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Abstract. We propose an algorithm for computational upscaling of flow with inertia from

porescale (microscale) to Darcy scale (lab scale, mesoscale). In particular, we solve Navier-Stokes

equations in complex pore geometries and average their solutions to derive properties of flow relevant

at lab scale in non-Darcy model of flow. Convergence and stability of the algorithm are discussed.

The project is a prototype of a computational laboratory for porous media which delivers the data

for non-Darcy model with inertia at mesoscale.

1. Introduction. In [1] we presented a proof-of-concept algorithm for compu-

tational upscaling from porescale (microscale) to Darcy scale (laboratory scale ≡

mesoscale)1. Here we provide details and an in-depth study of that algorithm and in

particular, are concerned with its convergence and stability.

Until recently, computational modeling of flow in porous media has been con-

strained to the scales of physical observation, i.e., to the Darcy scale. Beyond Darcy

scale, coefficients for large scale flow simulations in aquifers and oil-gas reservoirs are

obtained by upscaling from meso- to macroscale [2, 3, 4]. Recently, modeling of flow

and transport phenomena at porescale has become feasible thanks to increases in

computational power and development of discrete models such as network and lattice

models. These efforts, accompanied by advances in micro-imaging of porescale, help

to understand processes such as capillary effects at porescale and their implications

at other scales [5, 6, 7, 8].

In this paper we are interested in quantitative description of inertia effects at

microscale and mesoscale. Our project can be seen as a part of a computational lab-

oratory for modeling flow with inertia in porous media over a range of scales; further

upscaling to macroscale can follow, e.g., [9]. We consider i) continuum flow mod-
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1We will use the names for these scales interchangeably in this paper
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2 2. MATHEMATICAL MODELS

els, i.e., traditional discretizations of Navier–Stokes equations applicable at porescale,

and ii) an upscaling algorithm from porescale to mesoscale. We investigate conditions

under which the combination of i) and ii) can be used efficiently to deliver reliable

quantitative information at mesoscale.

Specifically, at porescale, we consider stationary incompressible viscous flow in

laminar flow regime, characterized by Reynolds number Re not exceeding 10. At

mesoscale we use a nonlinear non-Darcy model.

The main difficulties of the project are the following. First, standard discretiza-

tion techniques for Navier-Stokes equations are well studied but their use in complex

geometries requires fine grids and is, in general, nontrivial. Second, calculating aver-

age quantities from computational data is only superficially straightforward since the

stability of results with respect to grids and algorithms over a large range of Reynolds

numbers must be ensured.

Following initial success reported in [1], we address convergence and stability

of the proposed algorithms with respect to computational grids at porescale and

mesoscale in general anisotropic geometries. To our knowledge, this is the first such

result in the literature. Related work in [10, 11, 12, 13] addressed the qualitative

character of inertia at porescale without deriving upscaled models.

The paper is outlined as follows. In Sections 2 and 3 we describe the relevant

physical models and computational techniques including upscaling to a full tensor. In

Section 4 we present results on convergence and stability, and we close with conclusions

in Section 5.

2. Mathematical models. Let Ω be an open bounded domain occupied by

porous medium and the fluid within. For simplicity we consider Ω ⊂ R
2; results for

R
3 will be reported elsewhere. We denote by (q)i, i = 1, 2 the components of a vector

q ∈ R
2; we also denote position by Ω ∋ X = (X1, X2) = X1e1 +X2e2 or X = (x, y).

Let ΩF be the part of Ω occupied by the fluid and denote the rock (solid) by ΩR.

Let Γ = ∂ΩF ∩ ∂ΩR be the rock–fluid interface, and divide the external boundary of

flow ∂ΩF ∩ ∂Ω into the inflow Γin and outflow Γout parts. Numerical solutions are

denoted with subscript h (microscale) and H (mesoscale).
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2.1. Flow at porescale. We consider an incompressible Newtonian fluid of

velocity u and pressure p flowing in ΩF . The fluid’s viscosity is denoted by µ and the

density by ρ. The flow is driven primarily by external boundary conditions, such as in

a lab core. We prescribe inflow velocity at Γin whose maximum is denoted by uin and

whose shape is parabolic between the walls. On Γout we impose a numerical outflow

condition [14]. On internal boundaries Γ we impose the no-slip condition u = 0.

