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Motivation for this work is the modeling of contamination and remediation in unsat-
urated zone. A reactive transport model has been coupled to general multiphase flow
model(s) under multiblock multiphysics simulator framework IPARS (Integrated Parallel
Accurate Reservoir Simulator). In this paper we present the structure of the coupling
which is a template for coupling of different models defined in overlapping computational
domains. Results of the simulation demonstrate the importance of the use of multiphase
flow model for simulations in unsaturated zone.

1. Introduction

With the emergence of new computational methodologies and with dramatic increases
in computational power, it has become possible to formulate and to implement general
multiphase multicomponent physical models driven by both energy and environmental
applications in subsurface and surface flow and transport phenomena [11,17,5]. In fact,
it is now widely recognized that the complexity of processes in the vadose zone requires
multiphase flow models coupled to increasingly more involved models of geochemistry and
transport, of contaminants through sediment layers and fractures.

Unfortunately, the process of developing, and of solving, a large tightly coupled system
describing all relevant processes at all relevant scales can be costly. Moreover, it may
constrain the freedom in choosing the underlying numerical discretizations which may
lead to i) unnecessary uniformity of the numerical schemes with little room for adaptivity
or to ii) high computational costs or to iii) undue simplifications. As an alternative, loosely
coupled systems are developed. These offer modularity of the coupling allowing to study
the advantages and disadvantages of the individual algorithms before they are selected
as building blocks of a coupled comprehensive system. In fact traditionally somewhat
different techniques for spatial discretization and for time-stepping of multiphase flow
models versus reactive transport models have been proposed and analyzed. The methods
for the former include fully implicit, sequential or IMPES approaches [12,4]. The common
technique for the latter is one of operator-splitting in which i) the (single-phase) flow
problem is solved independently of the reactive transport equations and in which ii)
reactive transport equations themselves are subject to splitting into the advection, reaction
and diffusion steps [3,20,6]. The splitting techniques are under intense revision; moreover,
different numerical techniques used for coupled or un-coupled advection/reaction/diffusion
steps are now under investigation [21,19].
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The purpose of this work was to set-up a generic testbed for coupling of general multi-
phase flow models to reactive transport models. In this testbed different numerical models
and different types of couplings can be tested. The assumptions used in the coupling are
those of 1) negligible dependence of flow paths on the density and on the composition of
species dissolved in flowing phases, 2) equilibrium partitioning of species between phases,
3) validity of operator-splitting techniques applied to solve the phase-summed advection-
reaction-diffusion system. The testbed which we call TRCHEM is part of the reservoir
simulator framework IPARS (Integrated Parallel Accurate Reservoir Simulator) [10,22].
IPARS models multiphysics phenomena in multiblock porous media [22], and is suitable for
massively parallel computers or clusters of workstations or stand-alone PCs. The reactive
transport module described below was partially ported from ParSSim [1] and extended for
this work [16,14] and it is suitable for simulation of reactive transport and of remediation
phenomena in unsaturated flow zones. Moreover, it can be regarded as a template for
(loose) coupling of any number of models in a staggered fashion with capabilities to be
extended to more tightly (iteratively) coupled approaches. Clearly a set-up of a system
like TRCHEM is less complex than the development of a comprehensive coupled model from
scratch.

On one hand, we follow [2,3] and we extend traditional single-phase flow based models
of reactive transport to general multiphase compressible flow. On the other hand, our
development takes advantage of the multiblock and multiphysics features of the IPARS
whereby flow models can operate on different subdomains independently and for which
non-matching grids can be used and which are scalable in parallel, see [22] and references
therein. The extension of the multiblock features to the reactive transport is underway
and it will be discussed elsewhere.

The plan of this paper is as follows. In Section 2 we briefly describe the underlying
models for the flow and for reactive transport. Here for brevity we focus on two-phase
flow models; however, our formulation is appropriate for any single- or multiphase flow
models [16]. In Section 3 we define the time splitting algorithm and describe the structure
of the coupling. Section 4 contains some numerical results obtained using TRCHEM.
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2. Physical Models for Multiphase Flow and Reactive Transport

2.1. Flow model

Here we consider a generic two-phase immiscible flow model. The wetting phase is
denoted by p = w and the nonwetting phase (oil or air) is denoted by p = nw. For
each phase we use pressures P,, saturations S,, densities p,, viscosities u, and relative
permeabilities k, [12]. The mass conservation and Darcy’s law equations are
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Here we denote by ®, K, G, D respectively, the porosity, permeability, gravity constant
and depth of the porous medium.

These equations are complemented by the volume balance S,, + S, = 1 and by the
capillary pressure relationship P, = P, + P.(Sy). Also, both fluid phases are assumed to



be (slightly) compressible so that p, = pprere®f?. In addition, if the non-wetting phase is
gaseous (for example, air), then we use some other relationship (for example, the real gas
law) to describe p, = p,(P,). Also, if there is only one flowing phase (for example, water
phase p = w), then S, = 1,k, =1 and the system (1) is reduced. Note that Darcy’s law
can be replaced by some other momentum equation, for example Forchheimer’s. Finally,
terms ¢, in equation (1) represent well (mass) rates.

