular, to the modelling of
clogging of the porous structure, this is done via a gradual modification of the radii of throats.
See, e.g., the modelling of biomass development in [26].

Lattice-Boltzmann method. The Lattice-Boltzmann (LB) method originates from the cel-
lular automata and lattice gas methods. These in turn can be considered as a simplified fictitious
molecular dynamics model. The LB method belongs to a class of discrete methods since unlike
the traditional CFD methods based on solving equations of conservation of continuous properties
(mass, momentum) it models the fluid by means of density distribution functions of fictitious
particles assigned to nodes of the discrete lattice. The algorithm accounts for two processes:
the collisions of particiles, and their propagation. It is possible to recover the Navier-Stokes
equations from the LB formulation [22].

Real quantities such as space and time are converted in LB method to lattice units prior to
simulations. Density distribution functions fi(x, t), with x denoting a discrete location of a node,
and t a discrete time, are given at each node of the lattice. The index i refers to a set of discrete
directions ei, i = 1, . . . ,m, in which the particles are allowed to towards the neighboring cells of
the lattice. The stencil ei, i = 1, . . . ,m depends on a particular LB model [20, 22]. For example
m = 15, 19, or 27 for three dimensional models. If m = 15 then e1 = (0, 0, 0), ei, i = 2, . . . , 7
point to cells sharing a face, and ei, i = 8, . . . , 15 point to cells sharing a vertex with the cell
under consideration.

At every time step, the following computations are performed [20].

• Macroscopic quantities: mass density, pressure and velocities, are computed from fi(x, t)
in every node of the lattice:

ρ(x, t) =

m∑
i=1

fi(x, t), ρv(x, t) =

m∑
i=1

fi(x, t)ei, p(x, t) =
ρ(x, t)

3

• The values of ρ(x, t) and v(x, t) are used to compute the equilibrium distribution feqi (x, t).
It is a distribution that should appear in the node (x, t) in order to have mass and mo-
mentum conservation. feqi (x, t) are functions of ρ(x, t) and v(x, t), with coefficients ωi
depending on the neighborhood model, see [20, 22] for details.

• The collision step is used to update former values of fi(x, t) with feqi (x, t); this is performed
depending on a relaxation parameter τ , f̄i(x, t) = 1

τ [(1 − τ)fi(x, t) + τfeqi (x, t)]. The
relaxation parametr τ defines how quickly the system evolves towards equilibrium, its
value is related to a lattice size and velocities of flow.

• The streaming step moves the whole system to the next time step by propagating density
distributions along a set of velocities directions, fi(x + ei, t+ 1) = f̄i(x, t).

LB method is very attractive for pore-scale simulations due to its simplicity. Computational
grid, the lattice, is voxel-based, thus dealing with realistic geometries obtained by data imaging
is straighforward. No-slip boundary condition at the pore walls is easily incorporated to the
algorithm by bouncing back at obstacles. The easy parallelization of LB, thanks to only local
interactions between the nodes, is another advantage.

On the other hand, in complex geometries very small time steps are required and the LB
method thus may prove computationally very expensive. In general, the method is computation-
ally more expensive than the pore network approach.
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4 Microscale modifications of geometry

Clogging phenomena play an important role in hydrogeology and environmental engineering.
Modifications in pore space morphology may occur as a result of different processes and are
governed by a variety of factors. In a natural ecosystem the variations in hydraulic properties
are moderate, but anthropogenic disturbances may have much pronounced effects and potentially
influence the functionning of the ecosystem itself.

The main processes in clogging are the accumulation of secondary materials in pore spaces
and the growth of biological material. Precipitation and dissolution are major mechanisms in the
formation of secondary precipitates in most sediments. Typical causes for mineral precipitation
include production of hydrocarbons, carbonate mineralization, and reactive flows [11, 8]. These
generally result in reduction of both porosity and permeability. Development of microbial biomass
[7] is another important factor of clogging.

Regardless of the mechanism underlying pore clogging, it is possible to distinguish three
main types of spatial modifications that may occur. First, “discrete particles” may appear
within porespace. Second, “pore-lining” causes a relatively uniform narrowing of the throats and
pores, and third, “bridging” results in the blockage of some throats. Mixed effects may be also
observed, where the increase of large pores due to dissolution is accompagned by the clogging of
small pores and throats [8]. Depending on the type of changes, the porosity and permeability of
a medium are affected differently.

A decrease in permeability may bring beneficial effects. This is the case of microbial enhanced
oil recovery [2] which is a recovery process where bacteria and their metabolic by-products are
utilized for oil mobilization in a reservoir. The main concept of the increased recovery is to
redirect the flow by clogging the pores with microorganisms. In a similar way, controlled biomass
growth in an aquifer may be used to clog preferential paths and result in more homogeneous
sweep, or to create biobarriers to prevent the leakage from landfills [10]. A similar effect appears
due to secondary precipitation, which modifies pore structure and controls the transport of waste
in the subsurface environment. Clogging may also affect other physical properties of the soils, in
particular the mechanical parameters such as undrained shear strength, drained shear strength
and shear modulus. On the other hand, clogging may reduce the success of bioremediation
[26]. In any case, it is important to parametrize and predict the impact of pore-scale changes in
geometry on the coarse scale behavior of the medium.