Recall the definition of Re = |u|d
µ

where d is a characteristic length in the domain

of the flow, e.g., width of a channel or the diameter of porous grains. In our compu-

tational experiments we use µ, ρ reflecting properties of water in standard conditions

in a lab. The values of d, |u|, ρ, µ are such that Re < 10; the magnitude of u and

hence of Re is associated with the values of uin. We recall that for flow in porous

media the linear laminar flow regime corresponds to Re < 1, the nonlinear regime

is for 1 ≤ Re < 10, and that turbulence may occur for Re ≥ 10 [15, 16]; however,

turbulence rarely occurs in porous media. For simplicity in the presentation below we

set ρ ≡ 1. See Appendix for data and units.

At microscale (porescale), for steady-state flow, in the absence of forces and mass

source/sink terms, the momentum and mass conservation in Eulerian frame are ex-

pressed by Navier-Stokes equations and continuity equation [17]. After rescaling vari-

ables with ρ, µ, we have

∇ · u = 0,(2.1)

u · ∇u− µ△ u = −∇p.(2.2)

An alternative formulation in terms of the vorticity vector ω = ∇×u and the (scalar)

stream function ψ defined by u = ∇×ψ and its use for computational upscaling was

considered in [1].

For small Re, the nonlinear convective, i.e., inertia terms associated with u· are

dropped from (2.2) and we have the (linear) Stokes approximation −µ△ u = −∇p,

which is a valid approximation when viscous effects dominate in the flow.
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2.2. Flow at Darcy scale. At Darcy (lab/mesoscale) the boundaries between

ΩF and ΩR are not recognized. Instead, one considers an average flow in Ω character-

ized by average pressure P and velocity (flux) U. Mass conservation holds ∇·U = 0.

The flow in Ω is driven by boundary conditions which average external porescale

boundary conditions.

Darcy’s law is a linear momentum equation at mesoscale

K−1U = −∇P,(2.3)

where the values of a symmetric permeability tensor K2 are measured experimentally

[16]. In general, K =







K11 K12

K21 K22






and is symmetric; if the eigenvectors, i.e.,

principal directions v1,v2 of K coincide with e1, e2, then K is diagonal. Further, if

K11 = K22, the medium is isotropic. Due to large viscous dissipation and interstitial

effects common in porous media, Darcy’s law is a good approximation for a large class

of flow phenomena. Note that the flow at Darcy scale is assumed irrotational while

at porescale it is not [18].

For large flow rates, in the nonlinear laminar regime with significant inertia, non-

Darcy model which extends (2.3) reads

K−1(U)U = −∇P.(2.4)

In 1D, the Forchheimer model K−1(U) := K−1 + β|U | was first proposed in [19];

it was extended to multidimensional isotropic media [20, 16, 15, 21] and is used in

petroleum industry around wells [22] in the form

K−1(U)U :=
(

K−1 + β|U|
)

U = −∇P(2.5)

The form of nonlinear map K for general anisotropic 2D and 3D media has been the

subject of theoretical research [23, 24, 25, 26, 27, 28]; there exist controversies and

2a different model including viscosity explicitly is K−1µ = −∇P
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inconsistencies as concerns the form and measurements of K.

2.3. Mathematical upscaling from micro- to mesoscale. In order to up-

scale, i.e., to compute coefficients of a model at a higher scale, there are in general

two methodologies that apply. The homogenization theory gives elegant theorems

on convergence of the averages of microscale quantities to the appropriate mesoscale

quantities when the size of periodic cell goes to 0, but it requires periodic geometry.

The second, volume averaging, does not restrict geometry and proposes that the aver-

aged quantities are reasonably stable if the averaging region (REV ≡ Representative

Elementary Volume) is large enough. However, it may be difficult to quantify what

size of REV is sufficient; see [29] for related work on elasticity. In this work we are

motivated by work in [2] for porous media which does not require periodic geometry.

