
Procedia Computer Science 00 (2010) 1–10

Procedia Computer
Science

Adaptive modeling of methane hydrates
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Abstract

We consider a computational model for the evolution of methane hydrates in subsurface.
Methane hydrates, an ice-like compound abundant in subsea sediments and unstable in standard
conditions, are an environmental hazard and simultaneously an energy source. Our multiphysics
model includes multiphase multicomponent mass conservation equations and several variants
of energy balance equation with or without latent heat. We present the technique of model
adaptivity which helps to assess and control the two sources of the computational error: the
discretization error and the modeling error. The nature and magnitude of the modeling error is
strongly dependent on the application and smoothness of solutions.
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1. Introduction

In this paper we consider a multiphysics computational model for methane hydrates. Methane
hydrates, ice-like structures present in subsea sediments, are stable only at low temperatures and
high pressures, and are an environmental hazard and an energy source [1, 2, 3]. We are interested
in the assessment and control of the computational error for various variants of the model.

When modeling complex phenomena one has to assess and control two sources of computa-
tional modeling error: the discretization error and the modeling error. Consider an exact model
of a complex phenomenon M(u) = 0, u ∈ Υ, where u denotes a set of primary unknowns and Υ
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the state space. In practice one solves for uh ∈ Υh its computational counterpart

Mh(uh) = 0, uh ∈ Υh, (1)

where Υh ( Υ is of finite dimension, and h is the grid parameter. The computational error
u − uh arises from approximation error of Υ by Υh as well as from the modeling approximation
M→Mh due to, e.g., numerical integration, linearization, or decoupling.

Now consider a modified computational model M̃h(ũh) = 0 which is a discretization of some
modified model M̃ close to M, or a modification of Mh. The idea is that the solutions ũh are
easier to obtain than those of (1) and that the additional modeling error that arises is of similar
order of magnitude as the discretization error for (1). To asses and control the error u − ũh we
can use the splittings

u − ũh = u − ũ︸︷︷︸
modeling error

+ ũ − ũh︸ ︷︷ ︸
discretization error in M̃

= uh − ũh︸  ︷︷  ︸
discrete modeling error

+ u − uh︸ ︷︷ ︸
discretization error in M

.

The discretization error(s) u − uh or ũ − ũh can be estimated and controlled via a-posteriori
error estimators and grid adaptivity techniques which are most successful for linear scalar model
problems but are nontrivial to formulate for highly nonlinear coupled problems, see [4, 5, 6, 7]
for representative references for model problems.

However, it is not obvious how to handle the modeling error u − ũ or uh − ũh; its nature
and magnitude is strongly application dependent and this error may be expensive to estimate
except for simple model scalar problems. As an indicator of the modeling error we propose to
use uH − ũH which is relatively inexpensive to obtain if H >> h. Theoretical foundation can be
found in [8]; in this paper we present an illustration how this works for a complex system.

Specifically, let (1) represent a coupled transient system of nonlinear partial differential equa-
tions (PDEs) describing the evolution of methane hydrates in subsurface. Some of the compo-
nents (u)c of the unknowns u may exhibit sharp fronts while some others may be smooth enough
to be measured in energy norm. In addition, we cannot expect differentiability of solutions of
PDEs with respect to just any parameter of that PDE. Therefore, the influence of one component
upon the others, and/or the impact of model modifications, when assessed via sensitivity analysis,
is based on only a very weak theoretical foundation. In this paper we discuss a few qualitative
ideas for assessing the modeling error.

The plan of the paper is as follows. We first present the model of methane hydrates in which
diffusion and phase transitions dominate. We solve mass conservation equations and an energy
balance in four variants which represent various model modifications M̃ of a basic model M.
Then we propose how to assess the global computational modeling error.