The impact of gemetry changes on permeability may be assessed from a macroscopic point
of view. The most common approach to simulate biomass accumulations in porous media is a
biofilm model assuming the pores’ surface is homogeneously covered. However, uniform models
have proved unsatisfactory for fine-textured material [26], or in case when an assumption should
be made of biomass groving in colonies or to aggregate heterogeneously distributed within the
pores [25]. Experiments show that discontinuous microcolonies in fine-textured soils decrease
K more severely than biofilms do [21]. Attempts have been made to find relationships linking
conductivity to porosity. The effect of biomass growth on the hydraulic properties is summarized
by an experimental relationship

Krel(φrel) = φrrel, (10)

where Krel = K
Kini

, φrel = φ
φini

, the subscript ini refers to initial geometry, and r depends on

microgeometrical properties of the porous medium and on the morphology of the biomass, [7].
In particular [25] suggests r = 3 and gives another relationship

Krel(φrel) = φ3
rel, or Krel(φrel) = exp(γ(φini − φ)). (11)
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Somewhat similar approach is to apply the Kozeny-Carman correlation,

KKC = 0.2
φ3d2

char

(1− φ)2
, (12)

along with a concept of a ’colony-enveloping space’, with a parametr controlling colonies density
[21]. Here dchar is the characteristic length scale of the model. Another macroscale study [10]
suggests that biofilms should not be treated as totally impermeable. A strong initial decrease in
permeability with decrease in porosity is shown, followed then by a region in which only minor
changes are observed. The shape of the permeability–porosity curve is dependent on both the
properties of the porous medium and the biofilm.

While the models above give good insight, we believe that the use of pore-scale simulations
combined with realistic data from X-ray computed tomography, can give more accurate correla-
tions.

Among studies using pore-scale simulations let us mention the use of the pore network model
[25, 26]. In principle, clogging is modeled by decreasing radii, and thus conductivities, of throats.
An example of LB method applied to biomass grow simulations is given in [17, 27]. The idea
is to replace void cells with solids to reflect development of biomass volume, moreover, non-
zero permeability of biofilm structure is enabled [17]. An interesting conclusion comes from a
comparison of simulations conducted for 2D and 3D cases, pointing out differences and suggesting
the necessity of applying 3D models [27].

Finally, let us refer to a study of synthetic periodic examples of different regular geometrical
configurations of equal volumes deposited on a pore’s surface, ranging from a uniform layer
lining the pore, to crystals of different aspect ratios equispaced along a pore [11]. These lead to
a conclusion that the morphology of deposits plays a significalnt role in a degree of permeability
loss given a specific loss in porosity.

5 Computational laboratory

In order to study conductivities K for a wide range of flow rates we need to study a relationship
linking macroscale velocities V and pressure gradients ∇P . These are obtained by means of
pore-scale simulations, providing fine scale values of v and p, and their upscaled counterparts
V and P obtained by volume averaging. All these activities are done in the set-up phase of our
virtual laboratory.

The data for simulations of flow described by steady-state Navier- Stokes equations (1–2) are
(a) geometry of a flow domain ΩF ⊆ Rd, (b) fluid properties, and (c) boundary conditions which
allow to take into account tensorial character of K and to impose a wide range of flow rates.
For numerical model we need also to (d) transform geometry ΩF into computational mesh, and
(e) apply a numerical solver. For (b) we use water properties and for (e) we use the ANSYS
Fluent package [1]. It is a finite volume-based solver defined over general unstructured staggered
grids. The resulting set of nonlinear equations is solved by iterations. The number of iterations
required to meet a given tolerance criterion varies depending on a case. We note that it generally
grows with increasing flow rates; some iterations do not complete sucessfully.

5.1 Computational grids

We assume that a structure of a porous medium is described by means of a binary matrix of
voxels Ωijk, Ω =

⋃
ijk Ωijk representing distribution of pores and voids in a sample. We set
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elements nijk of such a matrix as

nijk =

{
1 grid voxel Ωijk is available to fluid,
0 grid voxel Ωijk is occupied by rock.

