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1 Introduction

In many mathematical models of important phenomena with real-life applications, one
faces the challenge of multiple spatial and temporal scales. This is true in particular in
the study of flow and transport in porous media, which is important in environmental
studies, geophysics, reservoir engineering, chemical engineering, and medicine.

The multi-scale nature of porous media is well known. In this work we are going
to deal mainly with microscale, also referred to as porescale, and with lab-scale, also
called mesoscale or Darcy scale. At microscale, a porous medium is represented as a
rigid solid skeleton with fluid flowing through pores (void space). At mesoscale, it is seen
as a continuum: a permeable material. Other scales relevant to porous media include
macroscale which is appropriate in large regional groundwater flow models and in oil
reservoir engineering. Passage from mesoscale to macroscale is known as upscaling and will
not be addressed here. See [37, 45, 25] for general overview and references and specifically
[22, 29] for results on upscaling Forchheimer flow from mesoscale to macroscale.

In this work following [35, 34] we are interested in flow at micro- and meso-scale.
The flow through porous media at microscale is described, in general, by Navier-Stokes
equations, and the flow at mesoscale is described by Darcy’s law or its extensions.

Darcy’s law [6] postulates a linear relationship between pressure drop and flow rate.
It has been shown first in [19] that its validity is restricted to a limited range of flow
velocities quantified by a Reynolds number Re. In [19] it is proposed that the inertia
effects start to play a significant role for higher values of Re and a linear law is not valid
any more. To account for inertia terms, Forchheimer proposed a quadratic correction
term. The coefficient β associated with the correction term is, however, hard to find
experimentally and has been the subject of many discussions and controversies; see the
discussion in [40]. In fact, there is actually no agreement even as concerns the form of the
nonlinear correction. The mathematical theory of homogenization states however that,
as long as a certain scaling with a parameter ϵ denoting the relative grain size to the size
of the domain is applied, one can relate the local averages of porescale computations to
some flow model at mesoscale.

These difficulties and ambiguities motivated on one hand our experimental work [40]
on flow with inertia and on the other hand the idea of a computational (virtual) laboratory
in which we connect the flow at microscale with the averaged flow at mesoscale [35, 34].
The latter idea has not been feasible until recently. However, thanks to a significant
increase in computational power in the last decade, numerical solutions of Navier-Stokes
equations in pore geometries, i.e. at microscale, can be now obtained not only for one
pore, but actually for a domain composed of a considerable number of pores. While our
initial work [35] was successful in connecting the porescale to mesoscale, it was clear that
the numerical approximation of the solutions to Navier-Stokes equations required care to
ensure convergence and stability [34].

The next natural research question is to relate these results to their mathematical
foundations and to verify i) whether the ideas of homogenization and, in particular, the
scaling of coefficients, can be interpreted using the computational models and, in other
words, whether they remain stable with grain diameters going to 0. In addition, we set out
to verify ii) how the coefficients obtained in computational experiments compared with
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experimental values from our other work on flow with inertia [40]. These two questions
are addressed in this paper.

If answers to i) and ii) are affirmative, our computational method can be seen as a
prototype of a virtual laboratory which can be used en lieu of physical experiments. We
describe the steps to verify i) and ii) below.

First we set up the virtual laboratory. We start by defining a reference microscale
geometry for the porous medium. We mention several methods which can help to iden-
tify porescale geometry including micro-computerized tomography images [8], models of
virtual reconstruction of porous samples based on modelling of geological processes of
rock formation [28], random structures generation [27], and different variants of regular
structures of solid-void space distribution [12, 21, 4]. However, in this paper we restrict
ourselves to a periodic geometry appropriate for i). We consider grain diameter of a
similar size to those measured in experiments and use the simplest virtual microstruc-
ture consisting of equally distributed spheres/circles. The flow is driven by boundary
conditions; this is not a standard set-up for homogenization.

Second, given the microscale geometry, we simulate fluid flow through the pores nu-
merically. We use a continuum level method, i.e., we use a numerical discretization of
Navier-Stokes equations. These are well studied, but their use in complex geometries
requires fine grids and is, in general, nontrivial. In our approach we use a finite-volume
discretization [43]. Alternative non-continuum methods include Lattice-Boltzman meth-
ods [28] and pore network models [33, 13].

Third, we use averaging to get macroscale values of velocity and pressure drop, and
calculate the values of effective coefficient of proportionality called conductivity. This
calculation is only superficially straightforward, since the stability of results with respect
to grids and algorithms over a large range of Reynolds numbers must be ensured.

The results of these three steps are applied in a series of experiments to periodic
geometries of a decreasing value of ϵ. Based on these we verify i). Next, to answer ii), we
compare the results of the reference case to the experimental data. Details, theoretical
framework and discussion are shown below.

To our knowledge, the approach in this work following [35, 34] is the first such result in
the literature. Related work in [3, 11, 30, 12] addressed the qualitative character of inertia
at porescale without deriving upscaled models, discussing homogenization, or comparison
with experimental data.

