ADVANCED TECHNIQUES AND ALGORITHMS
FOR RESERVOIR SIMULATION, III:
MULTIPHYSICS COUPLING FOR TWO PHASE FLOW
IN DEGENERATE CONDITIONS
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Abstract. The multiphysics algorithm for coupling of two phase and single phase
flow models is presented. The algorithm is built on a domain decomposition or multi-
block formulation for multiphase flow and can be seen as a way to locally reduce the
interface problem to a simpler one. Such an approach offers reduction in computational
complexity. The key to implementation is flexibility in the choice of interface variables
which may require application of a nonlinear boundary condition. Computational ex-
periments demonstrate the strength of the method as well as its sensitivity to physical
conditions.
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1. Introduction. In this paper we discuss the multiphysics algorithm
for coupling of multiphase flow models. We focus on two phase flow models
in degenerate or residual conditions and discuss the multiphysics approach
for coupling of two phase and single phase flow models. More details on the
general approach will be presented elsewhere [9]. Discretization is discussed
in [13, 16]. See [12] for examples of coupling of three phase, two phase and
single phase models; see also [15] for an alternative multiblock multiphysics
approach.

The multiblock with multinumerics and multiphysics concepts dis-
cussed here has proved to be a successful approach, and is now a part
of IPARS (Integrated Parallel Accurate Reservoir Simulator) framework,
see [13, 10, 14]. The implementation under IPARS allows currently for
coupling of any set of the five models: black oil (implicit), two phase oil-
water (implicit), single phase (implicit), two phase oil-water (explicit), sin-
gle phase (explicit). One of the elements of the implementation is flexibility
in the choice of interface variables. Below we illustrate the influence of this
choice on the convergence of the multiblock algorithm. There is evidence
that in some conditions, for two phase flow multiblock formulation, the use
of pressures as primary variables with “natural” ordering of fluxes is favor-
able, where order of phases in pressures agrees with the order of fluxes [16].
However, in this paper we are interested in performance of the algorithm
in conditions close to degenerate. Degenerate or residual conditions may
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F1G. 1. Left: rock properties for case A. Right: Capillary pressure curves for cases
A, F, G.

occur in some parts of the reservoir throughout the simulation, for exam-
ple, in the aquifer part, or only after some time of production. It appears
that a choice of one pressure and one concentration or saturation as pri-
mary variables may be preferable in such conditions. In fact, that choice
leads naturally to the multiphysics approach which can be seen as a way
to reduce the original two phase interface problem to a single phase prob-
lem, as the two phase formulation becomes degenerate. It turns out that
the multiphysics approach not only gives accurate results (as compared to
traditional approach), but that it also helps to reduce the computation
time.

The plan of the paper is as follows. In Section 2 we review the two
models: two phase otl-water and single phase and discuss conditions under
which the two phase model becomes locally degenerate or in some sense
“becomes” single phase. In Section 3 we recall the multiblock interface
algorithm for the two phase oil-water model and discuss experiments and
the behavior of the interface operator in different physical situations. In
Section 4 we formulate the multiphysics interface algorithm and show re-
sults of the multiphysics coupling as well as discuss the efficiency of the
multiphysics approach.

Throughout the paper we use the following notation. We use right
subscripts a to denote the phase (component). The bar V' means that the
variable V is defined on the interface (in the mortar space) and right super-
script V* means that it is used as a Dirichlet condition. Left superscripts
and subscripts denote the domains in which a variable has a meaning. For
example, ZAP:, denotes boundary condition on water pressure in block A
where two phase flow model is used. Some of this notation is omitted when
there is no danger of confusion.
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TABLE 1
Definitions for two phase and single phase models.

model two phase single phase
definitions:
pressure 2P, 2P, P,
compressibility | 2cy,2 co Lew
viscosity 2 fwy? o g
density 2pw,? po ow

Po = pa,refexp(capa)
potential 29,29, 1y,

VU, = VP, — paGVD
saturation 28w, S, (conversion factor)
(15111 =1- So,res)

concentration 2Ny,,2 N,

2N, =2 2, N, =1 5% po
injection/ 20wy Qo L qw
production rate
mass fluxes 2Uw,2 U, W

