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Boundary Conditions for Fully Implicit
Two-Phase Flow Models
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ABSTRACT. This paper describes a methodology for treating general
boundary conditions for the fully implicit expanded mixed finite element
method for modeling multi-phase flow in porous media. This approach,
which is locally conservative, is useful for modeling multi-physics and
multi-numerics in energy and environmental applications. Numerical
experiments for two-phase flow are included.

1. Introduction

The contamination of groundwater is one of the most serious environ-
mental problems facing the nation. For example, in 1996, the Department
of Energy listed 10,000 Superfund sites, where groundwater contamination
poses a serious threat to human health. The characterization and remedi-
ation of contaminated sites is difficult and expensive and only now is tech-
nology emerging to cope with this severe and widespread problem. Compu-
tation and modeling of multi-phase flow in permeable media plays a central
role in these technologies and is essential for risk assessment, cost reduction,
and the rational and efficient use of resources. Indeed, recent advances in
computer hardware, software, and algorithms have established computation
as a third pillar of science, joining theory and experiment. The mathemat-
ical formulations discussed here apply to both environmental remediation
and to problems associated with the environmentally prudent production of
hydrocarbon energy from existing oil and gas fields.
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The central challenge in addressing these porous media problems is to
maximize economic benefit from a resource whose properties are only poorly
known and in which a variety of complex chemical and physical phenom-
ena take place. The major tool of these efforts is a computational portal
comprised of coupled programs that together account for multi-component,
multi-phase flow and transport through heterogeneous geological structures.
The coupled programs must accomodate different physical processess occur-
ring simultaneously in different parts of the domain and, for computational
efficiency, should also accommodate multiple numerical schemes. To ac-
complish this, researchers at the Center for Subsurface Modeling (CSM)
at The University of Texas have developed a framework or problem solving
environment which is called IPARS (Integrated Parallel Acurrate Reservoir
Simulator) [PWPT97, WYW*97, ABET, MSAt99, LNW00, PLW99,
PLWO00, PWY].

TPARS represents a new approach to simulator development, emphasiz-
ing modularity of code, portability to many platforms, and ease of integra-
tion with other software. A key feature of the IPARS framework is that it al-
lows for the mathematically rigorous treatment of multiple domains in which
different physical processes are occurring, as well as providing a basis for im-
plementing different numerical schemes in different parts of the domain. The
near optimal scalability of IPARS is demonstrated in [WPGEDOO]. This
software is being used by CSM collaborators in academia and in governmen-
tal and industrial laboratories.

A methodology for treating multi-physics and multi-numerical meth-
ods requires general boundary conditions, in particular for mortar multi-
block [ACWY00, Yot96] and multi-model [ WAB*99, LPWO01, PLWO00,
WWPO00, Lu00]. There is an extensive literature for well-posedness and
regularity for general boundary conditions for general second order ellip-
tic operators of which incompressible single-phase flow is an example. In
addition, the formulation and analysis of Dirichlet, Robin, and Neumann
conditions in mixed and expanded mixed finite element approximations
to these equations is discussed in [AWY97, ADK198]. Several papers
on the treatment of incompressible multi-phase flow include the work of
[AD85, AWZ96, Arb92, Che97, CQE00, CKO01]. This is not the case
for compressible or slightly compressible multiple flowing phases such as de-
scribed by the two-phase problem presented in this paper or the three-phase
black-oil model.

The purpose of this paper is to provide a formulation for imposing
general boundary conditions for implicit discretizations based on expanded
mixed finite element approximations to two-phase slightly compressible flow.
We denote by €2 the computational domain and by 02 its boundary. Two
types of boundary conditions are considered here: the flux (Neumann) con-
ditions imposed on the part of the boundary I'yy C 052, with a special case
of the no—flow boundary I'y C I'y, and the prescribed data (Dirichlet) con-
ditions imposed on I'p C 09Q2. We assume that I'y NI'p = () and that
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Tnx UTp = 09. Other conditions are possible. For example, specification of
one phase pressure and one component flux may be convenient. However,
these extensions will not be discussed here.

In applications, the type and values of the boundary conditions may
change in time. For example, in air/water problems the water table can pe-
riodically rise or fall on the boundary of an aquifer. Here we allow I'p, 'y,
and the associated boundary values to change in time. The methodology
described is computationally efficient and straightforward to implement. In
our approach, one need only track and identify as a function of time those
boundary faces that change type or value and compute corresponding trans-
missibilities. Numerical experiments are included in this paper to illustrate
the soundness of this methodology.

The outline of the paper is as follows: In Section 2, we briefly describe
the physical models. In Section 3, we define the expanded mixed finite
element discretizations. In Section 4, general boundary conditions for these
discretizations are formulated. Numerical examples are presented in Section
5 and conclusions are given in Section 6.

2. Model Formulation

The flow system is formulated as a continuity, or mass balance, equation,
Darcy’s Law modified for multi-phase flow, equation of state relationships
describing the density of each fluid, capillary pressure relationships between
two fluid interfaces, and a saturation relationship.