This paper is organized as follows. In Section 2 we recall mathematical models of flow
at micro- and mesoscale. Computational laboratory concepts and averaging techniques
are described in Section 3. Section 4 discusses the homogenization aspects of the project,
i.e., addresses i). Special attention is paid to the issue of boundary conditions which are
driving the flow instead of external forces. In Section 5 we address ii), i.e., we compare
experimental data with values computed for the synthetic porous medium. We conclude
and outline open questions in Section 6.
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2 Mathematical models at porescale and macroscale

Let Ω ⊂ Rd, d = 2, 3 be an open bounded domain occupied by a porous medium and the
fluid within. For simplicity in what follows only d = 2 will be considered. We denote by
(q)i, i = 1, 2 the components of a vector q ∈ R2, and e1 and e2 denote unit vectors of a
coordinate system.

2.1 Flow at porescale

At porescale the solid and liquid phases are distinct. Let ΩF be the part of Ω occupied
by the fluid and denote the solid by ΩR. Let Γ = ∂ΩF ∩ ∂ΩR be the rock–fluid interface,
and denote the external boundary of flow Γext := ∂ΩF ∩ ∂Ω; it is composed of the inflow
Γin and outflow Γout parts. Also, we have ∂ΩF = Γext ∪ Γ.

We consider an incompressible Newtonian fluid of velocity u and pressure p, flowing
in ΩF . The fluid’s viscosity is denoted by µ and the (constant) density by ρ.

The flow is driven primarily by external boundary conditions, such as in a lab core.
We prescribe the inflow velocity at Γin with maximum denoted by uin and parabolic shape
between the walls. On Γout we impose a numerical outflow condition [43]. On internal
boundaries Γ we assume the no-slip condition u = 0.

Reynolds number Re = |u|δ
µ

, where δ stands for a characteristic length in the domain
of the flow, e.g., width of a channel or the diameter of porous grains, is routinely used
to distinguish between different flow regimes [44, 24, 26, 40]. In porous media the linear
laminar flow regime corresponds to Re < 1, the nonlinear regime is for 1 ≤ Re < 10,
and turbulence may occur for Re ≥ 10 [39, 6]; the turbulence rarely occurs in porous
media. The values of Re characterizing the flow regimes given above vary depending on
a quantitative definition of the end of each regime, on a structure of a medium, and on a
definition of the Reynolds number itself [44, 40]. In our computational experiments the
value of Re is related to the inflow velocity uin.

Now we discuss the mathematical model for flow at microscale (porescale). For steady-
state flow, in the absence of forces and mass source/sink terms, the momentum and mass
conservation in Eulerian frame are expressed by the Navier-Stokes system [5]. After
setting for simplicity in the presentation ρ ≡ 1 and rescaling variables with µ, we have
the stationary Navier-Stokes equations

∇ · u = 0, x ∈ ΩF , (2.1)

u · ∇u − µ△ u = −∇p, x ∈ ΩF . (2.2)

An alternative formulation in terms of the vorticity vector ω = ∇ × u and the stream
function ψ defined by u = ∇× ψ was considered in [35].

For small Re, viscous effects dominate and the nonlinear convective, i.e., inertia terms
associated with u· are dropped from (2.2), resulting in the linear Stokes approximation;
see Section 4.
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2.2 Flow at Darcy scale

At Darcy (lab scale/mesoscale) the boundaries between ΩF and ΩR are not recognized.
Instead, the average flow in Ω characterized by average pressure P and velocity (flux)
U is considered. Mass conservation ∇ · U = 0,x ∈ Ω. The flow is driven by boundary
conditions which average porescale boundary conditions.

Darcy’s law is a linear momentum equation at mesoscale

K−1U = −∇P, x ∈ Ω, (2.3)

where K is the conductivity tensor; its values are measured experimentally [6]. More
precisely, K may be expressed as K = κ

µ
with absolute permeability tensor κ reflecting

properties of the medium. In what follows, notions of K and κ will be used alternatively.

In general, K =

[
K11 K12

K21 K22

]
for flow in d = 2 dimensions, and is symmetric. If co-

ordinate axis are aligned with the principal directions of the porous medium, then K is
diagonal. Furthermore, in isotropic media K is diagonal and K11 = K22. Due to large
viscous dissipation and interstitial effects common in porous media, Darcy’s law is a good
approximation for a large class of flow phenomena.

For large flow rates Darcy’s law is not accurate. In the nonlinear laminar regime with
significant inertia a non-Darcy model which extends (2.3) reads

K−1(U)U = −∇P, x ∈ Ω. (2.4)

The Forchheimer model K−1(U) := K−1 + β|U | was first proposed for the scalar case
Ω ⊂ R [19]; it was extended to multidimensional isotropic media [16, 6, 39, 14] and is
used in petroleum industry around wells [17] in the form

K−1(U)U :=
(
K−1 + β|U|

)
U = −∇P, x ∈ Ω. (2.5)

The form of nonlinear map K for general anisotropic 2D and 3D media has been the
subject of theoretical research [31, 20, 23, 10]. Experimental studies [26, 40] focus on
identification of flow regimes. There are controversies and inconsistencies concerning the
form of K as well as the values of the coefficient β.