The idea to connect porescale and lab scale models for porous media flow is via

averaging and identification U = 〈u〉V , P = 〈p〉V . (Here we define local average over

a volume V (X) centered at X ∈ Ω as 〈q〉V ≡ 〈q〉(X) ≡ 1
|V (X)|

∫

V (X) q(Y)dY.) This

was first formalized by Tartar in [30] who connected the Stokes model to Darcy model

(2.3) via homogenization theory [31, 32]; the values of K computed by homogenization

reflect the geometry of porescale ΩF .

In the nonlinear laminar regime with significant inertia, the connection between

Navier-Stokes equations at porescale (2.2) and non-Darcy model (2.4) was consid-

ered by many authors [23, 24, 26, 27, 33]; there exist controversies as concerns the

mathematical form of (2.4).

In this paper we explore computational upscaling from porescale to lab scale,

i.e., we use approximate solutions uh, ph at porescale and their averages UH ≈

〈uh〉V , PH ≈ 〈p〉V over volumes V of |V | = O(H) in order to identify terms in

a discrete counterpart of (2.5). In the process, we compute the coefficients K, β

parametrizing K in (2.5).

3. Computational models. Here we briefly describe computational models for

uh, ph and UH , PH and give details on the upscaling procedure.
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3.1. Computational models for porescale. In this paper we use an algo-

rithm solving Navier–Stokes equations for uh, ph which can be used in complex pore

geometries with fine grids; it is based on finite-volume discretization [34, 35, 14] on

staggered grids. The implementation is under ANSYS FLUENT software which sets

an industry standard in computational fluid dynamics [35, 34]; general unstructured

grids can be used in 2D and 3D. The algorithm is convergent with rate O(h) in both

unknowns. See Section 4 for results.

We note that in [1] we considered additionally another algorithm in (ωh, ψh)

formulation which can be easily adapted to interpret data from porescale imaging [7]

and is nicely enhanced by treatment of boundary conditions and post-processing. See

also [14, 36] for other algorithms.

3.2. Computational model at Darcy scale. Our approach is to identify the

averages of porescale solutions 〈uh〉, 〈ph〉 with some discrete values UH , PH at Darcy

scale. Strictly speaking, we do not pursue any further computations at that scale;

however, these may be considered as future elements of the computational laboratory.

Therefore, we choose a computational grid and discretization at mesoscale. Our

approach is inspired by the conservative cell-centered finite difference (CCFD) method

and it provides a bridge to macroscale following [9] in which non-Darcy flow was dis-

cretized for diagonal K and K. Low-order conservative methods have been very pop-

ular in computational models of subsurface for decades [37, 38]; the CCFD method is

equivalent to lowest order Mixed Finite Element method on rectangles [38, 39]. CCFD

is known to converge with order O(H) in both the pressure and velocity variables;

extensions to nonrectangular grids and superconvergence results for smooth solutions

and grids are also known, see, e.g., [39] for more references.

Consider then a rectangular grid over Ω; cell centers are associated with pressure

unknowns PH and cell edges are associated with degrees of freedom of (piecewise

linear) velocity unknowns UH . The discretization of (2.3) depends on whether K is

a diagonal or a full tensor [39] and is associated, respectively, with a 5- or 9- point

stencil in 2D (7- or 19- in 3D, respectively).

In this work we are interested in upscaling from microscale and do not need
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to employ the 9−point stencil but rather follow some ideas from homogenization as

applied to mesoscale upscaling in porous media in [2]. We describe them now.

3.3. Upscaling to find K. Assume we know porescale geometry, i.e., ΩF and

ΩR around some point X0 ∈ Ω. Define a porescale grid over a ΩF and solve for uh, ph

in a series of computational experiments j = 1, 2, . . ., with boundary conditions forcing

the flow in various directions3, different for each j; label the solutions corresponding

to an experiment j by u
j
h, p

j
h.

Next, superimpose over Ω a mesoscale rectangular grid composed of macrocells.