The mass balance equation for each of the a fluid phases is given by

ON,
1 5

where N, is the concentration of the « phase, P, is the pressure of the «
phase, and ¢, is a source term. The concentration is the product of the
saturation and density, so that N, = Syp,- In the general two-phase flow
model, « is either a wetting phase fluid, w, or a non-wetting phase fluid, n.
We consider water as the wetting phase fluid, and either oil or air/gas as
the non-wetting phase fluid.

Darcy’s law for multi-phase flow is used to define the mass flux U, as

+V'Ua:qaa

ka
(2) Uy, = —paKM— (VP, — poGVD).
(6]

Here, K is the permeability tensor, k, is the relative permeability, u, is
the viscosity, po is the density, G is gravity constant, and D = D(x) is the

depth of the reservoir. We will also use phase mobility A\, =: paﬁ—z and
phase potential defined by
(3) VU, =:VP, — po,GVD

so that the Darcy equation may be rewritten as

(4) Ua - —K)\aV\I/a
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Substituting the Darcy velocity into the mass balance equation (1) gives
the governing equation for multi-phase flow

ON,, ko
(5) ¢ ot -V- (paKu_(VPa —pagVD)) = {4a-

The system is closed using the saturation and capillary pressure rela-
tionships. The saturation relationship (or volume balance) is given as

(6) d S, = L

Capillary pressure is the difference in pressure across the interface between
the non-wetting and wetting phase fluids which is a known function of sat-
uration, so that

(7) Pc(Sw) = P, — Py.

Examples of permeability and capillary pressure curves are given in Figure
2, which shows the respective degeneracies of these relationships.

Both water and oil phases are assumed to be slightly compressible, so
that their densities are given by

(8) Pa = Payref €xp(cals), a=w,o0
where c,, is the compressibility constant for the fluid and pq ;. is a reference
density. The density for the air phase is given by the real gas law,

P,M

(9) Pa:W, oa=aq

where M is the molecular weight, R is the gas constant, T is the temperature,
and Z(P,) is a function of air pressure.

Finally, the initial condition of the reservoir needs to be defined. This
can be done using an assumption of hydrostatic equilibrium or using ad-hoc
values of primary unknowns. Here we will assume that the values of all
phase pressures, saturations, and concentrations are known at time zero.

Weak formulation. We consider the spaces
(W, V) = (L*(Q), H(div; Q)

as well as the space A C H %(BQ) or A C L?(09). The first two spaces
provide test functions and pressure and velocity variables, respectively, while
the latter is used to define boundary values. The brackets (-,-) will denote
the inner product in W.

Using the spaces W, V, A, we obtain the weak form of (1) and (2). First
we multiply (1) by a test function w € W and integrate over Q) as follows:

Na
w%Pw+WU@4%M,WEmW

The weak form of (2) follows analogously except that the gradient of poten-

tial needs to be removed using integration by parts. We explain in detail

how this is done in Section 3 when deriving variants of spatially discrete
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equivalents of Darcy’s equation (2) with the expanded mized method. One
approach is to introduce the variable U,. We have

(Ua, ) = (AUqa,d), V€V, Va,
(K‘lffa,v) = (‘IJQ,V-U)—/ V,v-nds, Yv eV and Va.
oN

The treatment of different boundary conditions, which is the main topic of
this paper, is apparent through the last term in the above equation. If only
no—-flow boundary conditions are imposed then the boundary term is zero
since v-n = 0. Otherwise, while values of ¥ are defined directly or indirectly
on I'p, they are replaced in the integral over I'y by Lagrange multipliers
from the space A. An additional equation which guarantees the equality of
fluxes with the prescribed Neumman data is imposed using test functions
from A (see details in Section 4).

3. Spatial and Temporal Discretization

The model equations are discretized through the use of a cell-centered
finite difference scheme which is equivalent to the expanded mixed finite
element method where the approximation spaces are lowest order Raviart-
Thomas spaces (Wy, V) C (W, V) on a rectangular grid. This follows
the procedure described in [RW83] and outlined below. In this section we
will only be concerned with interior equations or with test functions whose
support is disjoint from 0f2.

The functions in W}, are piecewise constant on each cell; a test function
w;jr, € W}, is a characteristic function of the cell €;;;. On the other hand,
functions v € V', are linear in one coordinate direction and constant in the
others. We will frequently use the function v = v; 1/ jx which is linear in =
direction and constant in y, z directions and whose support is ;5 U ;1 j,
and which has nodal value v;; /5 = 1. The scalar unknowns pressures
(Pa), concentrations (N, ), and saturations (S,), as well as the densities
Pa, are interpreted as members of Wj,. The vector unknown velocities U,
are interpreted as members of V. We will supress the subscript A in the
following sections.

3.1. Spatial discretization. For every cell {);;;, we denote its measure
by Vijk, and we compute its pore volume &;;; = Vijpdijr where ¢;;; is the
porosity of the cell. Note that if porosity is not changing as a function of
time or pressure, then the pore volume is constant.