3 Computational model

Now we recall the set-up of our virtual lab described originally in [35, 34]. The compu-
tational lab is restricted in this paper to d = 2. The case of d = 3 is not substantially
harder logically but requires much more pre-processing and computational power. Once
all elements of the virtual laboratory are well understood, we will consider 3D geometries.

Our computational laboratory includes two elements: fluid flow simulations at porescale
and upscaling to mesoscale. We discuss both below.

The aim of upscaling is to derive models with effective coefficients at higher scale and
to incorporate as many processes and nonhomogeneities from the lower scale as possible.
There are two main methodologies for upscaling: homogenization- and volume averaging-
based approaches.
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The homogenization theory provides theorems on convergence of the averages of lower-
scale quantities to the higher scale counterparts together with appriopriate formulas
[7, 38]. A good control of the error estimates and qualitative analysis is provided. Ho-
mogenization is essentially restricted to periodic geometries at lower scales; this may be
an important limitation. However, in periodic geometries, the computations may be per-
formed on an elementary cell only. The volume averaging based techniques belong to
a second group of methods used in upscaling. There are no restrictions with respect to
geometry patterns provided the region of averaging, i.e., REV ≡ Representative Elemen-
tary Volume, is large enough to ensure stability of averaged quantities, and small enough
not to be influenced by boundary conditions. Effective parameters are computed based
on volume averages of microscale variables. In Section 4 we discuss the homogenization
approach and link the volume averaging approach to convergence results provided by
homogenization theory.

Now we go over the sequence of steps performed in the computational laboratory.
We start by defining the geometry of a synthetic porous medium at microscale and an
appropriate grid at mesoscale. The subscript h is associated with numerical solutions at
microscale and H applies at mesoscale.

A synthetic porous medium is defined by a regular structure of equally distributed
circles of equal radii representing solid grains; while ΩF is the space between the grains, see
Figure 2. We define an unstructured mesh of triangular elements over ΩF ; the parameter
h is the maximum diameter of the mesh elements. We solve the steady-state Navier-
Stokes equations (2.1)–(2.2) numerically and obtain uh and ph. The method is based on
finite-volume discretization [18, 43]. Mesh generation and computations are performed
under ANSYS FLUENT software [18].

Figure 1: Macrocells used in upscaling

Next we consider mesoscale grid over Ω. It is often the case that upscaling is per-
formed with respect to a specific discretization scheme to be implemented at a higher
scale. Our approach [35, 34] is inspired by the conservative cell-centered finite difference
(CCFD) method and resembles the ideas of mesoscale upscaling in porous media from
[15], providing at the same time a bridge to macroscale as in [22]. In CCFD the cell
centers are associated with pressure unknowns PH and the cell edges are associated with
velocity unknowns UH . We impose a similar structure in our averaging approach.

Assume we are concerned with flow in ΩF around some point X0 ∈ Ω0 ⊂ Ω. In order
to define the averages over Ω0, a mesoscale discretization needs to be superimposed over
the microscale grid, see Figure 1. Solving numerically the Navier-Stokes equations (2.1)–
(2.2) we obtain uh, ph. Next we identify the values UH , PH |X0 at Darcy scale with some



469

averages ⟨uj
h⟩, ⟨p

j
h⟩ over Ω0 ⊂ Ω. The set Ω0 is a proper subset of Ω, we make sure that

the boundaries of Ω0 are far enough from inlet and outlet boundaries Γin,Γout of Ω to
avoid any numerical boundary artifacts.

Now, in order to compute K, a discrete form of (2.3) and of ∇PH is needed. In
[15] such values are inferred from boundary conditions. In our case this is not directly
possible since the boundary conditions are defined at porescale. Instead, we partition Ω0

into pairs of cells, ΩL, ΩR, and ΩT , ΩB, see Figure 1. The first component of the gradient
is calculated as GLR = PL−PR

xR−xL
, where PL = ⟨ph⟩ΩL

, PR = ⟨ph⟩ΩR
, with xR and xP denoting

x-coordinates of centers of gravity of ΩL and ΩR. Analogically we get GBT = PB−PT

yT−yB
. The

velocity is computed as Uj = ⟨uj
h⟩Ω0 and it has components (U j

LR, U
j
BT ).

In order to find four unknown components of K from U = −K∇P , we need two
independent sets of data for Uj and for the associated pressure drops G so that the
system 

U1
LR

U1
BT

U2
LR

U2
BT

 =


G1

LR G1
BT

G1
LR G1

BT

G2
LR G2

BT

G2
LR G2

BT



K11

K12

K21

K22

 (3.6)

has a unique solution.