Last, we comment on the state of the art of methane hydrate modeling. The simulators such as
STOMP-MH [9] and TOUGH+Hydrate [10] have computational models based on finite volumes
and state-of-the-art thermodynamics and solver capabilities. On the other hand, recent research
codes [11, 12] are concerned with important scenarios of hydrate evolution. However, little is
known about the error analysis and control, or about the impact of model modifications in these
implementations. This paper is a step in this direction, but the ideas have been applied only to a
simplified model. The significant challenge will be to incorporate the model and grid adaptivity
ideas proposed here in a comprehensive fully implicit implementation.
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2. Mathematical model for hydrate evolution, static temperature

Here we briefly present a model for hydrate evolution in subsurface. We follow closely
the standard notation for multiphase, multicomponent flow and transport as in [13, 14, 15]. A
comprehensive model for hydrates such as [9, 10, 11, 12] may include all the first-order and many
second- or third-order effects relevant at various time scales of interest. In this paper we consider
only first order effects relevant at large time scales [1] such as diffusion and phase transitions and
account for temperature evolution, but ignore sedimentation rate. We note that the model in [11]
does not include latent heat while we were not able to identify all the necessary definitions of
energy-related terms in [12].

We consider methane and other fluids in a porous subsea sediment reservoir Ω ⊂ Rd, 1 ≤
d ≤ 3, an open bounded domain. The reservoir is under the earth surface; its depth is denoted
by D(x), x ∈ Ω, and its porosity and permeability by φ,K, respectively. In this paper we assume
φ = const,K = const.

2.1. Phases and components
In addition to methane M, the main components of the fluids in the porespace are water W

and salt S . These can be present in one or more phases. In general, in [11, 12] one considers two
mobile fluid phases l, g (brine, gas) and an immobile hydrate phase h (hydrate). Usually the pore
space is mainly saturated with water phase with only a small amount of methane gas present.
The three phases l, g, h occupy together the pore space and their respective volume fractions are
denoted by saturations S p, p = l, g, h, with S p ≥ 0, and

∑
p S p = 1.

Usually one considers phase pressures of mobile phases Pl, Pg, and the capillary pressure
relationship Pg − Pl = Pc(S l) given by Brooks-Corey relationships or van-Genuchten corre-
lations [13]. The advective velocities are given via a multiphase extension of Darcy’s law
vp = −K krp

µp
(∇Pp − ρpG∇D(x)), p = l, g, where krp, µp denote relative permeability, viscosity,

and density of phase p and G the gravity constant. In this paper we assume ρp = const.
In this paper we assume that the water phase is distributed hydrostatically, i.e., the gradient

of the potential in Darcy’s law is zero and therefore vl = 0. In addition, we assume that the
gas phase saturations are below their residual amount i.e. gas phase is immobile due to krg ≡ 0
and vg = 0. In other words both phases are effectively immobile. Any mass transfer occurs by
diffusion in liquid phase and by phase transition to gas and hydrate phases. In what follows we
also set P = Pl and ignore capillary pressure i.e. Pg = P.

To account for component diffusion and component distribution between phases and for
phase transitions, we discuss mass of each component. Mass fraction of component C in phase p
is denoted by XpC , and we have XpC ≥ 0. We have for each phase p,

∑
C XpC = 1, and specifically

in this paper

XgM = 1, (gas phase contains methane only) (2)
XhM + XhW = 1, (both known for a fixed hydrate nuumber) (3)

XlM + XlW + XlS = 1, (unknown variables). (4)

2.2. Thermodynamics
The distribution of components between phases is governed by thermodynamics. In partic-

ular, one needs the following quantities to determine phase behavior: i) the equilibrium (melt-
ing/dissociation) pressure for given T and salinity PEQ = PEQ(T, XlS ), and ii) maximum solubil-
ity Xmax

lS (P,T, XlS ) of methane M in liquid phase p = l. Such data is available in the literature via
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various functional models related to an equation of state (EOS) approach, or via lookup tables
[2, 12, 16, 17].

2.3. Mass conservation equations

The general phase-summed mass conservation equation is

storageC + advectionC + di f f usionC = sourceC ,

where the individual terms vary with C = M,W, S . Dropping the advection terms we have

storageM︷                                         ︸︸                                         ︷
∂

∂t
(φS gρg + φS lρlXlM + φS hρhXhM)−

di f f usionM︷                  ︸︸                  ︷
∇ · (DmφS lρl∇XlM) = 0 (5)

storageS︷          ︸︸          ︷
∂

∂t
(φS lρlXlS )−

di f f usionS︷                 ︸︸                 ︷
∇ · (DsφS lρl∇XlS ) = 0. (6)

These equations describe diffusive mass transfer of methane M and of salt S in liquid phase
p = l; the definition of diffusive fluxes follows from Fick’s law.