Consider one such macrocell Ω0, making sure that the boundaries of Ω0 are far enough

from inlet and outlet boundaries Γin,Γout. Find P j
H ,U

j
H on Ω0 and K|Ω0

using the

data P j
H ,U

j
H and the algorithm below.

a) b) c) d)

Fig. 3.1. Schematic figure of CCFD grid and macrocells used in upscaling. a) CCFD set-up
for diagonal tensor, b) the region Ω0 =

S

4

k=1
Ωk, and c) regions ΩL ≡ Ω13, ΩR ≡ Ω24 and d)

ΩT ≡ Ω34, ΩB ≡ Ω12

3.3.1. Computing diagonal tensor K. Assume first K is diagonal and that

the macrocell grid is aligned with its principal directions. Divide Ω0 into a union of

two cells Ω0 = ΩL ∪ ΩR := ΩLR as shown in Figure 3.1. For the flow aligned with e1

we have the discrete form of Darcy’s law (2.3)

ULR := (U)1 := (〈u〉ΩLR
)1 = K11GLR := K11

PL − PR

xR − xL

.(3.1)

An analogous equation UBT = K22GBT can be written if the flow direction is aligned

with e2 and Ω0 = ΩB ∪ ΩT .

The values of K11 and K22 must be computed from separate flow experiments

with global flow direction U aligned with e1 and e2, respectively. In a way, this case

3In practice we find that using orthogonal directions of flow works best
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is similar to using Dirichlet boundary conditions in [2].

3.3.2. Computing full tensor K. Now consider a full tensor K, i.e., the macro-

cell grid is not aligned with its principal directions. To determine K, we follow loosely

the ideas from [2]. We use an ansatz

P |Ω0
≈ P0 + ∇P · (X − X0).(3.2)

To compute K, we match U = 〈u〉Ω0
to K∇P . That is, we need ∇P .

In [2] the value ∇P is prescribed from boundary conditions; the periodicity is

imposed on velocity and on almost all pressure unknowns. In our case, the flow is of

Navier-Stokes type at porescale and this is not directly possible; instead, we design

(computational) flow experiments so that ∇P is easy to find.

Now we divide the macrocell Ω0 into four cells Ωk, k = 1, . . . 4 arranged as in

Figure 3.1. For each flow experiment j and cell k, we calculate U
j
k := 〈uj

h〉Ωk
and

P j
k := 〈pj

h〉Ωk
.

Next we find, for each j, the linear approximation (3.2). We define P j
0 := 〈pj

h〉Ω0
.

To determine the components of the gradient ∇P j , we combine the cell averages of

u
j
h, p

j
h according to the pattern ΩL := Ω1∪Ω3, ΩR := Ω3∪Ω4, ΩB := Ω1∪Ω2, ΩT :=

Ω3∪Ω4, see Figure 3.1 c) and d). We calculate GLR = PL−PR

xR−xL
and GBT = PB−PT

yT −yB
and

now we can set ∇P j |Ω0
:= (Gj

LR, G
j
BT ). The velocity is computed as Uj = 〈uj

h〉Ω0
.

By matching Uj = −K∇P j we obtain (compare with (3.1))











U j
LR = K11G

j
LR +K12G

j
BT

U j
BT = K21G

j
LR +K22G

j
BT

, j = 1, 2, . . .(3.3)

Collecting the results for two experiments j = 1, 2 we have



















U1
LR

U1
BT

U2
LR

U2
BT



















=



















G1
LR G1

BT

G1
LR G1

BT

G2
LR G2

BT

G2
LR G2

BT





































K11

K12

K21

K22



















(3.4)
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This system is square; it is singular only if G1
LRG

2
BT = G2

LRG
1
BT . This can only

happen if the flow directions in experiments j = 1, 2 are parallel; by design we ensure

that they are close to orthogonal. In the case when U1
BT = 0, G1

BT = 0, U2
LR =

0, G2
LR = 0, i.e., when flow directions are parallel to e1, e2, the system degenerates to

the formulas in Section 3.3.1.

Note that we do not impose symmetryK12 = K21 which is a fundamental property

of the tensor K. Rather, we verify whether K is symmetric as a measure of quality

of numerical experiments.