To generate data U1,U2 and the associated pressures, we set up virtual flow experi-
ments j = 1, 2 with boundary conditions forcing the flow in different directions for each
j. The easiest is to ensure that the (global) flow directions are essentially orthogonal.

Note that we do not explicitly impose the symmetry K12 = K21 which is a funda-
mental property of the tensor K. Rather, we expect it to hold for computational results.
A numerically confirmed symmetry is one of the measures of the quality of numerical
experiments.

Repeating the experiment described above for increasing values of Re, we obtain a
sequence of corresponding values of K in (2.4) and are able to compute β by inverse
modeling.

4 Homogenization approach

Now we discuss our computational experiments within the homogenization framework in
order to address issue i) from the Introduction. We use notation from Section 2 and the
traditional notation for Sobolev spaces Hk(Ω) [1, 42].

First we discuss Stokes flow which is a linearization of (2.1), (2.2). The flow is driven
by external forces appearing in the momentum equation (4.7), and by external boundary
conditions (4.9). The mathematical model for Stokes flow is given by

∇p− µ△ u = f , x ∈ ΩF , (4.7)

∇ · u = 0, x ∈ ΩF , (4.8)

u = g, x ∈ ∂ΩF , (4.9)
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where f ∈ (H−1(ΩF ))d and g ∈ (H1/2(∂ΩF ))d are given. We require for well-posedness
that the boundary ∂ΩF is C2 smooth [42]1, and that the compatibility condition∫

∂ΩF

g · n = 0 (4.10)

is satisfied.

Remark 4.1 Based on these conditions it is shown in [42], [Chapter 1, Theorem 2.4],
that there exists a unique solution (u, p) ∈ (H1(ΩF )d, L2(Ω)/R) to (4.7), (4.8), (4.9). If
f,g vanish simultaneously, it follows that p ≡ const,u ≡ 0.

a) b) c) d)

Figure 2: Homogenization approach a) elementary cell, b) Ωϵ1
F , c) Ωϵ2

F , and d) Ωϵ3
F

We now give consideration to the terms f,g driving the flow.
In the problem of interest to us which is determination of the flow coefficients at

lab scale, we envision a computational experiment simulating a physical experiment in a
laboratory in which a core is filled by a porous medium and a fluid. The fluid flows due
to a pressure difference which can be measured. After the flow rates are measured, the
conductivity coefficient is determined as a proportionality constant between the flow rate
and pressure drop. It is not necessary in such experiments to consider gravity since the
core can be placed horizontally; in this case f ≡ 0, g ̸≡ 0.

As concerns g, it needs to be prescribed on ∂ΩF = Γext ∪ Γ = Γin ∪ Γout ∪ Γ, and we
shall prescribe g that is continuous on Γin ∪ Γ which then satisfies g ∈ (H1/2(∂ΩF ))d. It
is customary to prescribe the no-slip condition g|Γ = 0 on the walls of porous medium
∂ΩR, and from this follows that the condition on Γext must honor the compatibility that
g|Γext∩Γ = 0. It remains to define g|Γext .

For the inflow condition g|Γin
, we impose the “usual” parabolic profile between the

walls whereby g vanishes in contact with the walls ∂ΩR, and achieves maximum in the
middle of a pore throat; on straight inflow edges its tangential component is zero. As
concerns g|Γout , it is important to recall that in numerical experiments one customarily
prescribes inflow velocity at Γin and a numerical outflow condition on Γout [43], Section
6.2]. This technique avoids numerical instabilities and formation of artificial boundary
layers. In other words, we do not prescribe g|Γout in numerical experiments.

However, in the discussion below we shall assume that that g as a trace of u is smooth
enough on the entire ∂ΩF . While it is possible to formulate another well-posedness result
for the actual problems solved numerically, we will not attempt it.

1It is actually shown in [42] that the boundary only has to be Lipschitz.
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4.1 Homogenization for homogeneous boundary conditions

Now consider the situation in which Ωϵ
F has periodic geometry with period size ϵ, see

Figure 2. It was observed in [38] that the solutions to (4.7)-(4.8)-(4.9) should be periodic,
or at least that they should have some periodic components. Additionally, it was postu-
lated that the pressure is close to its local averages and that velocities can be averaged to
give an idea of prevailing flow conditions. This “closeness” should become “better” if ϵ is
smaller. The technique of homogenization then attempts to derive the effective equations
satisfied by those averages. It turns out that these equations are Darcy’s law (2.3).

In other words, we approximate the solution to a Stokes problem on Ωϵ
F by a solution

to Darcy problem at lab scale posed in Ω. To deal with the fact that fluid/rock boundaries
are not recognized at lab scale, one extends the velocities from Ωϵ

F to Ωϵ
R by zero (they

already satisfy a no-slip condition on Γ); the pressures are extended by their averages; see
[2]. One also computes the conductivity coefficient by averaging some auxiliary solutions
dependent on pore geometry.