(13)

The porosity φ of the sample Ω is

φ :=
|ΩF |
|Ω|

=
|nF |
|n|

=

∑
ijk nijk

|n|
, (14)

where |n| is the total number of voxels and |nF | is the total number of fluid voxels.
This data structure is natural for data obtained by X-ray microtomography techniques [6, 18,

28]. While applying Finite Elements or Finite Volumes method, there is however a concern of
a choice of a computational mesh, since there exists a variety of addmissible shapes of elements
or cells in computational grids. In our previous works [13, 15, 16] we worked with idealized
pore geometries and body-fitted meshes. Our latest results based on 3D realistic geometries in
[14] were obtained for voxelized grids by choosing the grid covering ΩF to be a union of regular
hexahedral cells of size h3 into which each of the fluid voxels in ΩF is divided. Though originating
from the voxel matrix nijk, the grid is fully unstructured like any other finite element/finite
volume grid, thus one must properly account for the connectivity of the cells as well as describe
all the wall surface elements, i.e., those in Γ = ΩF ∩ ΩS . The grid is generated automatically
with our code.

The “voxelization” of porespace allows direct import of data from imaging and in this sense
the choice of hexahedral meshes is made for convenience. In principle, it is possible to create a
body-fitted grid for ΩF even if its geometrical features are already lost in the voxel data given
from imaging [30]. However, we believe it is not necessary in practice. In [29] a comparison
is made of results of pore-scale simulations performed with body-fitted and voxel grids based
on realistic data. Simulation results obtained with cubic voxel mesh differed only slightly from
results obtained using much more complex and highly-resolved body-fitted unstructured meshes.
Our 2D experiments in [14] have led to similar conclusions.

However, the solid-fluid interface Γ = ∂ΩF ∩ ∂ΩS for voxel-based geometries has an irregular
geometry which may affect the quality of fluid flow simulations. Therefore, care should be taken
to assess grid dependence, mesh refinement, and geometry voxelization effects. We are also
aware of problems which may emerge while simulating coupled processes highly depending on
grain surface representation.

Islands. While dealing with complex geometries it may happen that dead-end pores, that is
pores or groups of pores surrounded by rock grains, apear in the flow domain ΩF . No flow
occurs through such islands and they should be removed from the computational domain before
simulations start. Given a realization of porespace nijk, it is relatively easy to determine the list
of such pores using a simple percolation algorithm as described in [14].

Voxel reduction and grid refinement. The size of data describing porous structure nijk of
a sample provided by micro-imaging may prove too large to be used directly for mesh generation
and simulations. Therefore, it is often necessary to reduce (coarse) data.

In order to reduce the original voxel grid we use a simple criterium. Consider a box of
8 = 2 × 2 × 2 voxels in the original voxel grid. It is replaced by a fluid voxel in the new coarse
grid provided the number of fluid voxels in a box does not exceed 4. A solid voxel is introduced
otherwise. The size of a coarse voxel is thus doubled. Such coarsened data is denoted by ΩredF .
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The coarsening of data may be repeated, if necessary, to create a sequence Ωred2
F ,Ωred3

F , . . . , at
every step resolution of data decreases, and voxels’ size increases.

Another approach to reduce original data to manageable sizes is to work on a subdomain of
the porous sample only, thus decreasing a total number of voxels. Here come however an issue
of Representative Elementary Volume (REV), which should be large enough with respect to a
porosity pattern contained in a subdomain, to assure reasonable results of averaging.

Computational grid is generated for a given a set of voxels, and, at the minimum, we use
8 = 2× 2× 2 grid cells per fluid voxel. In order to improve quality of numerical solutions, a grid
may be subsequently refined by dividing each fluid voxel into 27, 64, . . . grid cells.

In general, dealing with realistic geometries enforces a compromise between a resolution with
which the medium is represented and the size of a discretized problem.

Geometry of pore clogging. In our experiments we assume the initial geometry ΩF (or, a
reduced geometry ΩredF ) is modified by replacing some of the void voxels with solids, this way
imitating clogging of porous space. We assume that the new solid voxels impermeable. However,
some studies suggest the biomass sediments to be permeable [10, 17], and this will be incorporated
in our physical models of clogging in the future.

The process of clogging in this paper is simulated by randomly introducing new solids to
the geometry of the porous medium, with an additional restriction assuming new solids to be
adjacent to surface of grains only. This way we simulate the process of growing sediments,
starting from a primary attachment of species, followed by colonization and subsequent growth.
Even though our modifications are random, we perform them in a way to keep the sequence
ΩkF ⊂ ΩjF ⊂ Ω1

F ⊂ ΩF , with k > j > 1. Thus we have for porosities φk < φj < φ1.
Clearly such a model of clogging is highly dependent on the grid resolution.