Remark 3.1. One can design more than two experiments and collect (3.3) for

all j = 1, 2, . . .. However, an analogue of (3.4) will be overdetermined and a least-

squares fit is necessary to calculate the entries of K. Intiuitively, more experiments

would give more accurate information. Due to the presence of many small quantities,

numerical instabilities lead however to inaccurate values of K. In practice, (3.4) for

two orthogonal experiments gives better results than a least-squares fit.

The procedure described above allows us to find K. Results in Section 4 show

that K remains essentially constant for a large range of flow rates. However, begin-

ning at some uin we observe the onset of the nonlinear regime, i.e., that K or rather

K, start decreasing, as predicted by nonlinear non-Darcy model (2.4). In other words,

the resistance K−1 increases with increasing Re. This qualitative observation is fun-

damental and is consistent with one in upscaling from mesoscale to macroscale [9].

Below we discuss a quantitative model for K−1.

3.4. Upscaling porescale results to non-Darcy model. Above we showed

how to compute K for any Re. Now we fit the values of K obtained for moderate Re

to the non-Darcy flow model (2.5), i.e., we calculate the coefficients K and β.

Since for small Re, the resistance K−1 reduces to K−1 as in (2.3), we set K = K

obtained for small uin. Given K and the values of K,U we find β by inverse modeling

from (2.5). Clearly, if the model for K is valid and the computational algorithm is

successful, then the values of β should remain reasonably constant throughout the

nonlinear laminar regime; this was confirmed first in [1].

With the methodology established, in the next section we are concerned with its
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stability and convergence with respect to h, the size of REV (H), the choice of REV,

and the principal values and axes of K.

4. Results. Our expectations are that the combination of porescale computa-

tions and of upscaling delivers values of K ≡ K(K, β) which are stable and convergent

with respect to h and H , regardless of the direction of porescale flow or mesoscale

grids. Below we address these expectations.

The convergence of upscaled Kh,H which is a ratio of averages of ph,Uh over a

region of size H should be considered in view of the following simple observations.

Note that the averages 〈ph〉, 〈Uh〉 are linear quantities of interest [40] but the values

of Kh,H are not. At the same time, as reported in [3] for upscaling from mesoscale to

macroscale, the values of Kh,H , for fixed H , appear to monotonically converge with

h to the true values.

Remark 4.1. If a quantity qh converges in L2(Ω) norm to q with rate O(hα),

then its averages over a region Ω0 converge to those of q at the same rate, with an

additional multiplicative constant involving
√

|Ω0| ≈ O(
√
H).

Lemma 4.1. Let ah, bh be two real sequences convergent to a, b with rates α, β,

respectively, as h → 0, and let |bh| ≥ b0 and min(b0, |b|) > 0. Then the quotient ah

bh

converges to a
b

with the rate at most min(α, β).

The lemma is established immediately from the inequalities

|ah

bh
− a

b
| =

|ahb− ab+ ab− abh|
|bhb|

≤ 1

|bbh|
(|b||ah − a| + |a||b− bh|)

≤ 1

b0

(

O(hα) +
|a|
|b|O(hβ)

)

.

Remark 4.2. The rate of convergence of the quotient in Lemma 4.1 may not

become apparent until h is sufficienty small. An instructive example is provided by

ah = a+ h; bh = b− h2, for a = 104, b = 10−4, where the rate α = 1 is not observable

until h < 10−7. Since in porescale computations it may be impractical to use a very

small h, one cannot, in general, expect for Kh,H to exhibit convergence rate. However,

we expect it to be stable.

Following Remarks 4.1, 4.2 we expect that 〈uh〉Ω0
, 〈ph〉Ω0

over a given region
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Ω0 ⊆ ΩF converge with rate O(h). We expect furthermore that GLR,h and similar

quantities converge with the same rate O(h), but we do not know if Kh,H will exhibit

that rate. Note that all the mentioned quantities but Kh,H are linear in uh, ph.

We confirm the above expectations on some simple test cases reported below. In

fact, we find that Kh,H appears to be stable with h and H and even to converge

in synthetic porescale geometries. We also see that Kh,H appears to improve with

increasing size of REV, i.e., H , which is consistent with ideas of REV but not with

the estimate in Lemma 4.1.