Formally we can also write for the water component ∂
∂t (φS lρl(1 − XlS − XlW )) = 0. Adding

this equation to (6), (5), in case of nontrivial advective fluxes would yield an equation for the
pressure. However, since the pressure is assumed hydrostatic and advective fluxes vanish, XlS

and XlM can be found from (6)–(5), and the water equation is redundant.
If P,T are known, the system (5)–(6), when complemented with initial and boundary con-

ditions, can be solved numerically. To fix the pressure, we assume hydrostatic pressure model
P0(x) linear with depth via hydrostatic gradient: Ptop = 8MPa, and lithostatic/hydrostatic gradi-
ent is 10.4MPa/km which gives bottom pressure at depth of 400m of about 10MPa. Similarly, we
assume a fixed thermal gradient and an associated static linear temperature profile T0(x). with
Ttop = 4oC and geothermal gradient 55oC/km which gives the bottom temp about 11oC, see
example in Figure 1.

After discretization, the resulting algebraic system is solved for two primary variables which
fully describe the thermodynamic conditions in the model; see Gibbs rule [18, 13, 19]. The
choice of primary variables u may be dictated by convenience but it must be possible to com-
pute all other variables from u. The choice which variables are primary is tricky when phases
appear/disappear in certain parts of Ω; this is a long-standing issue in reservoir simulation.

In [14, 20, 15] variable switching is proposed. Here we follow another approach used in
petroleum industry [21, 22, 23]: we define concentrations NC which are the storage terms under
∂
∂t in (5) and use these as primary unknowns. Concentrations are smoother than phase saturations
but their use may require a local nonlinear solver called flash, see [23, 13].

An example of hydrate evolution similar to scenarios in [11] is shown in Figure 1.

2.4. Solving the coupled nonlinear system

Now consider the discretization of the equations (5)-(6). Both spatial and temporal grids are
adaptive but are assumed uniform in the presentation below. To discretize in space, we apply
the cell-centered finite difference method; this method is conservative, equivalent to mixed finite
elements on rectangular grids [24], and is amenable to adaptivity [25]. Also, it can be easily
extended to a more general model with advection. For time discretization, one can apply either
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Figure 1: Evolution of methane hydrates. Shown are profiles of temperature, pressure, gas and hydrate saturations,
solubilities, and phase state, at time step 1, 10, 100 (nondimensional). Phase state is 1 (L+H), 2 (L+H+G), 3 (L+G), 4
(L). The methane concentration NM is decreasing because we let it escape it to the ocean at x = 400. This causes the
dissociation of hydrate and the decrease in salinity; the hydrate/gas interface moves down.
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Figure 2: Temperature profiles for different variants of energy equation. Static model uses (9). Dynamic, no latent heat
model, uses (11) with LH = 0. Dynamic, sink-type model, uses (11). Dynamic, Stefan-type model, uses L̃H . Not shown
is grid convergence of tempreatures in energy norm which is global for models without latent heat, and local away from
phase boundary for the models with latent heat.

a fully implicit formulation or a sequential formulation. Either way, the most difficult part of the
model is accounting for all the correct thermodynamics and phase transition behavior.

Fully implicit formulation has the advantage of being unconditionally stable while it requires
a substantial computational effort and may be overly diffusive; it is advocated for production-
quality simulations of a comprehensive model with second and third order effects [9, 10]. In this
paper we report on the results of a sequential formulation which shows the first order effects quite
well and can be naturally imbedded in our model adaptivity procedure. We use a very small time
step to practically eliminate the time discretization error, and to ensure stability.

For (5)-(6) combined with the static profile of temperature, with the notation related to the
spatial discretization supressed, we solve the following system at time step tn+1

Fn
M(Nn+1

M ) = 0, (7)
Fn

S (Nn+1
S ) = 0, (8)

T n+1 = T0(x). (9)

Here Fn
C denotes a collection of accumulation and diffusion terms whose coefficients are evalu-

ated at the time step tn for the component C = M, S . The linear solver is applied to resolve the
resulting set of systems of linear equations for Nn+1

M ,N
n+1
S which approximate the true values at

the time step tn+1.