2. Models. Consider a reservoir {2 characterized by the values of
porosity ¢ and permeability K, both dependent on position z € 2, and by
the rock properties for the oil-water mixture expressed by relative perme-
abilities k,,, k, and capillary pressure relationship P.. The rock properties
kw, ko, P, are assumed to be known functions of the wetting phase (water)
saturation S,,. In general, the simulator allows for different rock types or,
in other words, for dependence of the rock properties on the position, but
for simplicity this case is not discussed here. Also, let D(z) denote the
depth and G the gravity constant. The system is complemented by the
boundary conditions: we use no—flow condition on the external boundary
0Q and we also use well boundary conditions for the source terms g, g,
implemented with the Peaceman well model [11]. Initial condition of the
reservoir is one of hydrostatic equilibrium and it is made specific by using
the value of water saturation .Sy, ini+ and oil pressure P, ;i at a prescribed
depth. In a typical reservoir which is at equilibrium, with all cells of the
same rock type, water as the heavier of the two fluid phases prevails at the
bottom and oil prevails at the top.

The two models in the IPARS framework discussed here are the two
phase oil-water model and the single phase flow model for water. The

definitions and equations for both models are summarized for convenience
in Table 1 and Table 2.
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TABLE 2
Equations for two phase and single phase models.

model two phase single phase
conservation:

momentum Uy =2 pu K2V (0y,) Uy ="' pu K= V(' ¥y)
(Darcy’s law) | 2U, =? p, K 4=V (*¥,)

mass Mﬁ“)_vﬁ[]w:?qw %—V'lUw=lqw

0(¢"No) —
5 V.t U, =! qo

closure:
volume 280 +2 85, =1
balance
capillary P.=P,— P,
pressure
primary P, N, P,
variables

2.1. Degeneracy. Whether at initial conditions or after some time of
production, some parts of the reservoir or some cells of the computational
grid may contain very little of the oil phase, so that individual oil “globules”
become disconnected and oil phase cannot flow. How much of the residual
oil phase remains, depends on the rock properties. If rocks are water-wet,
then a typical set of rock properties may look like those of Figure 1. In this
case, for water saturations Sy, > 1 — S, res = 0.8, the value of oil relative
permeability &, is close to zero, thereby making the oil phase immobile
or U, = 0. Tt is then natural to identify the cells described by the two
phase flow equations with cells described by the single phase equations.
More precisely, we can assume the same constitutive properties 2¢c,, =! ¢,
2pw =" fw, 2pw,ref ="' pw,res etc. From these follows the identification
2p, =! P,. As concerns mass, we can assume that in each (two phase)
cell with 28, > 1—.5, ,.s, the value of 25, is automatically switched for the
purposes of simulation to 25,, = 1 and we write symbolically 1.S,, = 1 (but
note that saturation variable has no “real” meaning in single phase flow
model). Alternatively, we can use conversion factor 23, =1 S, = 1S, rcs.
Either way, there is a natural identification ! N,, = S p,, =2 N,,. Both of
these options assure the mass conservation. In the current implementation
we use the former option.

The remaining issue is the identification of fluxes 2U,, and U, crossing
the interface that is crossing boundaries of cells adjacent to the interface.
The flux 2U,, depends on the value of k,(25,). In the cell adjacent to
interface and belonging to the two phase model block, the value of sat-
uration 25, describing the residual conditions is determined as discussed
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Block A Block B
Interface

F1G. 2. Domain decomposition for 1D case.

above. Now, the value of k,(25,) itself can be one (like on the sample
kv (Sw) curve shown in Figure 1) or to some smaller number, depending on
the available measurements and scaling, in particular on the wettability of
the rock. If k,,(2S,) = 1, then in a natural way we identify 2U,, =! U,,. In
a more general case, we write 2U,, = k, (*S,)'U.,, and a conversion factor
is necessary.