The formal asymptotic expansions and calculations demonstrating that Darcy’s law
is effectively an average of Stokes momentum equation, were first shown in [38] and were
complemented by a proof of convergence in [41]. The convergence was L2-weak for ve-
locities and L2-strong for pressures. A stronger result using a corrector was proved by
Allaire; see details and references in [[2], Prop.1.2]. The above calculations and conver-
gence proofs are applicable to flow problems driven by an external force field f ̸≡ 0 and
require homogeneous boundary conditions on Γext.

In this paper we are interested in discussing f ≡ 0, and nonhomogeneous boundary
conditions on Γext. In what follows we revisit the ideas of homogenization in this context,
first considering the case in which f ̸≡ 0,g ≡ 0.

4.2 Asymptotics for homogeneous boundary conditions

We briefly recall the ansatz for formal asymptotic expansions in which each variable is
expanded in powers of ϵ. The usual asymptotic technique is to discern between global
and local spatial coordinates x and y = x

ϵ
, with x ∈ Ω, y ∈ Y , where Y is a unit periodic

cell, and to pose equations in which differential operators have components with respect
to x and y appropriately scaled, e.g., ∇ 7→ ∇x + 1

ϵ
∇y. Additionally, all components of

variables are assumed Y periodic with respect to y ∈ Y :

pϵ(x) = p0(x) + ϵp1(x, y) + . . . , (4.11)

uϵ(x) = u0(x, y) + ϵu1(x, y) + . . . . (4.12)

Next, the idea is to substitute (4.11), (4.12) into (4.7), (4.8) and to match the terms
appearing at the same orders of ϵ. It is very important [38, 23, 9] to impose the scaling
µ = ϵ2µ0 on viscosity, where µ0 is some reference value. For simplicity, we set µ0 ≡ 1 as
in [38].

The calculations lead to an equation satisfied by u0, p0

∇xp0 + ∇yp1 + △yyu0 = f , (4.13)

∇y · u0 = 0. (4.14)
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If the homogeneous boundary conditions are imposed, then one obtains after averaging
(4.14) that ∇x · ⟨u0⟩ = 0 which is the statement of mass conservation. However, merely
averaging (4.13) does not yield momentum equation for u0. Instead, consider multiplying
it by a Y -periodic test function ψ ∈ H1,∇ · ψ = 0, ψ|Γ = 0, and integrating over Y . In
this variational formulation of (4.13) one discovers that for any such ψ,∫

Y ∩ΩF

(−f + ∇xp0 + △yyu0) · ψ = 0, (4.15)

where we have eliminated the second term by integrating by parts and periodicity.
To decouple further, the ansatz u0 =

∑
i(fi − ∂po

∂xi
)ωi conveniently separates scales in

(4.13) and (4.15) to yield a local problem to be solved for Y -periodic ωi, which can be
written in the strong form as

∇yπ + △yyωi = ei, (4.16)

∇ · ωi = 0. (4.17)

The global mode of variation of u0, or rather its average ⟨u0⟩Y over Y , satisfies

⟨u0⟩Y = K(f −∇xp0). (4.18)

Now, to find K, one should first solve the generic problems (4.16)-(4.17) over Y for
i = 1, 2, i.e., in at least 2 experiments when d = 2, and find K from its definition

(K)ij = (⟨ωi⟩Y )j. (4.19)

Alternatively, if (f −∇xp0) is known, we could calculate K from matching both sides
of (4.18). It is clear however that we need two experiments to get K. We extend this
observation now.

We propose to solve the flow problem (4.7)–(4.9) for u, p over a contiguous union Ym

of m translations of periodic cells Y denoted each by Yj so that Ym = Y1 ∪ Y2 . . . ∪ Ym ⊂
Ωϵ

F . Assuming ϵ is small enough and m not too large with respect to diam(Ω), we can
approximate ⟨p⟩m×Y ≈ ⟨p0⟩Ym , ⟨u⟩Ym ≈ ⟨u0⟩Ym . Next, since p0 varies with x, i.e. with j
indexing Yj, we do not have ⟨p0⟩Ym ≈ ⟨p0⟩Yj

. However, if f does not vary too much with
x i.e. within Ym, then ⟨u0⟩Ym ≈ ⟨u0⟩Yj

and ⟨f −∇xp0⟩Ym ≈ ⟨f −∇xp0⟩Yj
for any j.

Now the following calculation makes sense. Add (4.18) over all members of Ym to
obtain

⟨u⟩Ym ≈ ⟨u0⟩Y = K⟨f −∇xp⟩Ym . (4.20)

In other words, one can find K from matching the two sides of (4.20) for multiple compu-
tational experiments. A discussion on how to deal with general anisotropy in K is given
in [34, 36].