3. A model for methane hydrates with dynamic energy balance

Now we replace (9) by one of several variants of a dynamic energy balance equation; its
importance is discussed in [26, 27]. These various models replace (9) by the energy equation of
the form Fn+1/2

T (T n+1
h ) = 0, in several variants.

A general energy equation for multiphase multicomponent system has a structure similar
to (5) with heat conduction terms en lieu of diffusive terms and convective fluxes en lieu of
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advective fluxes, now associated with the overall mass flux term F

∂

∂t
(C(T )) + ∇ · (HρF) − ∇ · (λ(T )∇T ) = 0, (10)

in which H is the enthalpy [13, 18, 28]. We need now to make explicit the heat accumula-
tion/capacity C(T ) and the heat conductivity λ(T ) terms, as well as identify the latent heat effects.
The latter arise during the hydrate formation and dissociation in a process similar to water-ice
phase transition.

In the classical Stefan model [28] for water-ice phase transitions occuring at a temperature

T eq, we have C(T ) = T
{

C1, T < T eq,
C2, T ≥ T eq,

+ LH(T − T eq), and λ(T ) =
{
λ1, T < T EQ,
λ2, T ≥ T EQ . Here

H(·) denotes the Heaviside graph and L denotes the latent heat of phase transition which occurs
at T EQ. The model only has weak solutions as the graphH(T ) is not differentiable in a classical
sense; its distributional derivative is a Dirac source concentrated along the free boundary and the
analysis is highly nontrivial; see [29, 28] for a few representative references. Appropriately, nu-
merical solution is delicate; the use of adaptive methods and various regularizations in particular
with phase-field models or level-set methods have been considered e.g. in [30, 31, 32].

Consider the behavior of solutions to (10) when initially the region Ω is occupied by ice
under T (x, 0) = T0 < T EQ. In a model driven by heat supplied from one of the boundaries,
while the other boundary is kept at T0, the free boundary between the regions occupied by water
and ice moves in time and eventually assumes a stationary profile across which the temperature
T is continuous but its gradient is not. The profile of the dynamic solutions T (x, t) depends on
the magnitude of L. However, in the absence of mass fluxes, the stationary solution T (x,∞) :=
limt→∞ T (x, t) does not depend on L but only on the jump λ1 − λ2 in λ(T ). In other words, one
can find T (x,∞) with a model including latent heat or not; this suggests opportunities for model
adaptivity if one is interested only in long-term solutions.

An appropriate extension of Stefan-type model to multiple phases and components [13, 18]
includes summation over phases and phase enthalpies Hp = CpT so that C(T ) = (1− φ)ρRCRT +
φ
∑

p=l,g,h S pρpCpT, λ(T ) = (1 − φ)λR + φ
∑

p=l,g,h S pλp. These definitions are refined further to
identify the latent heat of hydrate dissociation LH as the difference of enthalpies Hh − Hl. We
skip the details and consider the following definition of rate of change of C(T ) [13, 18]

∂

∂t
(C(T )) =

∂

∂t
(CT T ) + LH

∂

∂t
(φS hρh), (11)

where we have used the total heat capacity CT := (1 − φ)ρRCRT + φ
∑

p=l,g,h S pρpCp.
The mass conservation combined with (10) and (11) is our reference model M(u) = 0. We

refer to it as the Sink-type model [33, 34], because the term LH
∂
∂t (φS hρh) plays a role of a heat

sink term when moved to the right-hand side of (10).
A simple modification of M is the dynamic model M̃dynamic obtained from M when we set

LH = 0. An even simpler version M̃static discussed in previous section replaces the energy
equation in M by (9); its results are shown in Figure 1. Yet another variant M̃S T EFAN or a
Stefan-like model accounts only for the occurence of phase transition and not accurately for its
magnitude. It is derived [3] when the sink term is replaced by L̃H

∂
∂t (H(T − T EQ) where L̃H

accounts for volume and mass change.
It is very interesting to compare the solutions corresponding to M, M̃static, M̃dynamic, M̃S T EFAN .