We remark that the above reduction of the two phase system to the
single phase is only appropriate for some rock types and physical condi-
tions. For example, for oil-wet rocks, the oil phase stays in the pores as
it “sticks” to their surfaces, the residual oil saturation is higher, oil phase
is not disconnected but water phase may be, and S, never reaches high
values. In intermediate cases called mized—wet, a variety of possibilities
may occur depending on the history of the reservoir [4, 5]. Also, when hys-
teresis in capillary pressure is important, then the imbibition rather than
drainage P, curves should be used in waterflood simulations. An example
of mized-wet or imbibition P, curve is given in Figure 1, case G. Note that
most of the theoretical results available for well-posedness of the oil-water
systems [1, 3] assume that the value of k,P. — 0 or that it is at least
bounded. This assumption, while justifiable for water—wet cases, will not
be valid for oil-wet cases or many mixed-wet cases.

3. The interface algorithm in degenerate conditions. In this
section we recall a multiblock algorithm for a two phase model, and discusss
its behavior in degenerate conditions. We first present results for the first
time step for some typical water-wet cases, then discuss sensitivity of the
algorithm to capillary pressure, and finally discuss its long-term behavior.

3.1. Multiblock algorithm in 1D. Consider the reservoir as in Fig-
ure 2 which is decomposed into two blocks A, B, or subdomains, see Figure
2, with interface I'. The domain decomposition algorithm which is an ex-
tension of [6] is used to (weakly) impose conservation of mass and momen-
tum across the interface using mortar spaces [13, 16, 2, 14]. For simplicity,
assume a 1D two phase case where there is only one degree of freedom in
the mortar space composed of piecewise constants only. In general, a given
mortar grid has a set of degrees of freedom associated with each interface
(primary) variable. In the 1D case the phase pressures A on the interface
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(or other variables, see dicussion below) are constants and the mortar pro-
jections are identities, hence A = A*. The value of A* is transformed to
deliver Dirichlet conditions imposed on the primary variables (P,, N,) of
the two phase subdomain problems

(3.1) %P,lr = P!, %Nor = N
(32) 2BPoll":-Pja 28N0|1":N:‘

The interface algorithm uses an iteration to find the value of A such that the
jump in the phase fluxes across the interface 2B(A) = (B,(A), By, (A)) = 0.
In a multidimensional case, the computation of B(A) =2 B(A) involves an
integral over I of a product with test functions from an appropriate mortar
space. In the 1D case discussed here, the matching of fluxes across I', with
14,78 denoting the unit normal to I" outward to blocks A, B, respectively,
is expressed by

(3.3) By(A) :=4 Uy -na+8Us -8 =0, Ya=o,w.

In general, A can represent a set of pressures, but it can also be any set
of variables which uniquely determines the conservation of momentum as
well as leads to a well-posed subdomain problem. Which variables are
appropriate depends on the problem. For example, the choice of A =
(P,, N,) appears natural as it coincides with primary variables as in Table 2
and therefore does not require any extra map beside the mortar projections
A — A* to deliver Dirichlet values P*, N}.

The schematic representation of the map A — B, (A) is

. . N N solve(A) .
A PSJ- AA = (APo A No) sol:(B) AUa|F A — Ba(A)

sA* — (gPrsN}) —  gUa|r - n8

Note that the map A — B(A) is a composition of computation (3.3) follow-
ing the Dirichlet-to—Neumann map (4P, 4 N¥) = (4Uu|r-n4,8 Ualr-n8),
the transformation maps A* — (P, N}) for each block, and of mortar pro-
jections A — A*.

The problem B(A) = 0 is solved by a version of the inezact Newton—
GMRES algorithm [13, 16]. In fact, we use a finite difference approximation
to the directional derivative

_B(A+0AS)—-B(A)

(34)  B'(A)AS~DsB(A)AS = ; ,

or some other version according to [7, 14] with & chosen appropriately
relative to the subdomain solver tolerance (. In each iteration, a new
guess for the values of interface primary variables A is computed in the
Newton step B'(A) A S = —B(A). If the norm b(A) =|| B(A) || is small
enough, then the iteration stops. Otherwise, a new guess is sought. The
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Newton step is solved with GMRES and an efficient preconditioner for the
GMRES solver is necessary for efficiency. However, in the 1D or small
dimensional experiments cases discussed below, GMRES can be assumed
to work almost exactly and preconditioning plays no role. This way we can
associate any convergence results with only the nonlinear properties of the
map A — B(A) and with the choice of primary variables.