To discretize Equation (1), we multiply it by the test function w;;; and
integrate over € to get

(10) Avijk + Taije + Waije = 0,
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where the accumulation A, ;;x, transport 7 ;;x and well W, ;;x terms come
from respective terms in Equation (1) and are defined as follows:

ON, ON,
(11) Aaijk =2 Vijeijk ata = &ijk 6ta’
(12) Wijk =: —/ qaWijk, dT :/ g dx.
Q Q

ijk
Note that the well terms are non—zero only in cells which contain wells. In

IPARS we define the well terms using the Peaceman formulation [Pea83].
The transport contribution is evaluated as

Taijk = /V'ani,j,kdwz V -U,dz.
Q

Qi gk

For transport in the z direction we use the divergence theorem to obtain

T+ T — . . . . .
Togiin T Tagjn = / Uajiti/2,k deJr/ Uaji-1/2,5k * vdz
0112,k 01725k

= Ay Az (Uggiviyogr — Uajio1/2,5k)s

where 0€2; 11 /o ;i is the z+ part of 9€;5. Terms in the y, z direction can be
computed analogously and need to be added to 7, ;. The discrete velocity
values U, ;11/2,jx are defined below.

Discretization of Darcy’s law. The discretization of Equation (2)
is delicate as it must result in a locally conservative scheme as well as it
must allow for discontinuity and for degeneracy of fluid—rock properties,
specifically, of permeability K and of relative permeabilities k,. We use
the ezpanded mized method which satisfies these conditions and which has
optimal convergence properties [AWY96, AWY97, ADK"98]. More-
over, if appropriate quadratures are used, it can be shown that this method
gives a stencil equivalent to a cell-centered finite difference scheme (CCFD)
[RW83, AWY97, AWY96|.

Since discretization of velocities is more relevant to the topic of this pa-
per, we review some of the related details and for the sake of brevity consider
the x4+ direction only. Extensions to other directions are straightforward for
diagonal tensors. We do not elaborate on the full tensor case here.

First we follow [RW83] and consider the quantity w defined as

(13) u=-KVP,

which can be thought of as single phase Darcy velocity with the viscosity

p lumped with K and with no gravity so that ¥ = P. If K is not de-

generate then we can write K ~'u = —VP. This equation, when multiplied

by v = vi1/9,5% € Vi and integrated over the support of v;, /9 j; with

the trapezoidal rule applied to integration in the z direction and the mid-

point rule applied in the y, z directions, yields the following finite difference
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equation for the nodal value u; 1/ ji of u

1 _ 1 _
(14) ij A zg, (5 A J,‘ZKZJ; + 2 A $i+1Ki+11,jk> Uit1/2,k =
Ay; A zk(Piyjk — Pijk)

Analogous equations in other directons can be written. Now define trans-
missibilities 7511/ ji as

1 _ 1 3 -1
(15)  Tit1y2,k = Dyj B 2 (5 A xZKzﬂi +3 A $i+1Ki+11,jk> )
and rewrite Equation (14) as

(16) Ay A zguijo e = Tig1y2,56(Piv1,k — Pijk)-
Note that the use of K in the above calculation is consistent with harmonic
averaging of K; and K.

Now, in order to allow for degenerate K, we follow [AWY97] and define
2 = —V P, which gives u = Ku. This is done at the cost of introducing
an extra variable U which may, in practical calculations, be eliminated. For
example, if we use trapezoidal and midpoint integration rules to combine
(@, v)rpm = (P, V -v) and (u,v)ry = (K4, v)r then the following discrete
equations for the nodal values u; 19 jk, U121 become

1 1 -
Ay Az (5 Az + 3 A $i+1> Uit1/2,5k =
Ay; A zp(Pigajk — Pijr),

1 1
Ay A zg (5 Az + 2 A $i+1> Uit1/2,5k =

1 1 i
Ayj A 2 (5 AziKi, + 5 A $i+1Ki+1,jk> Uit1/2,5k-

We can eliminate @; 1/ ji to get a relationship similar to the one in Equation
(14). However, the resulting transmissibilities no longer have the interpre-
tation of harmonic averages.

Gravity terms. To explain how the gravity terms are included, instead

of using 4 = —VP and u = —KVP as was done above, we discuss now
u = —VU and
(17) u=-KVU.

For simplicity, we consider only one phase and supress the phase subscript
a- We need to define discrete values of the depth, the density, and the
potential variables. While the latter two are unknowns of the problem and
are functions of pressure, the depth D is really a continuous variable which
is given as data of the problem. In practical applications, density is likely
to be an affine function of position allowing for the computational domain
to be dipped from the gravity direction. Here we discretize D element by
7



element with a simple CCFD formula, Dthijk = Djjg, with D;;; being the
depth of the center of the cell §2;;;, which is convenient in implementation

The density p is a function of pressure P which is approximated by
piecewise constant P, and therefore over the support of v; 1/ ji, the density
values D;, are defined as

p (Pijk) in Qi
P, = .
pn (1) { p (Pit1,jk) in Q11 k-

Similarly, discrete potential values ¥} can be defined as piecewise constants
and over the support of v;; /9 j; they are given by

D”k .
v, Pijk — Pref — fDref pdx in Qg
- Diy1,5k :
Piv1jk = Bref — Ip,., " pdz in 11k

where Dy, Py.; are the reference depth and pressure at which potential is
ZEro.
Now consider the following calculation