4.1. Convergence of porescale computations with h. We set up computa-

tional experiments on geometries ΩF with increasing complexity. Whenever practical,

we use up to four levels of grid refinement. The regions Ω0 ⊂ Ω are always chosen

away from inlet and outlet. Unless otherwise specified, we denote the error in the

quantity q ∈ R by E(q) := |q − qh|. If the value of q is not known, we estimate it by

using the finest stable grid solution or by Richards extrapolation.

4.1.1. Poiseuille test case. This is a standard Poiseuille flow test case on

Ω = (−D,D) × (−1, 1) with D=10, and Ω0 = (−1, 1)2. The analytical solution is

u1(x, y) = (1− y2)Re;u2(x, y) = 0; p(x, y) = (−2 ∗x+2 ∗D)Re. It is easy to compute

the exact value of averages and of K11 = 1/3.

Table 4.1 presents the convergence results in pressure E(p) :=‖ p−ph ‖L2(Ω0) and

velocities E(u) :=‖ u − uh ‖L2(Ω0) as well as in some quantities used for upscaling;

all appear to converge at the rate O(h). Kh computed as in Section 3.3.1 is stable

but does not appear to converge monotonically.

4.1.2. Hourglass–shaped domain. This test case is similar to those performed

in [11, 13]; geometry is shown in Figure 4.1, with ratio of radius to the width of

the channel equal 0.7. This domain can be seen as a small cutout of the porescale

geometry.

Table 4.2 shows results for uin = 1. Here we do not know the analytical solution

and do not attempt to estimate E(u) or E(p). Instead, we discuss convergence in

the quantities of interest. Unfortunately, we do not observe O(h) rate within the
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E(u) E(p) E(〈u〉) E(〈p〉) E(GLR) K11,h

Re = 1
ref. 1 0.1680 5.0312 0.0735 2.4997 0.2293 0.3350
ref. 2 0.0781 2.5259 0.0356 1.2626 0.1069 0.333
ref. 3 0.0378 1.3792 0.0171 0.6881 0.0517 0.3334
ref. 4 0.0192 0.6921 0.0084 0.3465 0.0199 0.3324
rate 1.0053 0.9120 1.0067 1.1992 1.1227

Re = 10
ref. 1 1.6803 50.5548 0.7348 25.1189 2.2811 0.33478
ref. 2 0.7808 26.1106 0.3565 13.0530 1.0686 0.3333
ref. 3 0.3779 14.9850 0.1711 7.47821 0.5164 0.3334
ref. 4 0.1934 8.23601 0.0843 4.12311 0.1916 0.3323
rate 1.0020 0.8339 1.0052 0.8310 1.1368

Table 4.1

Convergence for Poiseuille case. Error is shown for various refinement levels ref.1, ref.2, . . ..
Also, the value of K11,h is shown.

considered range of values of h, and finer grids are impractical (see number of cells

shown). We believe this is because this is a hard case of a converging-diverging flow

with flow separation and vortices occuring at higher Reynolds numbers [13, 11, 12].

X

Y

-0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

-0.001

-0.0005

0

0.0005

0.001 pressure
0.011
0.0095
0.008
0.0065
0.005
0.0035
0.002
0.0005

pressure
0.11
0.095
0.08
0.065
0.05
0.035
0.02
0.005

a) b)

pressure
1.1
0.95
0.8
0.65
0.5
0.35
0.2
0.05

pressure

22
18
14
10
6
2

-2
-6
-10

c) d)

Fig. 4.1. Pressure profiles in the hourglass-shaped region, for uin =
a)10−4, b)10−3, c)10−2, d)10−1 obtained on the grid with third level refinement. Averaging
region and dimensions are shown in a).

4.1.3. Synthetic porous medium. Now we consider a case similar to syn-

thetic porous medium. Compared to the previous two cases, the geometry of ΩF , see

Figure 4.3, is quite complex. However, in a realistic porous medium, enough viscous

dissipation occurs in the flow that the values of Kh,H behave smoothly and appear

to converge in the given range of h, as shown below.