TABLE 3 ]
Choices of primary variables and of order of fluzes B (Ag).

A’ = (P, N,) | A = (Po, Py) | A’ = (P, No)
B’ = (B,, By) 00 10 20
B' = (By, B,) 01 11 21

3.2. Choices of interface variables. We discuss three choices of
interface primary variables and two different arrangements of the jump
of the fluxes. We refer to these as A’ = (P,, N,),A! = (P,,P,), A% =
(Py,N,). The value of the jump in the fluxes is referred to as B° =
(B,, By) or B' = (B, B,). The choices and the mnemonic symbols for
their combinations are summarized in Table 3. Note that the order of
fluxes may be very significant as it can change the character of Jacobian
from being (positive) definite to being indefinite or saddle point system
like.

For each A* k = 0,1, 2, one needs to determine a map A* — (Pr,N})
which is in general nonlinear and which follows from the set of conserva-
tion and constitutive equations in Table 2. In fact, the main value to be
determined is one of S7;. All the other values follow, once S}, is known.
For convenience, the maps are summarized below (asterisks are omitted).

0 _ 1 _ N,
(35)  Su(A®) = Su(P,N,)=1 PRI
(3.6)  Su(AY) = S.(P,P,) =P, P, —P,)

N,
po(Pw + Pc(Sw)) ‘

implicit by

(3.7) Sw(A?) Sw(Py,Ny) =1—

In the above equations, calculation (3.5) is straightforward, while equation
(3.6) requires inverting of P, which may present difficulties when P is close
to zero. On the other hand, inspection of the last equation (3.7) shows
that, using simple fixed point iteration, the value of S, (Az) can be found
faster for smaller P} values and that the iteration may have difficulties
where P! is large, as the derivative of the fixed point map S, = F(S,,) is
F'(Sy) = Noco%. Also, for cases with small compressibility of oil ¢,, the
iteration may converge faster. In other words, the choice A? may be more
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favorable than A! where P! is small, and vice—versa. In general, in some
cases, depending on values of P. and P!, the map B'(A) may not be well
conditioned, thereby making it more difficult to solve the Newton step. In
addition, the finite difference approximation to the Jacobian is sensitive
to singularities. See the results of computational experiments presented
below.

In the remainder of this section we test the convergence of the Newton
iteration on the interface in degenerate (residual oil) conditions. To put
these results in perspective, we dicuss the convergence over a large set of
initial saturations when S,, varies from values around S,, = 0.2 (mainly oil
with water at residual conditions) to around S, = 0.75 (mainly water only
with oil at residual conditions). In the latter case we show how the original
two phase interface problem can be reduced to the single phase using the
multiphysics approach.

Oil pressure profiles
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FiG. 3. Left: profiles of solution of case A for Sy init = 0.2. Right: pressure
solution for Sy, init = 0.2,0.35,0.5,0.75. Curves in different blocks have different colors.
Note the “gap” at 400’ which corresponds to the interface.

3.3. Computational experiments for 1D problem. Consider a
1D reservoir of length 800’ initially at equiblibrium with P, ;i = 500 psi
and a case dependent Sy, init- The reservoir is decomposed into two blocks
or subdomains, each of 100 cellsx4’. The constants in constitutive rela-
tionships are selected so that the relative properties of oil and water are
conserved, yet the concentrations are very close in values to saturations.
Specifically, po.rer = 1.0, py,ref = 1.2 f%] The compressibility constants
are ¢, = .4x107%, ¢,, = .33x1073[/psi]. Relative permeability and capil-
lary pressure functions used in this case are those in Figure 1, case A. At
initialization the reservoir is at at equilibrium. There is a production well
located at the end of one block where the pressure after the beginning of
simulation is dropped to 450psi. In all cases discussed here the stopping
criterium for the interface iteration was chosen to maintain mass balance
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up to 8 significant figures. All cases are run without preconditioner, as
explained above.