Dy

(04, V- v) = (Ph,V-v)—g(/

Dref

Diy1,jk
- G / Padz,V - v
Drey Qit1,5k

Dit1
= V0 -G ([ pade V-0l
D,

where the reference terms cancel out. To evaluate the density integral we
now apply the trapezoidal rule to (fDi“Ll p dz) and we have (fDD;Jrl pdz)r =
5 (0ijk + piv1,jk) (Dit1,jk — Diji)- Define piq/o =: 5(pijk + pit1,jk), which is
the average value of p over the cells €;;; and €2;1 j;. The above calculation
is then completed by

(Uh, V- v) = Piy1,k — Pijk — Gpit1/2(Dit1,ik — Dijk)-

The discrete counterpart of Equation (17) is then analogous to Equation
(14) as follows

padm,V-v)

Qijn

Qi Uiyt jk

1 1 _
= Ay A 26 (Yit1,56 — Yijk)
= Ay A 2e(Piv1k — Pije) — 9piv172(Div1k — Dijk)
Mobilities in multi-phase Darcy’s law. In the multi-phase flow
case discussed in this paper we need to discretize Darcy’s equation (2) in

the form U, = - K\, V¥, = —Kpaﬁ—ZV‘IJa Here we also need to account

for the dependence of mobilities A, upon the pressures and saturations and
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for their possible degeneracy. We proceed with the product K\, in U, also
using the expanded mixed method as was shown above for K in wu.

In fact, there are at least two ways of decomposing U,,. The first with
U, = K\JUq; U, = =V, results in non-harmonic averaging of K but
allows for degenerate K. The second, U, = )\af]a; KU, = —VV¥,,
allows for degeneracy of the nonlinear terms A, but not of K and results in
harmonically averaged permeabilities.

Regardless of the choice, the mobilities introduce a hyperbolic type non-
linearity which cannot be treated with symmetric differences. For stability
we use upwinding, which is also known as one-point upstream weighting.
Alternatives include new approaches based on Kirchoff transformations and
higher order spline approximations [Eat01] or higher order upwinding. We
define the discrete mobility as

1
(19) >‘a,5jk = M_ka(sw,sjk)Pa(Pa,sjk)a
o

with the s in sjk found by upwinding

_J if Bijr > Ptk
(20) 5= { i+ 1 otherwise.
In summary, the erpanded mized method or CCFD discretization of
multi-phase Darcy’s law (2) is, in the strict interior,

(21) Ay A zUgivryo,5k = Tiv1/2,55 ik (Pasit1,ik — Poyijk
—Gpiy1y9,k(Dit1,k — Dijk)) .

In cells adjacent to the boundary we need to consider boundary conditions
and appropriately modify the spaces V, C V. This is discussed in Section 4
for general boundary conditions. However, in case of no-flow conditions we
can simply set transmissibilities to zero on faces adjacent to the boundaries.

3.2. Backward Euler discretization in time. Several techniques
have been used and analyzed for temporal integration of the equation (5),
and these include implicit, IMPES (IMplicit Pressure Explicit Saturations),
explicit and other methods [AS79]. In this paper we focus on a fully implicit
method which arises from the backward Euler scheme. At time %, we have
from Equation (5)

Nn+1 _ N7 pn—l—l n+1
Refe g (kP te (Rt - nHiGYD)) = gt
Atpy1 Mo
In order to obtain a fully discrete formulation, we apply the backward-
Euler time discretization to the spatially discretized Equations (10) and
(21) and we multiply them by the time step At = At, 1. The fully discrete
9



implicit equation for a cell §2;; is

1 1 1 1
Eije(NG ™ = Ng) = DAL, (Ti+1/2,jk (‘I’ﬁl,jk - Uk )

n+1 n+1 _
—ri-1/2,jk (‘I’zgk - ‘I’i—l,jk)) — Ltgijr, = 0,
which can be written in residual form as

+1 _ +1 +1 +1 _
(22) Rk = Aaise T Tavijk T Waige = 05

where the discrete—in—time residuals contain the term Atf, 1 and otherwise
are defined analogously to the continuous residuals. Equation (22) can be
written also as

{ RZLI,C =0, Vi,j,k: nonwetting (oil) equation,

’R,Zj;]lk =0, Vi,j,k: wetting (water) equation,

which is convenient when computing Jacobian entries (see Section 4).
We must solve the resulting nonlinear system

Ritin =0, Vi,j,k, Ya=n,uw

for the values of discrete primary unknowns. These can be chosen in several
ways. Common choices include using pressure of one phase as one unknown
and saturation or concentration of the same phase as the other primary un-
known. As another example, the choice of two pressures, though it appears
natural, may be inappropriate in cases where the derivative of capillary
pressure is close to 0.

In our implementation in IPARS, the two-phase oil-water model uses oil
pressure P, and oil concentration N, as primary unknowns, while the air-
water model uses water pressure P,, and water saturation S,,. The values of
primary unknowns at time ¢ = 0 or for n = 0 are defined by the initial condi-
tion. The nonlinear residual equation (22) is solved using an inexact Newton
method, where the Newton step is solved using GMRES with sophisticated
two-stage and multigrid preconditioners DKWW97, Edw98, LVW].