2.2. Reactive Transport Equations

The mass conservation equations are written for each species a and for each stationary
phase s and flowing phase p. Denote by c,, the concentration of species o in phase p.
For the flowing phases, the amount of species a accumulated in a flowing phase p per
unit volume is equal to ®S,c,,. Reaction terms R', R, R" are allowed and here they are
proportional to phase volume. The mass conservation equations are written as
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Mass flux J,p; for each flowing phase p and each species « includes contributions from

advection, diffusion and dispersion as follows
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where diffusion/dispersion tensor D,,;; is composed of molecular diffusion and mechanical
dispersion terms. The summary definition of the aggregate diffusion/dispersion tensor is
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For each species « in each stationary phase s we have similar equation as above except
there is no advective or diffusive/dispersive mass flux term.

Our main assumption follows Henry’s law and it states that the partitioning of species
between phases can be described by a fixed relationship c,p = I'qpcor Where 7 is reference
phase and I'y, is a constant. In this work we assume water-wet rocks and we choose
water phase as the reference phase. Alternatively, a different reference phase for each
component can be specified or a total concentration can be used.

In order to get the phase-summed transport equation for species « in the reference
flowing phase we sum the equations (2,3,4) over all flowing phases
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where for the two flowing phases p = w, nw we define
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Here we have used the fact that the net interphase transfer between flowing phases is
zZero 3, Rép = 0. Also, the adsorption term R is net mass transfer per porous medium
volume of component « into (positive) or out of (negative) rock (all stationary phases).

The system (5) is solved for concentration of species in the reference phase cq,. Con-
centrations in other phases or total concentrations can then be computed through Henry’s
law. This system is discretized in time and in space and it is solved by time—splitting as
shown in Section (3).

Boundary conditions. The boundary conditions relevant to TRCHEM module are these
applied to the flow model as well as those applied to the transport-chemistry part. Specif-
ically, boundary terms enter the equation (5) through the normal part of the advective
and diffusive fluxes (u},c, — D}, Ve,) - v where v is the outward unit normal to the bound-
ary 0X2 of the domain (2. Therefore, the values of u}, and of ¢, or of its gradient must be
specified. The former quantity, u, - v is determined directly or indirectly from the flow
boundary conditions, which are handled appropriately to the applied spatial discretiza-
tion [15]. Note that, in a general multiblock case, the boundary 92 may be an external
boundary or just a subdomain boundary (interface). In either case the flow model ensures
the conservation of mass and of momentum of the flowing phases across 0¢). Finally, the
conditions on concentration ¢, or on its gradient V¢, are subject to the time-splitting.
Some delicate issues related to the extended stencil or specific spatial discretizations may
arise.

Wells. The well terms ¢, in flow models are defined using the Peaceman correction
[13]. In the TRCHEM model, the wells are represented by the source-sink term ¢l in the
equation (5) and are handled in the advection step, see below. These terms are either
linked to the injection/production rates of the flowing phases g, or are pure source/sink
terms of species .

3. Numerical model

Here we discuss spatial and temporal discretizations. As we mentioned, the main feature
of our work is a modular approach: the user can assign different numerical models and
discretizations to multiphase flow and to reactive transport modules. Moreover, they do
not need to be identical in all blocks/subdomains. In addition, even though in this work
we assume that the spatial grids used by the flow and by the concentration steps are the
same, this restriction is easy to be removed and then appropriate interpolation and/or
projection maps are used. As concerns temporal discretization, the (multiphase) flow
model is in general transient and it is solved using its own flow-specific time stepping
scheme which is independent of the time stepping used by the reactive transport part.

(F) Flow time step: The flow model equations (1) are discretized in space with the
use of expanded mixed finite element methods with RT, space, see [15] and references
therein. Discretization in time at each flow time step t = t°,¢!,...t",... is implicit
or explicit, with various solvers used to solve the resulting algebraic system [7]. Other
formulations (Discontinuous Galerkin, unstructured grids) are underway. In addition, the
flow model may be discretized with a multiblock multiphysics approach. See [22] and
references therein.



(P) Post—processing: Consider ¢ € (t",t"*!) and a given a. Assume that the solu-
tions of the flow time step or values of S,, u, are available at the old ¢t = ¢" and at the
new flow time steps ¢ = t"*! in the interior and on the boundaries, if appropriate. We
compute the phase-summed values of ®%,u’, etc. as in (6)-(11) at any ¢ € (¢*,t"') by
linear interpolation between old and new flow time steps.