Figure 3 shows the profiles of solution at 10 days which corresponds to
the first time step. Such an unusually large time step is used intentionally,
in order to amplify the difficulties. The solutions are plotted separately in
the interior of each block and so there is a “gap” between the plots at 400'.
However, note the apparent continuity of the solution across the interface.
The value at the “gap” or at 400’ is the solution of the problem on the
interface or the solution of b(A) = 0 or B(A) = 0.

a0 470 460 490 360 470 480 490 500

pwat

0.35 0.5 0.75

pwat

FiG. 4. Profiles of b(A¥) for k = 0 (top), k = 1 (middle), k = 2 (bottom) for
Sw,init = 0.2,0.35,0.5,0.75 (from left to right). Note that dark colors correspond to the
solution of B(A) = 0.

The model case A is used in the following experiment. First, we exam-
ine the values of b(A) =|| B(A) || for Sy,init = 0.2,0.35,0.5,0.75. To this
aim, we set up the code to deliver the value of b(A) for requested values of
A at the first interface iteration, and we display these values as a contour
plot in the plane spanned by interface primary variables; see Figure 4. The
choice of range of the requested values of A is such that b(A) is well de-
fined. Also, the step between the adjacent values of primary variables does
not take into account any special scaling : step between pressures is similar
to step between concentrations which is how Newton/GMRES would op-
erate anyway. Next, we investigate the convergence and sensitivity of the
interface operation for the first time step.
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TABLE 4
Function evaluations for cases A, B. “” indicates no convergence,
problem with the transformation map A* — (P}, N}).

“*7 indicates

Case A (small 9) Case B (larger 6)
Sw,nit | 00 01 10 11 20 21|00 01 10 11 20 21
.20 10 10 10 10 10 10| 9 9 7T 7 16 19
.35 Tov 7 v 7T Tv| 7 10 7 7 7 10
.50 0o 7 10 7 Y 7|10 10 10 7 9 10
.60 YT 10 10 7 10 1010 10 13 10 10 10
.65 - 7T - - 10 10|10 10 16 10 10 10
.70 - T 10 7T 7 12 T 7 19 10 7 7
.72 * 9 10 7 * 6 T 7T 22 T 7
.75 - - - - - - 7 12 19 7 7 12

The comparison of the profiles of b(A) is very interesting. First observe
that profiles for A° and for A? appear similar which may lead to similar
behavior of the interface solver, a fact that is later confirmed by iteration
counts. In particular, at Sy it = 0.75 (last column), both choices of
A = A%, A? show the degenerate behavior of the code because there appears
to be little dependence of the plotted value b(A) on the second variable N,,.
This shows that one can reduce the interface problem using the multiphysics
approach to a single phase problem. Another observation is that in case of
A, the solution lies inside of a very thin ellipse. One of the axes of this
ellipse is the line P, — P, = P.(S,,) where S,, corresponds to the solution
of B(A) = 0 located in the center of the ellipse. The ratio of lengths of
the two ellipses indicates difficulties in solving the problem B(A) = 0.

Now we discuss the number of interface iterations for the first time
step with the stopping criterium as specified above. The interface iter-
ations are also called function evaluations, as each iteration (Newton or
GMRES) delivers a new value of B(A) for current guess A, see Equation
3.4. The number of function evaluations are presented in Table 4 and they
are directly related to the number of Newton iterations (not shown). For
example, 7 evaluations correspond to 2 Newton steps since each Newton
step requires two evaluations in GMRES, and one evaluation is required
per step to check for convergence and one extra is used for postprocessing.