Jacobian calculations are based on a 7-point stencil, which is the tightest
stencil in 3 dimensions appropriate for diagonal tensor permeabilities. Our
Jacobian is computed analytically but it is not exact as we often choose to
drop lower order terms. This does not harm the convergence properties of
the method and allows for faster construction of the Jacobian as some of
the lower order terms can be computationally expensive. For example, in
the two-phase oil-water model the dependence of water density on pressure
is often ignored as this derivative is scaled by a (water) compressibility
constant, which is of the order of 10~7.

4. Boundary Condition Contributions

In this section we define types of boundary conditions that can be im-
posed on the external boundary 02 on solutions to the problem described
by Equation (5) and which, after discretization, are applied to each element
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adjacent to the external boundary of {2. We also define contributions to the
residual and Jacobian of the nonlinear system in (22) from boundary terms.

Qijk Qijk

|
|
1
B :e)(ternaj boundary
|

|
T - “ external boundary T
\ = \
i VI _ohostesll (i+1jK) i V1 )gh&av%ﬂm,jk)

| | -

1
|
. . °
”J i+1/2,jk A
|

- —= _— i —=

Q

i+1,j-1,k

F1Gure 1. Computational domain with interior and bound-
ary cells. Straight (left) and angular (right) boundary.

Geometry and notation. In the discussion below we will assume that
the computational domain has a geometry similar to the ijk grid shown
in Figure 1. More complicated geometries can be handled easily. In gen-
eral, boundary faces and relevant values will be denoted by subscript 1, and
also by superscript *. We have 0Q = |J,I'z. Consider a cell Q;;, C Q.
The z— and z+ neighbors of the cell €;;; are cells €; 1 ;5 and Q;1 ;i
with faces between these cells denoted by 0€2; 19 jx and €21/ j, respec-
tively. Suppose that 9€;;; N 02 # 0 and in particular that the edge (face)
aQi+1/2’jk C 09 as in Figure 1. This face aQi—I—l/Z,jlc will be denoted by
I'it1/2,58 or I'p. For convenience in implementation one can assume that
211, which is called a “ghost cell”, provides storage for the boundary val-
ues and for related calculations. Note that ;. ;5 is a ghost cell for both
Qi and for ;1 ;1 in the case of an angular boundary, which requires
care in implementation. In general, extending the computational domain by
adding “ghost cells” does not substantially increase memory requirements.
Of course, other implementation solutions are possible.

We will assume that each I', can be in at most one of the two sets I'p, 'y .
In other words, at most one of the conditions can be applied on a given face
of a cell and at most one set of relevant values of fluxes or of Dirichlet
data can be applied. In applications, this condition can be easily removed
in the case of Dirichlet or of non—-homogeneous flux conditions imposed on
a portion of a face where the remaining part is considered to be a no-flow
boundary. In implementation, such a condition can be reflected by including
the area of only the “active” part of the cell in the transmissibilities across
the face by generalizing the calculations presented below. This extension
may be desired for the user’s convenience but as it is less rigorous will not
be considered here.
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4.1. Discrete form of boundary conditions. The discrete equations
discussed in Section 3 were valid in the strict interior, i.e., for cells €2;;; such
that 00N, = 0. Now we proceed to discuss the discretization of boundary
terms. We first discuss a simple model problem with a simple form of Darcy’s
law as in Equation (13) and follow with its multi-phase extension (2).

Consider the following problem

(23) u = —KVP
(24) P|FD = P
(25) u-nr, = u*

where P* € A, u* € A x A are given. We use the the discrete subset Ay, C A
and drop the subscript ;, as before. The weak form of (23) is as follows: find
(u,A) € (V,A) such that

(K™ 'u,v) (P,v-v)—/F Pv-ndy—/r M-ndy, YveV
D N

/u-nédv - / wedy, VEEA,
I'n I'n

where these equations are complemented by a weak form of some appropriate
mass conservation equation analogous to (1) and the whole systems is solved
for (P,u,A\) € (W,V,A). Now we calculate the discrete transport across
Lit1/2,j& = 1, which is nothing else than a counterpart of Equation (14)
across the boundary. Since we assumed that I';, can be at most in one of
I'p or 'y, we need to consider each of the cases separately. The integrals
with u are computed using the trapezoidal rule in z and the midpoint rule
in ¥, z, and we get

. 1 — *
ifryNp=Iyg : ij Az (5 A .’I,'ZKU;> Uit1/2,jk = ij A Zk(PL — f)z'jlc)

ij A Zk (% A $2K2311> ui+1/2,jk = ij A zk()\L — Pijk)

if FL N FN == PL : {
Dyj A zguig ok = Ay; A zpu

The above result was obtained with the standard mixed method. The ex-
panded mixed method leads to the same discrete result. Note that the
unknown Lagrange multiplier A;, can be easily eliminated using uj .

The above form suggests using a “transmissibility on the boundary” T,
as a counterpart of Tj /s j; as defined by (15)

Ty, = Ayj A 2 (Aai 2K 5,) 7"

which, for a homogeneous permeability field and a uniform grid, is twice the
size of the interior transmissibility 7; 1/ jx. Transmissibilities defined this
way help to unify the notation for interior and boundary transport.
The definitions above also cover the case of a no-flow boundary where
for certain elements L we have I'r NI'g = I',. This can be easily handled
12



in implementation by setting 77, = 0 or by using uj = 0. Of course, it may
also happen that 02 = I'y.