(C) Concentration time step: Consider that at time ¢ = t™ we are given (c'), and
that we want to take a concentration step that is, to compute ¢™*'. The concentration
time step in general is different (smaller) than the flow time step and we assume that
(™, #m+) C (7, "1). Denote AtET! = tm+1 — 4™ and set T, = @ can. Straightforward
discretization in time of system (5) is

Tm+t —m *m+1/2 m *,mg mA+1 TC,m+1/2 TNm+1/2 4 (Tim+1/2
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Direct solution of (12) is difficult and in case of complex chemical reactions may be
practically impossible even if some terms like advection are treated explicitly. For this
reason, in this work we apply a further splitting of the concentration step in which the
advection (C.A), the chemistry (C.C), and the diffusion/dispersion (C.D) subproblems
are solved “independently” in the sense that they deliver intermediate values of 7T, as
Ty, Th, T™+1. Each may have a different numerical algorithm and discretizations assigned.
Some stability and consistency restrictions may apply [20,6,3].

(C.A) Advection. We describe here the first order Godunov method but other tech-
niques are being investigated and compared, see [21]. Set 7" = ®2*cl  and compute
explicitely T, from

T,-T™
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o
(C.R) Reaction Step. We solve the equation for kinetic reaction type by ODE
integration explicitely

To—T

At
where the forward Euler first—order scheme has been used. This equation is an ODE and
is local to a cell. Other schemes, for example Runge-Kutta method, can be applied.

We note that in order to account for all other types of chemical interactions, the right—
hand side of this equation should contain terms R.™ + R2. However, it turns out that
in case of linear adsorption, the term Rﬁ can be handled, instead of in the reaction step,
by modifying ®. The radionuclide decay terms RI™ can be handled, instead of in the
reaction step, in the diffusion step described below. The choice is left to the user.

(C.D) Diffusion/Dispersion. Diffusion step is solved implicitly with respect to con-
centrations with time—lagged diffusion—dispersion tensor as

a _ pTC
=R, ",

T+t — T,
aT — V- (DY) = 0. (14)

In accordance with the above remarks, the right—hand side may include radionuclide decay
terms RTN.
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For the spatial discretization, here we discuss the one based on cell-centered finite
difference method with a standard 7-point stencil; other formulations are possible and are
being tested [21]. The resulting linear system is not necessarily symmetric because the
saturations vary in space and it is solved by GMRES with one of many preconditioners
available [7]. The use of 7-point stencil solver restricts i) the use of general (full) tensor.
and ii) the kind of boundary conditions that can be applied.

4. Numerical examples

Here we discuss two numerical examples. Both require the use of a two-phase flow
model. See [14] for a single-phase flow example for using TRCHEM model.
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Figure 1. Top: geometry, permeability and water saturation after 4.4, 6.85 and 10 years.

Bottom: concentration [lbmol/ ft3] of a tracer soluble in water only, air only and in both
phases (from left to right) and of the radionuclide soluble in both phases after 10 years.

4.1. Flow and reactive transport of radionuclides in vadose zone

This example is motivated by problems considered in several DOE projects, in particu-
lar, by those listed on INEL Web page www.inel.gov as well as by the planned repository
in Yucca Mountain [9]. The domain is a 2D crosssection through a fractured reservoir
connected to an aquifer by a boundary condition at the bottom. It is subject to periodic
ponding of water on the upper surface, see Figure 1. Air is allowed to escape through
parts of the upper surface. All other boundaries are no-flow. Air-water properties are
taken from [11]. For lack of space we do not give details.

The flow in this reservoir occurs mainly through the system of fractures. There is a
radionuclide contaminant of the half-life time comparable to the time scale of the flow
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Figure 2. From left to right: 1) Biophase saturation; 2) NAPL and tracer profile; 3)
Microbe population and dead cells at various times.

which has been placed in a tunnel located just above an impermeable zone. Such conta-
minant can be soluble in both flowing phases or only in water phase or only in air phase.
The flow patterns in this case are such that in the case of only water-soluble contaminant,
the plume will stay very close to its initial position because there is very little water
movement around the original “hot spot” location. In other cases, the conservative tracer
simulation shows that some amounts of the tracer will be transported to the groundwater.
However, these concentrations may be very low in the case of radionuclide decay.

4.2. Transport and remediation of NAPL with two-phase flow

Ground pollution by petroleum products and the substantial costs involved in the re-
mediation of such contaminated sites have led to increased interest in accurate modeling
of transport and remediation of NAPL. However, most simulations assume that biophase
(organic phase) is immobile. This is likely not appropriate when biophase saturation is
large near the leaking location shortly after the spill. The following 1D example considers
biophase as a flowing phase. Initially water-saturated media is subjected to a 50 days
NAPL (xylene) spill followed by clean water flushing, both through the left boundary,
see Figure 2. Fresh air comes through a remediation well located in first quarter of the
domain. The biogeochemical reactions include aerobic degradation, denitrifying degrada-
tion and microbial decay. Parameters come from [18] and [8]. In addition, we consider a
biochemically inactive tracer similar to NAPL.

The flow of biophase is the source of contamination. Due to lack of dissolved oxygen
and nitrate, upstream behavior of NAPL and tracer are similar before the plume reaches
the remediation well (at 90 days). The effect of remediation becomes significant after 200
days due to biochemistry near the well and locally downstream. The microbe population
downstream from the remediation well gradually grows due to sufficient amounts of dis-
solved oxygen and nitrate. This results in a secondary high—spot of microbe population
at 300 days.
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