Boundary conditions. The boundary conditions for the fluid domain geometries ΩF are as
follows. We impose the wall no-slip condition v = 0 on internal boundaries ∂ΩF ∩ ∂ΩS . The
external boundary ∂ΩF ∩ ∂Ω is divided into the inflow Γin, wall no-flow Γ0, and outflow Γout
parts. We choose Γin and Γout to be assigned to a pair of opposite faces of the box constituting
Ω. There are three pairs of inflow-outflow faces, i.e. Γin–Γout, and we refer to them as DIR,
with DIR set to ’LR’ (left-right), ’BT’ (bottom-top), and ’FB’ (front-back). For each pair,
the remaining four external boundaries faces are part of Γ0. At the inflow face, we impose the
constant inlet velocity condition

v · n|Γin = vin, (15)

where n denotes the normal direction to Γin and vin is some given constant. For the needs of
our upscaling procedure we need at least three independent experiments with different principal
flow directions for each flow rate vin; we associate these with pairs of inflow-outflow faces DIR
(’LR’,’BT’, and ’FB’), denoting the flow experiments by vin,DIR.

A pressure outlet boundary condition in which we impose static pressure equal to 0 at Γout
was used at outlets.

Range of inlet velocities. A sequence of inlet velocities v
(j)
in , j = 0, . . .MAX, is imposed at

Γin. The range of velocities is intended to cover the linear (Darcy) flow regime as well as to reach
values belonging to the nonlinear laminar regime (non-Darcy). We recall that the flow rates can
be characterized with the nondimensional Reynolds number Re defined as [4]

Re = Q
dcharρ

µ
, (16)
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where dchar is the characteristic length scale for the model, e.g., solid grain size, and Q = φV is
the macroscopic flux corresponding to the averaged macroscopic velocity V computed for each
vin. Here dchar is computed as a ratio of volume of solid part of the medium to the surface of
the solid/void interface.

Each experiment j = 0, . . . ,MAX, consists of three runs with 3 different flow directions DIR

imposed, and a given value of v
(j)
in . These allow to compute K as a full tensor.

5.2 Upscaling

Here we briefly review what was done in [14].
The aim of upscaling is to compute all the necessary parameters for the chosen coarse-scale

non-Darcy model based on pore-scale pressure and velocity values. Given computed solutions

for v
(j)
in,DIR, we first average the values of pressure p and velocity v; the aim is to get coarse-scale

counterparts ∇P and V. Averaging is performed over a domain ΩrF ⊂ ΩF . Ωr is a box-shaped
subset of Ω with the same center as Ω, and with the sides shorter than those of Ω by a factor of
1− r on each side, 0 < r < 1/2 to avoid including cells close to ∂Ω.

Obtaining the averages V
(j)
DIR,k, k = 1, 2, 3 of velocity components over ΩrF is straightforward.

To get pressure gradients G
(j)
DIR,k we compute averages of the pressure p|ΩrF over two box-shape

subsets of ΩrF arranged symmetrically across the planes bisecting the volume Ωr and use these
values to find cell-centered approximation of components of ∇P . This method of averaging was
proposed in [15]; more details can be found in [13, 14, 16].

After averaging, for each experiment j, we have nine V
(j)
DIR,k and nineG

(j)
DIR,k, for k = 1, 2, 3, DIR =

LT, TB, FB.

5.2.1 Computing K

If we take averaged results of simulations performed for an inlet velocity within the linear laminar
regime then the Darcy model (4) is appriopriate. In order to compute 9 components of tensor

K we rewrite (4) componentwise for each of the three flow directions separately and use V
(j)
DIR,k

in place of Vk and G
(j)
DIR,k in place of elements of −∇P .

We have, for each DIR = LR, TB, FB

G
(j)
DIR,1K11 +G

(j)
DIR,2K12 +G

(j)
DIR,3K13 =V

(j)
DIR,1,

G
(j)
DIR,1K21 +G

(j)
DIR,2K22 +G

(j)
DIR,3K23 =V

(j)
DIR,2,

G
(j)
DIR,1K31 +G

(j)
DIR,2K32 +G

(j)
DIR,3K33 =V

(j)
DIR,3.

(17)

Therefore, from one experiment we get 9 equations. We find the nine components of K by solving
the system of 9 linear equations with 9 unknowns. The orthogonal directions of flow imposed
in three runs guarantee that (17) is solvable. We refer to this procedure as to (A). For each
flow experiment j with inlet rates belonging to a linear regime, thus computed conductivity K
should be constant. By solving (17) for a wider range of flow experiments j we can study the
dependence of K(j) on the flow rate V (j), and, in particular, the emergence of nonlinearities for
higher rates.

5.2.2 Computing β

For high flow rates, the models (6), or (7) are appropriate.
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Let us assume that β is a scalar. Given a set of K(j) computed with the procedure (A),
parameters β and α may be obtained by fitting to the model (6). Given tensorial form of K, this
procedure can be done for each of the diagonal components separately. This is a procedure (B).