Multi-phase Darcy’s law. For multi-phase Darcy’s law (2) we specify
values

(26) Us = —KXVT,, VYa
(27) Emlr, = &, form=12
(28) Uy -nry = U, Vo

In the above equation, we used Z,,,m = 1,2 € A to denote two (primary
or not primary) unknowns whose values need to be specified. For exam-
ple, we can choose =1 = P,,; &9 = S,,. Other choices, discretization, and
implementation are described in detail in Section 4.3.

In the fully implicit model discussed in this paper, the transport contri-
bution across I'; /9 j5 = I'r has the discrete form
Tk = DtTLA

*
o Ve = Vaijk), a=w,n

a,sjk(
where the n + 1 superscript has been supressed. The residual contributions
7;;”,‘; and related Jacobian entries depend on the type and specification of
boundary condition involved. Note that the general formulation accounts
for gravity and density terms.

In Section 4.2 we discuss the details of Neumann conditions and in Sec-
tion 4.3 we discuss Dirichlet conditions.

4.2. Flux boundary conditions. A natural condition to be specified
on the boundary 02 is the Neumann-type condition in which the flux of the
components or phases is prescribed. In the context of this paper the Neu-
mann condition is called “natural” for two reasons. First, in multi-phase
flow models used in oil reservoir simulations, the boundaries of computa-
tional domains are frequently defined by impermeable geological barriers
whose position may not be known precisely. Such is also the case of air-
water flow models in confined aquifers. Second, in the mixed formulation,
as will be clear from the discussion below, it is natural to include the con-
tribution from the flux.

The simplest case is the no—flow boundary condition in which we set

Ua,it1/2,4k - Mlr, =0, Ve
In this case there are no contributions to either the Jacobian or to the
residuals. In implementation, this can be easily accounted for by setting the
transmissibility 77, = 0 at the boundary as mentioned above.
For other flux conditions, the discrete form of (28) is

Ua,i—|—1/2,jk : 77|I‘L = Z’{z,aa Va
where U] , is given. In this case there is a contribution to each of the

residuals

7';,2;% — UL JAyjAzy At, Va
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but this condition does not affect the Jacobian.

4.3. Dirichlet conditions. In the Dirichlet condition (27) we allow
for the values of the pressures or of other scalar unknowns to be prescribed
on I'p. This condition is not natural for either the (expanded) mixed formu-
lation or for cell-centered finite differences, but it is frequently used in test
cases or in comparisons with analytical solutions. However, little has been
proven, in general, about the well-posedness of such conditions. Also, spe-
cial considerations must be given to the Dirichlet condition on the outflow
boundary.

In general, the conditions may be imposed on primary unknowns of the
nonlinear system or on some other unknowns. Applications may dictate
what conditions are natural or useful. In particular, it may be more natural
to impose conditions on ¥, than on P, but for simplicity we will only discuss
the conditions imposed on pressures.

For example, consider

Pa'l"
Sa'I‘

_ *
i+1/2,5k Pa,L

_ *
i+1/2,5k — “a,L

for a fixed phase o (wetting or non-wetting). This is the easiest of the
conditions because the values of any other variables can be computed in a
straightforward manner using Equations (6),(7),(8) or (9). We will assume
henceforth that any of the values are known on L.

Consider now the implications of this condition. From the definitions
above we have

*
Ua,it1/2,ik = TLAa,sk(Ya, 1, — Yaiji)s

where the value of s is determined by upwinding. If the upwind value s =
(flow of phase a goes into 2), then the mobility value Aa,skj 18 computed
from the boundary value of water saturation S which is either given or
can be computed from S} as S, =1 —S;. Density and potential values for
phase « are similarly obtained. Otherwise, if s = i (flow of phase a goes out
of Q), then it is natural to use the interior value Sy, ;jx which corresponds to
the outflow condition. Users may choose to override it and then a boundary
layer is introduced.
As another example, consider the condition

Pw'I‘
Pn|1"

_ *
i+1/2,5k — T w,L
i+1/2,5k P;L(,L’
which at a first glance appears natural. However, several restrictions will
apply. For example, the difference of pressure values P,’:, L= {;’ 7, should be
in the range of capillary pressure relationships. Moreover, the direction of
induced flow of one phase should agree with the flow of the other phase,

except for rare cases when the opposite may be physically justified.
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As a last example, one may wish to impose conditions on primary un-
knowns of the nonlinear system or on some other unknowns. The latter is
often the case when coupling models.

For example, for the two-phase oil-water model whose primary unknowns
are P,, N, we prescribe

_ *
P"U|Fi+1/2,jk — Tw, L
No‘l"

_ *
i+1/2,5k — oL

To handle this condition, we construct a map which delivers the values of
all primary and auxiliary variables. In this case, we have to solve

Ny = po(P)S5 = po (P + Pe(Sy,)) (1 = Sy)

by a local Newtonian iteration for S;,. Once S, is known, all other values
follow.

Jacobian and residual contributions. As we have seen, regardless
of whether the conditions are defined for primary unknowns or whether they
are defined for other than primary unknowns, it is necessary to compute all
relevant properties on the boundary or in the interior of the cell adjacent to
the boundary. Once this is done, it is not difficult to calculate contributions
to the nonlinear system.