From computational point of view, solving over Ym for large m requires substantial
computational power. If that is available, then the approach is more favorable than the
use of (4.19) because it generalizes to non-periodic geometries. Most importantly, it has
a functional similarity to the one of lab experiments.
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a) b) c)

Figure 3: Horizontal flow in Ωϵ2
F . a) uin = 0.1, b) zooming-in, c) uin = 0.5, zooming-in.

The remaining issue is as follows. The Darcy’s law (4.18) and the formula (4.19) define
K regardless whether f vanishes or not. However, if f ≡ 0 and g ≡ 0, then by Remark 4.1,
⟨u⟩ vanishes and p0 ≡ const. While there is no contradiction with (4.18) or (4.20), since
both sides of this equation are equal 0, we cannot determine K from experiments reflected
in (4.18) or (4.20). Therefore, another approach is necessary, in which ⟨u⟩ does not vanish
thanks to nonhomogeneoous external boundary condition driving the flow.

4.3 Asymptotics for nonhomogeneous boundary conditions

Now we discuss the case when f ≡ 0,g ̸≡ 0.
First let us recall a simple shift from g ̸≡ 0, f ≡ 0 to g ≡ 0, f ̸≡ 0 as shown in [42].

We decompose u = v + ṽ so that v, ṽ ∈ (H1(ΩF ))d

∇ · ṽ = 0, x ∈ ΩF , (4.21)

ṽ|Γext = g, (4.22)

and we see that

∇p− µ△ v = µ△ ṽ, x ∈ ΩF , (4.23)

∇ · v = 0, x ∈ ΩF , (4.24)

v|Γext = 0. (4.25)

As a simple example, consider the flow experiment as in Figure 3 where the flow is from
left to right and impose a condition so that ṽ(x1, x2) = (g1(x2), 0) where g1 is any smooth
function which vanishes on solid boundaries, for example, represents the parabolic inflow
as in Poiseuille flow problem. Note that for such a condition the compatibility condition
(4.10) is trivially satisfied, as long as the geometry on the outlet boundary matches exactly
the one at the inlet. Also, ṽ is divergence free and △ṽ = (g′′1(x2), 0).

Now consider homogenization in Ωϵ
F . First we discuss the behavior of uϵ,vϵ, ṽϵ where

now, because the geometry of ΩF is periodic, we may consider a boundary condition depen-
dent on both x, y. Continuing the example as above, set ṽ(x1, x2; y1, y2) = (g1(x2, y2), 0).
As before, the function ṽ is divergence free in both x and y variables. Furthermore,
assume that g1 is periodic in y2 and in particular is independent of x2. For example, a
parabolic profile between the walls can be assumed.
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The asymptotic expansions as above now suggest that vϵ and ṽϵ may have decompo-
sitions similar to uϵ, and that, given ṽ0, one could solve the cell-problem for v0

∇yp1 + ∇xp0 − µ△yy v0 = µ△yy ṽ0, y ∈ Y, (4.26)

∇y · v0 = 0, y ∈ Y, (4.27)

v0|Γ = 0, (4.28)

v0 periodic in Y. (4.29)

Now notice that ṽ0 satisfies ∇y · ṽ0 = 0. In addition, ṽ0 satisfies the no-slip condition
on Γ. In general we cannot guarantee that ṽ0 is Y -periodic. However, in the special case
ṽ(x1, x2; y1, y2) = (g1(y2), 0) with a Y -periodic function g1, this is satisfied. This means
that u0 = v0 + ṽ0 satisfies

∇yp1 + ∇xp0 − µ△yy u0 = 0, y ∈ Y, (4.30)

∇y · u0 = 0, y ∈ Y, (4.31)

u0|Γ = 0, (4.32)

u0 periodic in Y. (4.33)

Averaging as proposed in Section 4.2 we obtain that ⟨u0⟩Y = ⟨v0 + ṽ0⟩Y = −K∇xp0. An
extension to Ym and (4.20) is immediate.

We remark that the ansatz proposed here is not the only case in which we obtain an
analogue of (4.20). For example, the use of ṽ which only depends on x would also lead
to (4.20).

As for the behavior of p,u, and K for large velocities, the Stokes approximation may
not be valid and neither is its Darcy average. This is discussed in the next section.

4.4 Homogenization for large velocities

For large velocities, we use (2.2) en lieu of (4.7). It must be appropriately scaled as
discused above:

ϵαuϵ · ∇uϵ + ∇pϵ − ϵ2µ△ uϵ = f , x ∈ Ωϵ
F (4.34)

This equation is complemented by (4.8) and (4.9) which together make the Navier-Stokes
model for flow.

Well-posedness results in [[42], II.1.4 (Theorems 1.5 and 1.6)], while available, depend
on the smallness of data f, g, and on a sufficiently large viscosity µ. Additionally, instead
of (4.10), we require that g = ∇× ζ for some smooth function ζ.