If we want to take into account a tensorial form of β, we need to refer to Eq. (7). As before,
we rewrite the equation componentwise, for each of the three flow directions separately, using

V
(j)
DIR,k and G

(j)
DIR,k to get the following system, written for DIR = LR, TB, FB

G
(j)
DIR,1K11 +G

(j)
DIR,2K12 +G

(j)
DIR,3K13 − |V (j)

DIR|
αV

(j)
DIR,1β11

−|V (j)
DIR|

αV
(j)
DIR,2β12 − |V (j)

DIR|
αV

(j)
DIR,3β13 = V

(j)
DIR,1,

G
(j)
DIR,1K21 +G

(j)
DIR,2K22 +G

(j)
DIR,3K23 − |V (j)

DIR|
αV

(j)
DIR,1β21

−|V (j)
DIR|

αV
(j)
DIR,2β22 − |V (j)

DIR|
αV

(j)
DIR,3β23 = V

(j)
DIR,2,

G
(j)
DIR,1K31 +G

(j)
DIR,2K32 +G

(j)
DIR,3K33 − |V (j)

DIR|
αV

(j)
DIR,1β31

−|V (j)
DIR|

αV
(j)
DIR,2β32 − |V (j)

DIR|
αV

(j)
DIR,3β33 = V

(j)
DIR,3.

(18)

The equations (18) have 18 unknowns: nine components of each K and β. In addition, α is
either unknown or has to be assumed known. The system (18) is linear in the components of
K,β, nonlinear in α.

Let us assume α is fixed; a common choice could be α = 1, what is equivalent to taking the
model (5), or α is calculated by (B). To derive β, we can proceed in one of two ways.

We can first use (A) to compute K = K(0) for j = 0 from (17); we assume that V (0) is in
the Darcy regime. Next we identify some V (j) in the non-Darcy regime and substitute to (18).
Since K = K(0) is already known, it is possible to solve the system for the nine components of
β. It is the approach (C).

Alternatively, we may proceed with the approach (D). To this end we choose two experiments
j1, j2 and set up a system made of equations (18) written for each of these two experiments. One
of the experiments, j1, should belong to the linear flow regime, whereas the second, j2, should
refer to high velocities. The fit of the model (6) can be considered adequate if the resulting K,β
remain fixed for a large range of experiments j2. This observation is crucial for the development
of our practical power-based model which will be presented in Section 6.

Let us also notice that entries of tensors K,β are computed separately as solutions of systems
(17) or (18). Therefore their symmetry is not enforced. The nonphysical nonsymmetry arising in
practice is due to a combination of various numerical errors. In order to asses the nonsymmetry,
we introduce parameters η and ζ which are related to off-diagonal terms of K by

η =
max{Kmn,m 6= n}

max{Kmm}
, ζ =

max{|Kmn −Knm| ,m 6= n}
max{Kmm}

. (19)

Parameter η may be considered as anisotropy indicator for K, whereas ζ measures the relative
magnitude of non-symmetry; large ζ indicates poor quality of pore-scale simulations and/or too
small volume of averaging.

6 Computational experiments

Realistic geometry by imaging data. Our considerations will be illustrated by computa-
tional experiments, using realistic 3D microimaging data of glass beads, obtained courtesy of
D. Wildenschild [18]. Original data consists of a matrix of 414× 414× 300 of voxels, voxel size
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a) b)

Figure 1: Computational grid. a) Initial geometry GB. b) Cross-section along z = 0. Empty
cells indicate initial geometry, grains are blanked.

is 17 × 10−6 m, thus the size of the sample is app. 7 × 7 × 5mm3. The cylindrical shape of
tomography sample is reduced to a box-shaped domain of the size 280×280×300. Such a shape
is preferable to simulate flow in three directions. Because of the overall size of data, a reduction
is performed, resulting in coarsening as described in Section 5.1.

The initial geometry we use in this paper is constructed on a basis of 72 × 72 × 76 of voxel
grid. Two reductions have been performed, each voxel is of a size of 68 × 10−6 m. In order
to simulate biofilm growth or sediment deposition, this geometry is systematically altered by
randomly replacing some void voxels with solids. Only the void voxels adjacent to pores’ walls
are modified. We start from isolated voxels, which then grow into colonies, and finally approach
a uniform layer coating pores. Computational grid for the initial geometry is depicted on Fig. 1.

Geometry information on datasets are collected in Table 1. The initial geometry is denoted
with GB. The numbers in subsquent names refer to the probability that a void voxel remains
void. Thus geometry GB-0.99 differs with only 1% from the initial one, GB-0.95 – with 5%,
and so on. These differences are manifested with number of void and solid voxels, and, what
follows, in porosity. By φeff we denote porosity after removal of dead-end pores. Interesting to
notice, the values of dchar (16), initially decrease, to finally start growing. It is caused by initial
increase of the solid/void interface due to a very irregular way in which new solids appear at
pores’ surfaces.

The degree the geometry is altered in several simulations is presented in Fig. 2. The in-
creasing volume of solids leads to a substantial reduction of connections among pores which
influences directions of preferential flow. Also, a fully three dimensional character of flow under
consideration is strongly pronounced.