As an example of such contributions, we consider here the oil-water
model with primary unknowns oil pressure P, and oil concentration N,. The
contributions to each of the “equations” in (22) depend on the upwinding.
We shall also drop all terms with compressibility. For example, we have

— N, Sy 1 . OSw ~u
tahat Sw=1-— 7a(B) 50 aN- = po and we can approximate o 0. Also,
Po __

50, = CoPo ~ 0 since ¢, is small. Similar terms will be dropped for the
water phase. For simplicity in the calculations above we will assume that
D;jr, = Dji1 j and thus we will omit all the gravity terms. Of course, the
latter is not assumed in the implementation.

If s = %, then the contribution to the residual in the “oil equation” is

T = ToXs (Py — Pogijk) -

Now we define the Jacobian entries using the approximations mentioned
above. We have
T+
LTO’WC =: =T\
0P,k
T+
87-07Z.7k . O
ONy.ijk

If s = 4, then the mobility is determined using S, ;jx and we have the
residual contribution

T+ *
Toijr = TrAoijk (P — Poijk)
15



and the contributions to the Jacobian are approximated by

97 0,
]k
=1 —TrAoij
aPozyk LNo,ijk
aTE: K
Jk 0,15k *
= T, 29K (P _P,).
aNo,zgk g Ho ( o,zyk)

The contributions to the Jacobian coming from the “water equation”
are similar except that we now also use the capillary pressure relationship
(7). The differentiation with respect to P,;j; reveals that, regardless of
upwinding, we can use

a7+

ZTwyijk
8Po,zgk

For differentiation with respect to N, ;;x, we have with s =

o7t " o .
T = -, (k:,,(sw,ijk)p—j (P3— Paii) + Mot Pl (Swiie) E) |

and if s = * we define

BT“”Z 1
]k * pl
=T APl (Swijk) —-
8Na,zgk: wee Ty Po
We conclude this section by stating that the entries in the air-water
model are, of course, different. In particular, treatment of compressibilities

requires special attention.

_TLAw,sjk-

5. Numerical Examples

o
3

o
o

o
2
Capillary Pressure

Relative Permeability
o o o o
S o

o

L. L I R T
0.4 0.6 . 0.2 0.4 0.6 0.8
Water Saturation Water Saturation

FIGURE 2. Relative permeability (left) and capillary pres-
sure (right) as functions of wetting phase saturation

In this section we describe the numerical results for three test cases,

which are, respectively, one-, two-, and three-dimensional.
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In all numerical examples, we use the relative permeability-saturation
relationship shown in Figure 2. All of the functional relationships are eval-
uted using a table lookup with piecewise splines, which handles the removal
of singularities for capillary pressure [IPA00, Whe|. The latter capability
is essential in handling capillary pressure data which typically has a pole at
residual values of S, (see Figure 2). We used this capillary pressure and
permeability data in Examples2 and 3.

All spatial dimensions given below are in [ft] and all pressure values are
given in [psi]. permeability units are in [md]. We used standard values for
oil and water densities, viscosities and compressibilities except for Exam-
ple 1 where we assumed incompresible fluids. We set the tolerance for the
nonlinear solver to ensure that we receive mass balances correct to seven
digits.

5.1. One—dimensional Buckley-Leverett problem. One of the mo-
tivations for implementing general boundary conditions into our framework
was the need for comparison of our model with experimental data from core
floods or with analytical solutions for multi-phase problems from the litera-
ture. The Buckley-Leverett problem [BL42] is a standard way of validating
the results of two-phase, incompressible flow models. This problem describes
the displacement of a nonwetting phase fluid by a wetting phase fluid in a
one-dimensional, horizontal system with no capillary effects. The analytical
solution can be constructed and compared to the numerical solution.

rat
&

o
=

Watebr satu

o
w

numerical

o
N
&
T

o
N

P !
250 500 750

Ficure 3. Comparison of analytical and numerical solutions
for Buckley-Leverett problem

We simulate the Buckley-Leverett problem by imposing Dirichlet condi-
tions at the horizontal ends of our reservoir. Our reservoir is 10 x 1000 x 10,
with permeability in y (horizontal) direction equal 500. We specify oil pres-
sure of 550 and oil concentration of 0.6 at the left end of the reservoir, and
oil pressure of 300 and water saturation of 0.4 at the right end. The reservoir
was initialized at an oil pressure of 500 and water saturation 0.2.
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Figure 3 shows a comparison between the numerical and analytical solu-
tions to the Buckley-Leverett problem. The size of a mesh cell is 10 x 10 x 10,
and the time step size is 1 day. The curves in the figure show the solutions
at 101, 201, 401 and 701 days.

FI1GURE 4. Two-dimensional case: grid and boundary regions

5.2. Two-Dimensional Example. In this example we demonstrate
the use of several types of boundary conditions using a two-dimensional
domain. The domain is a square 400x400 discretized with a 20x20 grid with
uniform and isotropic permeability field with each of the entries of tensor
K = 200. The flow is driven by boundary conditions imposed on I'; and
I’y which are located in the lower left and upper right corners, respectively.
Specifically, we impose

Py, = 550
Swlr, = 0.8

and we request that
Pylr, = 300.