Upscaling of the Navier-Stokes model to a nonlinear counterpart of (2.3) known as
non-Darcy model, has been considered in [38], and [23] as well as in several other sources,
see references in [2]. The main controversy appears to be as regards the form of the
upscaled model. Within homogenization theory, the discussion centers around the scaling
α of the advective term in (4.34) and of viscosity term. In particular, [32] suggests to use
ϵ2 for viscosity which we already included in (4.34). In [[25], Section 3.2.2] additionally
α = 1 which guarantees that the nonlinear corrections do not “disappear” in the process
of passing to the limit with ϵ→ 0.
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Another source of difficulties comes from the boundary conditions. The simple linear
shift from nonhomogeneous boundary conditions to nonhomogeneous source term does
not work for Navier-Stokes system in which a nonlinear term is present. Nevertheless,
we apply the same general ideas as in Sections 4.2,4.3 to compute K which now depends
on ⟨u⟩Y . Additionally, since the magnitude of ⟨u⟩Y depends on the boundary condition,
we consider scaling of g by ϵ. We note that there is a concern that with the scaling of
viscosity, its “large enough” magnitude required for well-posedness is not guaranteed even
though the scaling via α partially alleviates it.

4.5 Computational experiments

Our considerations will be illustrated with computational results. A synthetic porous
medium at microscale is defined as described above, see Figure 2 b). The distance between
centres of neighboring circles is d = 0.002[m] and the grain diameter is δ = 0.0019[m],
i.e., the radius of grains is 0.00095[m].

As fluid parameters we use ρ = 998.2[kg/m3] and µ = 0.001003[Pa.s], which are
properties of water in standard conditions in a lab. What follows, Re and uin imposed
as a boundary condition are linked by Re = 1890, 907uin. For example, uin = 0.001 ;

Re = 1.89. Furthermore, to simulate the homogenization procedure and test whether
the computational upscaling is stable, we generate a sequence of computational domains
Ωϵi

F , i = 1, 2, 3. The reference geometry Ωϵ1
F is as in Figure 2 b). To get from Ωϵi

F to
Ω

ϵi+1

F , i = 1, 2 we apply a factor 1/2 to the radii of circles. Computations are performed
in all domains independently and are denoted as cases ϵ1, ϵ2, and ϵ3.

According to the remark from Section 4.2 we impose scaling of viscosities with a factor
ϵ2. That is, for ϵ2 we have µ2 = 0.00025075[Pa.s], and µ3 = 0.00006268[Pa.s] for ϵ3.

As opposed to the theoretical presentation of previous sections, where different models
are applied to describe low and large velocity flows, computations are performed in the
same way for the whole sequence of uin values ranging from 0.00001 to 1, thus covering
linear and nonlinear flow regimes. In general, more iterations of the numerical solver are
needed for larger velocities.

Figure 3 gives plots of velocity magnitude distribution. Patterns of flow differ in each
flow regime; Figure 3 c) is an illustration of inertia effects.

Now we discuss the results in the context of the homogenization approach. We have
several intuitions that we want to verify and confirm. First, as ϵ→ 0, we expect that the
pressures and velocities at microscale converge L2-strongly and L2-weakly, respectively, to
their average p0(x) which satisfy Darcy’s law. The convergence of pressures is illustrated
in Figure 4; we skip the illustration of velocity convergence, as this would require the
computation of a corrector. There is a visible difference in pressure shapes obtained
for low velocity value (uin = 0.1) and large velocities, uin = 0.5 and uin = 1. Similar
pressure curves have been reported in [21, 12]. Our experiments confirm the stability of
computational laboratory in the homogenization limit.

Second, we expect that K and K can be computed reliably. We use the procedure
described in Section 3 to find K (or K) for a range of imposed velocities uin and compare
results obtained for cases ϵ1, ϵ2, and ϵ3.

As is demonstrated in Figure 5 a), K remains essentially constant for a large range of



476

a) b)

c)

Figure 4: Pressure at y = 0 in Ωϵi
F , i = 1, 2, 3. a) uin = 0.1, b) uin = 0.5, c) uin = 1.0.

flow rates, moreover, its values obtained for cases ϵ1, ϵ2 and ϵ3 are in a good agreement.
Starting from some value of uin we observe the onset of the nonlinear regime, i.e., that K
starts decreasing with increasing flow rates as predicted by a nonlinear non-Darcy model
(2.4). Equivalently the resistance K−1 increases with increasing Re. This qualitative
observation is fundamental and is consistent with one in upscaling from mesoscale to
macroscale [22]; see also quantitative discussion of K−1 in [34]. Small differences in the
asymptotic behavior of K for large velocities are observed.

An interesting result is given in Figure 5 b). We compare K computed for the case ϵ3
for different scaling schemes applied to uin and µ. More precisely, we apply 1) scaling µ
with the factor ϵ2 as in Section 4.2, or 2) scaling velocity with a factor ϵ1/2 and viscosity
with the factor ϵ3/2, or 3) scaling only viscosity with ϵ3/2. For linear regime of flow all
the scalings result in the same value of K; still there are differences in K. This will be a
subject of further studies.