Fitting non-Darcy model. Now we proceed along the lines of Section 5.2. Simulations at

pore-scale are preformed over a range of inlet velocities v
(j)
in , j = 0, . . . ,MAX, covering several

orders of magnitude. Within the range of experiments j = 0, . . . ,MAX we are going to distin-
guish the experiment performed for the smallest velocity in the range, j = 0. Next, by j = σ we
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dataset #voids #solids φ φeff #nodes #cells 104dchar

GB 151307 226768 0.400 0.400 1495806 1210456 1,19
GB-0.99 150595 227480 0.398 0.398 1492791 1204760 1,18
GB-0.95 147795 230280 0.391 0.390 1480476 1182360 1,14
GB-0.8 137393 240682 0.364 0.363 1427238 1099144 1,06
GB-0.5 115906 262169 0.309 0.307 1274880 927248 1,10
GB-0.3 101512 276563 0.272 0.268 1135551 812096 1,28
GB-0.1 88021 290054 0.236 0.233 980040 704168 1,60

Table 1: Geometry information about data sets GB.

GB-0.99 GB-0.5

GB-0.3 GB-0.1

Figure 2: Differences in geometry, cross-sections along plane z = 0. Note connections between
the pores dissapearing near (0, 0, 0).
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Figure 3: Conductivities K for different data sets plotted in function of v
(j)
in . K11 components

are plotted with solid lines and filled symbols, solid lines and empty symbols are for K22, and
K33 are marked with dashed lines.

denote the experiment, for which the principal values of K are reduced by about 1% what we
interpret as the onset of nonlinear efects. Flow rate denoted as V ∗ corresponds to a reduction of
conductivities by 10%. Its value is determined by interpolation, however, by experiment j = ∗
we understand an experiment giving ’close’ results to those obtained by interpolation. Finally,
j = MAX denotes the last experiment within the range. Velocity rates are taken in such a way

that for v
(MAX)
in we have about 50% reduction in conductivity. In practice, the upper limit of

v
(MAX)
in is chosen to ensure convergence of the numerical solver, as in general the performance

of the algorithm deteriorates once v
(j)
in falls into nonlinear regime.

Given solutions v and p of Navier-Stokes equations (1-2), the coarse-scale conductivity K is

computed by solving the system (17). The plot of diagonal entries of K in function of v
(j)
in , j =

1, . . . ,MAX, Fig. 3, gives an immediate picture of the main features of the process of clogging
and of its impact. The existence of linear and nonlinear flow regimes is clearly manifested by
constant K values for small inlet velocities, whereas the emergence of inertia effects causes K to
decrease.

Secondly, we may study the overall decrease in conductivity due to modifications in geometry.
Altering geometry with 1% (with respect to the surface of grains only) is manifested in an almost
4% decrease in conductivity. One may also observe evolution in anisotropic features of K by
comparing values of diagonal entries of conductivity values.

Even more insight into the anisotropic character of the medium may be acquired from Fig. 4
where all entries of K are plotted and by non-zero off-diagonal values one may conclude about
some rotation of the principal directions of conductivity in clogged structures. Almost null
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Figure 4: Conductivity K for geometries GB and GB-0.1, full tensorial form. INDEX 1, 2, 3,
...9 corresponds to the values of K11, K12, K13, K21, . . . ,K33 arranged lexicographically.

values of the off-diagnal terms in conductivity obtained for initial structure indicate the aligment
of principal directions of conductivity along the axis of the coordinate system.

Table 2 brings more details on conductivity values with respect to inlet velocity and data set.
Velocities for which we report diagonal values of K are related to experiments j = 0, σ, ∗ and
MAX. Additionally, the flow rate V ∗ corresponding to a 10% reduction reduction in conductivity
determined by interpolation is given in the last column of Table 2.

In the next step of the study, one may take a sequence of K as shown in Fig. 3 and find
parameters (β, α) by fitting to the model (6), procedure (B) of Section 5.2.2. These parameters,
obtained for a range K22 values, are also reported in Table 2. In a general case one could perform
computations for other diagonal terms, each time arriving to different (depending on anisotropy
ratio) sets of (β, α) parameters.

In order to take into account the anisotropic character of β coefficient, now we apply the
procedure (D) of Section 5.2.2 and use the system (18) setting α = 1. As a set (j1) we take

averages of solutions obtained from the experiment v
(0)
in , whereas for a second set (j2) we sub-

sequentally substitute avarages of solutions obtained from experiments j, j = σ, . . . ,MAX, this
way we get a tensorial β for each j, Fig. 5. Since β varies for different experiments, we conclude
the Forchheimer model is not valid within the whole range of velocities used in computations.

If computations are repeated, then by replacing α = 1 in the system (18) with α obtained
by the procedure (B) of fitting to isotropic model (Table 2), we arrive at almost constant values
of tensorial parameters β. In other words, this way we obtain a fully-anisotropic power-type
general model (7) valid for a large range of high velocities under consideration.