Saturation condition on I's may be imposed using the same saturation value
as is used at initialization

Swlr, = 0.2.

However, this condition will create boundary layer at time close to break-
through. Instead, we use an outflow condition letting the flow cross I's.

In the interior of the domain there is an L—shaped obstacle. Such struc-
ture can be modeled by using an internal boundary T ppstqce = I's Uy with
elements belonging to the obstacle “keyed-out” of the computational do-
main, see Figure 4. Three different variants of boundary conditions imposed
on ' jpstacie are considered and discussed below. In addition, 8_(2\ (U?Zlf‘i) =
To.
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PWAT
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532.143
514.286
496.429
478571
460.714
442,857
425.000
407.143
389.286
371.429
353571
335.714
317.857
300.000

FIGURE 5. Two-dimensional case: profiles of P, (left) and
Sy (right) after 200 days. Boundary conditions in variant A.

A) In this case we assume that the region bounded by T ypstacie i a very
low permeability region or impermeable strata which provides an obstacle for
the flow. Here we use the no-flow boundary condition on I'gpstacre- Results
are shown in Figure 5. Note that flow goes around the obstacle and that
there are no gradients of pressure cross I'gpstacie- As an alternative to “keyed-
out” elements, one could use here very low permeability cells.

PWAT
550.000
532.143
514.286
496.429
478571
460.714
442,857
425.000
407.143
389.286
371.429
353571
335.714
317.857
300.000

FIGURE 6. Two-dimensional case: profiles of P, (left) and
Sy (right) after 200 days. Boundary conditions in variant B.

B) In this example we allow for the upstream side of the strata I's
to be permeable and we maintain a pressure condition to be Py = 500
while we maintain a fixed saturation S;, = .2. We use no-flow condition
on I'y. In applications, this case could correspond to a case where inside
of the “obstacle” there is high content of non-wetting fluid which is being
continuously replenished. Pressure and saturation profiles after 200 days are
shown in Figure 6. In this example, a boundary layer arises.
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FIGURE 7. Two-dimensional case: profiles of P, (left) and
Sy (right) after 200 days. Boundary conditions in variant C.

C) This case is similar to B) except that, in order to prevent the bound-
ary layer, we impose outflow condition with P; = 500. In this way the
interface I's becomes a seepage face through which we allow any flow to
occur. See results in Figure 7: note the difference between those for case B
and those for case C.

5.3. Three—dimensional field example: flow around a bend.
This example demonstrates that our formulation and implementation in
the IPARS framework allows full 3D complicated geometries as well as tem-
porally dependent boundary conditions.

The computational domain covers a region of complicated lithology around
an oxbow bend, with a 2° angle away from the principal gravity direc-
tion. The grid is highly irregular (see Figure 8), and permeability layers
are aligned with the grid. The permeabilities are heterogeneous; in the ver-
tical direction, the permeability is 200 everywhere except layers 4 and 7
where it equals 30 and 40, respectively. It is also anisotropic: permeability
in the vertical direction is 25, 5, and 3 in the respective layers. The reservoir
is initially filled with water and the slightly compressible non—wetting fluid
in hydrostatic equilibrium, with the non-wetting phase pressures on top of
reservoir set to 600 and a water saturation of S,, = 0.35.

At the beginning of the simulation, we impose Dirichlet conditions on
the non-wetting phase pressure and water saturation on boundaries I'; and
FQ, and Fg,

P,|r, = 650, Sy|r, =0.7,
P,|r, = 650, Sy|r, =0.7,
and P,|r, = 500, Syl|r, = 0.3.
Thus water is initially introduced into the reservoir through I'y and T,

which can be seen in Figure 9. The boundary region I's is initially inactive.
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F1GURE 8. Mesh with boundary condition regions and non-
wetting phase pressure at day 1
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F1GURE 9. Water saturation contours at days 1 and 21

At day 20 of the simulation, we impose a no-flow boundary condition on
I’y and I's. Then, after 40 days, we impose a flux condition on I's, so that

Uw . ’l’)|r3 = 50 and Un . T)|F3 = 0,

and we impose a Dirichlet condition on the non-wetting phase pressure, but
we take the saturation value for the non-wetting phase from the neighboring
cell. Thus at day 40 on I'y we set

P,|r, = 400,

and allow the saturation value to be determined during the computation.
This change in boundary conditions can be seen in the transition in water
saturation profiles given in Figure 10.

The water saturation and non-wetting phase pressure contours at the
end of the simulation are given in Figure 11. Thus you can see the flow
moving from I's to 'y, and the separation in water saturations at the I'y
and I'; boundary regions. Thus at the end of the simulation, you can see by
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FIGURE 11. Water saturation contour and non-wetting
phase pressure at day 161

the saturation profile in Figure 12, that the wetting phase fluid has reached
the boundary edge and is being removed from the reservoir.

6. Conclusions

We have shown that our discretization of the two-phase flow models
allows for a variety of boundary conditions. This gives us flexibility in our
modeling capabilities, as these boundary conditions allow us to more easily
couple different physical models. Our discretization is also locally mass
conservative.
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