Results in this section concern an isotropic case in which the geometry of the
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refinement level 1 2 3 4
104 ∗ h 0.813998 0.4069991 0.2034996 0.1017498
number 4090 16360 65440 261760
of cells
GLR,h 41.312955 43.911519 53.967647 92.606832*
ULR,h 0.001026193 0.00105264 0.001067912 0.0010748*
104 ∗K11 0.24839 0.23972 0.19788 0.11606*

Table 4.2

Convergence of hourglass experiments: the quantities of interest appear monotone. The values
marked with ∗ appear iteration–unresolved

h uin = 0.0001 uin = 0.0005 uin = 0.001
0.000124859 4.30908e-006 4.30838e-006 4.30751e-006
6.24294e-005 3.86446e-006 3.86423e-006 3.86395e-006
3.12147e-005 3.75681e-006 3.75678e-006 3.75674e-006
1.40399e-005 3.72736e-006 3.72735e-006 3.72734e-006
rate 2.15199 2.15163 2.15129

Table 4.3

Values of K11,h and convergence rate with h for a synthetic isotropic porous medium

porous grains is perfectly aligned with the directions of the flow; see Figure 4.3

(A). We can compute Kh,H using a special diagonal tensor algorithm from Sec-

tion 3.3.1 or the general algorithm from Section 3.3.2. The latter delivers all values

of K11,K12,K21,K22 which are shown in Table 4.2 and in Figure 4.2. We expect

K11 ≈ K22 and that K12 ≈ K21 ≈ 0. This is confirmed in our results. Moreover, the

results indicate monotone convergence of Kh in h at a rate higher than expected.

In addition, comparing the values of K for the geometry in Figure 4.3 A) with

the one in B), as shown in Figure 4.2, we see that the latter ones are more stable.

While it is somewhat easier in computational experiments to impose global flow over

a synthetic domain to go from left to right or bottom to top, one actually obtains con-

sistently better results with global flow patterns imposed at an angle to the principal

directions of K. This is likely caused by the relative lack of boundary layer formation

when no “channels” from left to right (or bottom to top) can form.

4.2. Stability of anisotropic results and full tensor. Now we consider a

synthetic porous medium in which the grains are ellipsoidal in shape with ratio of

axes 9/6, see Figure 4.3(C). Moreover, we set-up an additional experiment, see Fig-

ure 4.3(D), in which the axes of the ellipses are at an angle of 30o to (x, y); a full
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Fig. 4.2. Computational results for flow in (synthetic) porescale geometry. Shown are values
of Kh ≡ Kh depending on h and Re and on the flow direction as in Figure 4.3(A) and (B). Notice
higher quality of results for U1,U2 not aligned with v1, v2.

tensor K will be obtained in upscaling (D).

From the point of view of porescale calculations, there are no special challenges

here as compared with the isotropic and/or diagonal case from Section 4.1.3. However,

this test case verifies whether, fundamentally, our upscaling algorithm makes sense

for general porous media in which K and its principal directions are unknown a-priori

and can change locally.

The flow and post-processing results are shown in Figure 4.4 for one value of h;

convergence is verified but won’t be reported. We clearly see anisotropy in values of

K due to ellipsoidal shape of grains, resulting in a difference between K11 and K22,

as well as off-diagonal values of K for case (D).

Additionally, we compute principal values and directions of the computed tensor

K for each of the inflow velocities. We find them at the expected angle 300 while

the principal values for both cases essentially coincide, see Figure 4.4. Therefore, we

conclude that our upscaling algorithm is sound.
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Fig. 4.3. Show are the pressure profiles as well as various directions involved in upscaling to
diagonal and full tensor. K is diagonal isotropic for (A) and (B), it is diagonal anisotropic for (C),
and is a full tensor for (D). On all figures the direction of e1, e2 is denoted by the axes (x, y). The
principal directions of the tensor K are denoted by v1, v2, and U1,U2 denote the global directions of
flow, also visible from pressure profiles. The computed values of K must be independent of U1,U2.
In addition, principal values of K should be independent of the direction of v1, v2 for the same
geometry. The averaging region Ω0 is shown in (C) and (D).

4.3. Convergence and stability with REV size H. Intiuitively, averaging

results of porescale computations should deliver better, i.e., more stable results for

larger H . This is confirmed by results shown in Figure 4.4.