Figures 2 and 3 present plots of results using data similar to those in Figure 1 with the following
modifications: we assume a constant initial amount of methane NM , and the initial temperature
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Figure 3: Saturation profiles for different temperature models with a) static, b) dynamic, no latent heat, c) dynamic, with
sink model and d) dynamic, with Stefan-like model. Visible is (weak) grid convergence of saturations.

at sea bottom lower by 3oK than the final temperature. The temperature rises according to the en-
ergy equation in all models except M̃static. The values of temperature and saturations are shown
at the (nondimensional) time step tn = 10.

4. Adaptive modeling of Methane Hydrate

When considering adaptive modeling and grid refinement, the first concern is whether the
convergence in discretization parameters can be indeed observed and in what norm it should be
measured. Theory suggests that for smooth solutions one can expect at least first order conver-
gence in L2 or even H1 norm. At the same time, non-smooth components may not converge in
norms stronger than L1.

In our problem, an example of smooth and non-smooth variables is provided by the temper-
atures and the hydrate saturations, see Figures 2, 3, respectively. The former are continuous and
smooth except near the phase transition boundaries, and the latter exhibit a sharp change at the
boundary where the hydrate dissociates and forms. Therefore, it is not possible to apply simple
a-posteriori error estimates to both variables.

Now we focus on the modeling error and the combined computational error and provide
an illustration of the ideas given in Introduction applied to our complex coupled problem. We
discuss the total pointwise error ẽc

h = (u − ũh)c and the qualitative behavior of the grid error
combined with the modeling error for the selected components c of u. The exact value u is
estimated from a very fine grid solution (not shown), after we test the stability of solutions. We
consider the error(s) ẽT

h in the temperature T variable which is a smooth component of u, and
ẽS h

h in the hydrate saturation S h, which is nonsmooth. The errors are shown for two grids: the
coarse grid H and medium grid h, with interpolation used as needed. The goal is to understand
the behavior of error on the medium grid h by using the inexpensive estimates of the error on the
coarse grid.

In Figure 4 we show the pointwise error ẽc
H := ((u − uH) + (uH − ũH))c for both components

which includes the grid plus the modeling error on the coarse grid. We see that ẽc
H agrees well

qualitatively with ẽc
h for both variables c = T, S h.. However, the grid error is overpredicted sig-

nificantly when measured in the energy norm, or in Lp, p = 1 norms, for smooth and nonsmooth
components, respectively. Therefore, we need an indicator for the grid error on medium grid,
and the modeling error on the coarse grid ηc

Hh := (u − uh)cS (h,H) + (uH − ũH)c. Here the scal-
ing coefficient S (h,H) reflects the anticipated order of convergence; e.g., should equal H

h for a
smooth component converging linearly. For a nonsmooth variable, we use S (h,H) ≡ 1.
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Figure 4: Total pointwise error ec
h and its indicators ec

H and ηc
Hh for c = T (top) and c = S h (bottom). From left to right:

comparison of the base case (Sink model) to the static, dynamic, and Stefan models.

While these illustrations are only qualitative, we see that for a very crude modeling approx-
imation (e.g. static versus Sink model) the modeling error dominates and the total error can
be assessed on a coarse grid. The more subtle modeling error between the dynamic and Stefan
models needs an indicator such as ηc

Hh. More analysis is needed and some is underway.

5. Conclusions and future work

We have presented a grid-convergent computational model for evolution of methane hydrates
in which we considered several variants of the energy balance equations. We have also illus-
trated and estimated the modeling error associated with each variant, and demonstrated general
agreement in the order of magnitude of the errors as well as in their qualitative behavior.

More analysis is needed to understand the proper scaling of the modeling error in relation to
the discretization error. For the methane hydrate model, further analysis of the numerical error
as well as definition of fully comprehensive adaptivity case studies are needed; some results in
this direction are underway.

Other opportunities for adaptivity of a complex model include i) the modification of ther-
modynamics models, ii) the use of kinetic versus equilibrium phase transition models, iii) the
considerations of competition of advection and diffusion at various time scales, and many others.
These are subject of our current work.
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