Impact of the geometry changes. Now we study and compare parameters of models ob-
tained for different data sets. Geometries were systematically modified, resulting in a decreasing
sequence of porosities, see Table 1. Porosity reduction is due not only to a growing number of
solid voxels but also due to the growing number of dead-end-pores appearing as a consequence
of pore space reduction. The differences are given in Table 1, with φeff porosity after removing
dead-end pores.

Clogging of pores is accompagnied by a decrease in conductivities, see Fig. 3. As already
mentioned, very small initial changes in porosities are strongly reflected in values of conductivi-
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v × 105 V (j) × 105 K11 K22 K33 η ζ α fit β V (∗) × 105

GB
1 1.129 165.2 183.7 171.8 0.0454 0.0188
200 225.6 164.3 182.6 171.1 0.0450 0.0196
1800 2019 148.1 163.2 156.4 0.0348 0.0178
1e+04 1.102e+04 88.67 95.73 96.38 0.0185 0.0071

1.2453 12.45 1707.04

GB-0.99
1 1.13 158.9 177.5 165.4 0.0485 0.0208
200 226 158 176.3 164.6 0.0480 0.0213
1800 2022 142.3 157.4 150.3 0.0377 0.0194
1e+04 1.103e+04 85.12 92.22 92.39 0.0199 0.0107

1.2401 12.38 1693.54

GB-0.95
1 1.134 139.3 156.9 144 0.0618 0.0231
200 226.7 138.5 155.8 143.3 0.0615 0.0235
1500 1691 127.1 142 132.7 0.0529 0.0222
1e+04 1.105e+04 73.86 80.23 78.54 0.0299 0.0093

1.2327 12.68 1642.52

GB-0.8
1 1.146 91.78 106.1 93.78 0.0686 0.0255
200 229.1 91.12 105.1 93.05 0.0683 0.0259
1500 1708 83.05 94.83 84.19 0.0599 0.0262
1e+04 1.116e+04 47.33 51.68 46.26 0.0371 0.0145

1.1909 13.04 1504.21

GB-0.5
1 1.208 49.58 61.47 48.89 0.1193 0.0326
200 241.3 49.02 60.66 48.09 0.1191 0.0331
1200 1439 44.66 55.19 42.24 0.1105 0.0322
1e+04 1.174e+04 22.25 27.03 17.61 0.0795 0.0375

1.1633 16.57 1315.67

GB-0.3
1 1.283 37.65 50.16 36.57 0.1466 0.0381
200 256.4 37.12 49.42 35.69 0.1456 0.0376
1200 1528 33.3 44.65 29.89 0.1326 0.0346
1e+04 1.245e+04 15.63 21.11 10.61 0.0931 0.0421

1.1547 17.56 1305.2

GB-0.1
1 1.37 32.28 44.03 30.22 0.1604 0.0358
200 273.7 31.82 43.33 29.22 0.1585 0.0342
1000 1360 29.25 39.94 24.54 0.1441 0.0404
1e+04 1.33e+04 13.57 18.51 7.481 0.1168 0.0507

1.1447 16.84 1353.78

Table 2: Summary of simulations for different data sets. V (j) is the overall flow rate, V (j) =
1
3

∑
DIR

∣∣∣V (j)
DIR

∣∣∣.
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Figure 5: Coefficient β computed following (7) with α = 1 for geometries GB and BG-0.1.

Figure 6: Coefficient β computed for model (7) with α = 1.2453 and 1.1447; geometries GB and
GB-0.1.
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Figure 7: Relative conductivities in function of (1− φrel).

ties. We thus confirm the results [10] of large initial decrease in conductivities for small porosity
variations, which becomes smaller as the process of clogging continues.

This effect is clearly related to the implemented model of clogging. As clogging begins, only
few new solids appear, thus increasing the roughness of the pore surfaces. By “attaching” more
new solids, the surface becomes smoother again.

Fig. 7 compares the conductivities obtained from our simulations with those using macro-
scopic relationships of Section 4. We plot the values of

K11,0

K11,0,ini
obtained for slow flow rates

(K11,0), in function of (1 − φ
φini

). Here K11,0,ini refers to K11,0 for initial geometry, as in Sec-

tion 4. Next we plot
K11,σ

K11,σ,ini
, and

K11,MAX

K11,MAX,ini
corresponding to the experiments j = σ and

j = MAX, respectively. The differences in K for various flow regimes become more visible as
the porosity of a sample decreases, and 1− φ increases.