We see that the values of Kh,H decrease with incleasing REV size; based on the

similar monotone decreasing behavior with grid size h, this observation suggests that

the values ’improve” with larger REV, as expected. Some anomalies arise for the

largest REV where the boundary layer effects apparently play a role.

While logical, these results are at odds with the estimate in Lemma 4.1 which

indicates that the values of Kh,H converge faster to the true value of K with smaller
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Fig. 4.5. Dependence of Kh,H on REV size H. a) averaging regions for REV3≡ H = 0.4 and
b) REV1≡ H = 0.8. c) Plot of K11,h,H and d) K12,h,H with respect to H.

H . We believe that the sample of REV sizes used in our computations is too small

to adress this issue; we will take it up in future work.

4.4. Stability of inertia model and coefficients. The last step is to deter-

mine whether the quadratic inertia model (2.4) fits well the values of K obtained for

the case in Section 4.1.3. To this aim, we attempt to fit, in the inertia model from

(2.5), the values of K−1 −K−1 to |U|α. If the Forchheimer model is valid, we should

find that α ≈ 1 and a reasonably stable β.
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diagonal model full velocity model
ref. orient.=(1,0) orient.=(1,1) orient.=(1,0) orient.=(1,1)
level 10−6 ∗ β α 10−6 ∗ β α 10−6 ∗ β α 10−6 ∗ β α
1 0.866 0.9836 1.05 0.996 0.618 0.984 0.748 0.995
2 1.18 1.145 1.51 1.167 0.834 1.14 1.06 1.16
3 1.61 1.387 1.83 1.406 1.14 1.38 1.28 1.41

Table 4.4

Results of fitting the upscaled resistance values K−1 to K
−1 + β|U|α in Forchheimer model

(2.5). We find that α ≈ 1 for coarse grids and that the values of β computed as a fit with α = 1
are reasonably stable. In addition, we show the fit in the diagonal model in which |U| is replaced by
|U1|.

We show the values of α, β in Table 4.4. The results show that the fit is not linear

when uh, ph are resolved on a fine grid. However, it is close to linear for coarse grids

and a smaller range of flow rates (not reported).

We conclude that more studies are needed here, and we leave this and a discussion

of appropriate anisotropic inertia model for future considerations.

5. Conclusions. In this paper, following [1], we proposed an algorithm which

carries fluid flow information from porescale to mesoscale in linear and nonlinear

laminar flow regimes. The algorithm delivers stable values of coefficients of Darcy

and non-Darcy models at mesoscale. Convergence is apparent for some quantities,

already within the range of grids used. In conclusion, our computational laboratory

delivers useful coefficients at Darcy scale.

However, we found that more work is needed to identify the appropriate inertia

model at Darcy scale especially in anisotropic geometries; this observation is not

disjoint from controversies that exist about that model. In addition, for the model

to become part of an “on-demand” computational laboratory, it has to deliver, e.g.,

the values of K, β in a few minutes. Currently, the computational complexity is as

follows. A set of j = 1, 2 experiments for geometry as in, e.g., Section 4.1.3 for 25

distinct values of uin takes about 30 min. on 4 processors for grid refinement level

1, about 1h for level 2, and so on. Pre-processing and post-processing (grids, file

transfer, averaging etc.) each take about twice as long per set. We hope that simpler

models such as one in [1] as well as adaptivity can help to reduce the computational

time.
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Appendix. Here we briefly provide values of coefficients used in simulations. We

used ρ = 998.2[kg/m3], µ = 0/001003[Pa.s].

For the example from Section 4.1.3 we used d = 0.0018[m] (diameter of grains of

radius 0.9[mm]). As a result we have Re = 1791.386uin when uin is given in [m/s].

For example, uin = 0.001 Re = 1.79. For the example from Section 4.2 we used d =

1.2[mm] (smaller axis of ellipsoidal grains) which gives, for uin = 0.001 Re = 1.19.

For the hourglass example from Section 4.1.2 we used d = 1.4[mm] (grain diameter)

which gives, for uin = 0.001 Re = 1.393.
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