Convergence and stability issues related to the upscaling procedure are not addressed
in this work; more results are provided in [34].
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a) b)

Figure 5: Upscaled permeability a) for Ωϵi
F , i = 1, 2, 3, no scaling. b) for Ωϵ3

F ; with scaling
as follows: 1: ϵ2µ, 2: ϵ3/2µ, ϵ1/2uin, 3: µϵ3/2.

5 Physical experiment

To complete our study and address issue ii) from the Introduction, we compare our com-
putational results to the data obtained in the physical experiment reported in [40].

Consider a laboratory stand as given in Figure 6 a). We deal with unconsolidated
porous media composed of granulate of diameter δ = 0.00195[mm]. During the experi-
ment, 10 independent measurements of water levels are taken for 12 different values of
volumetric inflow QV . We calculate mean filtration velocity v = QV /S, where S denotes
the cross-sectional area of a column. The corresponding pressure differences p between
measurements points are computed from water level values. Next we compute absolute
permeability κ, following

κ−1µU = −∇P. (5.35)

More details about the experiment and values of parameters are given in [40].

Now we compare experimental data to the results delivered by the virtual lab experi-
ment. First we comment on the parameters of synthetic and experimental porous media.
We use δ = 0.0019[mm] and δ = 0.0018[mm] in the former and δ = 0.00195[mm] in the
latter experiment. These are close but not identical. We expect to find similar but not
identical corresponding permeability values.

Next, we discuss scaling between K and κ and flow rates. Since our computational
experiments delivered K, the values of K−1 in our computational results are multiplied
by µ = 0.001003[Pa.s] to get κ−1. Additionally, we shift the computational results to
fit measured mean filtration velocities by comparing global water inflow. The combined
computational and experimental results are shown in Figure 6.
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First, we notice the expected qualitative difference between permeabilities computed
for δ = 0.0019[mm] and those for δ = 0.0018[mm]: the conductivities for smaller diameters
are larger. Next, we see that the range of velocities covered by the experiment is much
smaller that the range of velocities used in computations; this is due to the equipment
capacity, more precisely, to the abilities of rotameter of Figure 6 a) acting in a limited range
of flow rates. Most importantly, we see a very good qualitative but not perfect quantitative
agreement between computational and experimental conductivities. We believe that their
closeness is quite satisfactory given that they came from uncorrelated experiments. We
also recall the perspective raised in [6] as concerns poor quality of estimated values of κ
typically lying between 1/3 and 3 times the true value. These observations address issue
ii) raised in Introduction.

In other words, we were able to confirm that the results of the virtual laboratory
were within reasonable accuracy with respect to a physical experiment. In addition,
the computational lab did not have the limitations of the experimental setup: we could
perform experiments in any velocity range insofar as the converence and stability of the
numerical scheme could be acertained. Moreover, once the preprocessing i.e. the synthetic
porescale geometry is completed, it is relatively inexpensive to obtain data for many flow
rates while the cost is linear for experimental results.

We consider these results very encouraging. Taking into account all the simplifica-
tions made in our virtual model and poor precision of even good laboratory tests, our
results compare quite well qualitatively and offer an inexpensive virtual alternative to lab
experiments.

6 Conclusions

The computational lab can be applied in order to study Darcy’s law in the transition
from linear to nonlinear flow regime. It may also be used in order to study the nature
of the Forchheimer coefficient β and its dependence on various factors, see [35, 34]. We
showed that the virtual lab applies to a range of geometries and in particular those
suggested by the theory of homogenization. This allows us to find a bridge between
elegant mathematical theories of homogenization to a more generally applicable theory of
volume averaging.

In addition we showed that the results of the virtual laboratory were within reasonable
accuracy with respect to the physical experiment. The benefit of such comparison is
multifold. First, the virtual results can be used instead of experimental results. On the
other hand, virtual results can be used to guide the set-up of experimental results. Third,
once properly callibrated, it could be used to add to the sparse experimental data.

The concept of a computational lab may prove helpful in addressing issues that are
hard to handle analytically. More consideration should be given to homogenization for
large velocities and to appropriate scaling schemes. A systematic study of permeability
behavior as a function of synthetic medium geometry, porosity and other parameters for
large ranges of Re values will be developed in a forthcoming paper.
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a) b)

Figure 6: a) Scheme of a laboratory stand: a plexi pipe filled with granulate of diameter
δ = 0.00195[mm] (6), recharged from the bottom with water, coming from a container (1)
through a pump (2). Intensity of inflow is controlled by a valve (3). After passing through
a porous bed, water reaches the upper reservoir (7), and then, through the overfall (8)
goes down to the bottom reservoir. The flow intensity is measured by a rotameter (5).
Pressures are measured by means of U-tube manometers linked to connector pipes (10).
b) Measured and computed permeabilities.
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