We note that from Fig. 7 it is clear that the relationships (11) with γ = −9.7, do not
model accurately the decrease of conductivity for either small or large flow rates. However,
Karman-Cozeny relationship (12) used for adjustment with KKC

KKC,ini
fits very well the conductivity

evolution computed for the flow rate in the Darcy’s slow flow range.
Another drawback of general relationships is that they do not take into account anisotropic

features on the medium. By studying the values of off-diagonal terms of the conductivity ten-
sor K, Fig. 4, we see that the anisotropy of the medium is growing as clogging proceeds. The
anisotropy indicator η in Table 2 suggests that the principal directions of conductivity to grad-
ually rotate with respect to the coordinate system. Comparison of cross-sections given in Fig. 2
illustrate this effect. As some of the connections in the plane z = 0 dissapear, other paths start
playing a more important role. For instance, if we compare a plot of GB-0.99 with GB-0.1 we
see that there is almost no flow in z = 0 plane in the latter case. This confirms the need to deal
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with simulations in 3D domains.
The data of Table 2 and plots in Figures 5 and 6 provide additional illustration of the

anisotropy effects during clogging.

7 Discussion and conclusions

Pore-scale flows simulations constitute a powerful tool to study the impact of the changes in pore-
scale geometry both on micro-scale flow characteristics as well as on the core-scale parameters
such as porosity and permeability.

In this paper we have applied the methodology of a computational laboratory and the power-
based fully anisotropic non-Darcy model proposed in [14]. Direct discretization of Navier-Stokes
equations by means of finite volumes method on unstructured hexahedral grids works well in
realistic three dimensional geometries obtained from computed microtomography measurements.

A simple random model simulating clogging of the pore space allowed us to study modifica-
tions of upscaled parameters of flows at core-scale, i.e., conductivity K and nonlinear coefficient
β, in function of variable geometries and changes in porosities.

There are several directions we plan to develop in the future. As discussed in detail in [14],
the calculated conductivity values strongly depend on the original voxel data reduction, a size
of the original sample, mesh refinement, and volume of averaging, and the differences may be as
high as 20%. Since the random model we used to simulate clogging is also highly dependent on
the data resolution and size of voxels, more computational experiments are needed in order to
quantify such effects.

Our current work includes more sophisticated models of clogging and coupling with the pore-
scale flow. We expect the grid resolution to be of primary importance.

Computations. For computations we used an x86 cluster Hydra, HP BladeSystem/ Actina
based on AMD Opteron 2435/Intel Xeon 5660/AMD Opteron 6132 nodes x86 64 architecture
with 24/32/256 GB of memory, operated at Interdisciplinary Centre for Mathematical and Com-
putational Modelling, University of Warsaw.

Acknowledgments. We thank Dorthe Wildenschild for providing us with the voxel-based data
sets. M. Peszynska was partially supported by the grant NSF DMS-1115827, and A. Trykozko
was in part supported by PL-Grid infrastructure.

References

[1] ANSYS, Inc. ANSYS FLUENT User’s Guide, Rel. 14.0, 2011.

[2] R.T Armstrong and D. Wildenschild. Investigating the pore-scale mechanisms of microbial
enhanced oil recovery. Journal of Petroleum Science and Engineering, 94-95:155–163, 2012.

[3] M.T. Balhoff and M.F.Wheeler. A predictive pore-scale model for non-Darcy flow in porous
media. SPE J., 14:579–587, 2009.

[4] J. Bear and A. Cheng. Modeling Groundwater Flow and Contaminant Transport. Springer,
2010.

[5] A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic struc-
tures. volume 5 of Studies in Mathematics and its Applications, North-Holland Publishing
Co., Amsterdam, 1978.

19



[6] M.J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, and
C. Pentland. Pore-scale imaging and modeling. Advances in Water Resources, 51:197–216,
2013.

[7] A. Brovelli, F. Malaguerra, and D.A. Barry. Bioclogging in porous media: Model develop-
ment and sensitivity to initial conditions. Environmental Modelling and Software, 24:611–
626, 2009.

[8] R. Cai, W.B. Lindquist, W. Um, and K.W. Jones. Tomographic analysis of reactive flow
induced pore structure changes in column experiments. Advances in Water Resources,
32:1396–1403, 2009.

[9] L. Durlofsky. Numerical calculation of equivalent grid block permeability tensors for het-
erogeneous porous media. Water Resources Research, 27:699–708, 1991.

[10] A. Ebigbo, R. Helmig, A.B. Cunningham, H. Class, and R. Gerlach. Modelling biofilm
growth in the presence of carbon dioxide and water flow in the subsurface. Advances in
Water Resources, 33:762–781, 2010.

[11] T.A. Ghezzehei. Linking sub-pore-scale heterogeneity of biological and geochemical deposits
with changes in permeability. Advances in Water Resources, 39:1–6, 2012.

[12] X. Lopez, P.H Valvatne, and M.J. Blunt. Predictive network modeling of single-phase non-
Newtonian flow in porous media. Journal of Colloid and Interface Science, 264:256–265,
2003.
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