In general, it appears that the easiest to solve of all cases is the case
of Sy,init = 0.35. This corresponds to the most regular of all plots for
this case and is reflected by a lack of sensitivity to the parameter 6,  used
in the difference approximation to Jacobian B'(A). In general, for cases
which converged, the smaller value of  corresponded to fewer iterations, as
then the approximation to the Jacobian B'(A) is better. However, for some
cases, for S, > 0.5 there is significant sensitivity of the interface algorithm
to the choice of parameters §,(. It turns out that for Sy init = 0.75 the
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TABLE 5
Summary of cases for computational experiments. M denotes number of mortar
degrees of freedom. Only horizontal permeability shown with ratio % = 10 assumed.
Size and dimensions are shown for blocks A and B or only for block A.

dim  size(ft) ¢ K(md) time ¢, 0 M
(1 blk) step
#cells (days)
A 1D 400 0.2 100 10 10~8,10~10 1
100
B 106,108
C 3D 400°x400’x24" 0.2 100 1 1078,10"10 4
8x8x2 (A)
10x10%2 (B)
D 100(.A) 1
500(B) 1
E dip of 11deg 100

iteration will break down for small ¢, (case A), but it will converge for
somewhat larger values of these parameters (case B).

3.4. Experiments for 3D case. In order to understand better how
the choice of B’(A}) influences convergence on the interface, we set up a
couple of 3D cases labelled C, D, E. All cases are summarized in Table 5.
In these cases, Sy, init is set at top of the reservoir and is used to compute
saturations along the interface which are higher than Sy, init- This explains
the shift in the results between cases A and C. Also, the runs with more
mortar degrees of freedom, and/or with more wells and/or with higher
heterogeneity (not shown here) show overall qualitative behavior similar to
cases A and B while they differ in the number of evaluations.

In general, the runs show substantial influence of the convergence on
the choice of BY(A*); see Table 6. From the results presented it appears
that the two most robust choices throughout the values S,, = 0.2...0.75
were those labelled as 01 and 21. Surprisingly, in cases C and D, for small
saturation values Sy, init < 0.5, the “exchange” of the order of fluxes does
not result in dramatic improvement or deterioration of convergence. On the
other hand, the influence is dramatic for large saturation values as well as
for case E in which flow is more gravity—influenced than in cases C, D. The
(poor) performance of the interface iteration in the large saturation cases
0.5 < 8, <0.75 is apparently related to the fact that at these saturations,
the oil flow is small or very small relative to water flow and so the order of
fluxes in B° (oil flux first) appears inappropriate.

In general, it appears natural, in the conditions close to degenerate, to
drop the oil coordinate of B(A) and to drop one variable in A and thereby
to reduce the original system from 2x2 to 1x1 (per mortar variable). The
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TABLE 6

Function evaluation count for cases C, D, E.

question is however, which primary variable to drop. In the above case, it
appears natural to drop N, in the choice of A%, A% and to drop B, in B".

Case C (3D, homog.) Case D (3D, nonhom.)
Sw,init 00 01 10 11 20 21700 01 10 11 20 21
.20 15 16 13 16 15 15|16 17 15 26 25 24
.35 26 25 19 25 25 23126 21 21 24 22 21
.50 - 50 34 33 - 52| - 44 38 48 - 45
.75 74 10 42 - 6 10| - 9 45 - - 9
Case E (3D, dip)
Sw,im‘t 00 01 10 11 20 21
.20 15 15 14 21 14 14
.35 163 64 40 119 - 95
.50 90 11 80 * - 11
.75 203 11 81 * * 11
TABLE 7
Function evaluation count for cases F, G, H.
Case F Case G
Sw,im’t 00 01 10 11 20 21|00 01 10 11 20 21
.20 9 10 18 10 10 10|91 115 38 37 - -
.35 7 10 9 11 7 10| - 9 67 * - 9
.50 10 10 19 11 10 10| - 13 79 * - 13
.75 7 11 - 16 7 11| - 9 74 * - 9
Case H
Sw,,-m-t 00 01 10 11 20 21
.20 15 15 13 16 24 25
.30 17 15 * * 17 15
.35 25 24 % * 26 23
.50 25 18 23 25 25 19
.75 22 19 23 24 33 19

This reduction leads to the multiphysics setting discussed in Section 4.

Of the two choices, A? is easier to implement, since the variable P,
has a natural counterpart in the single phase flow part while P, does not.
On the other hand, the choice A' does not offer that “natural transition”.
In fact, as the evolution of profiles of B(A) over S,, € (0.2,0.75) suggests,

1 . .
the operator B(A") becomes more singular as S,, increases.
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3.5. Sensitivity to capillary pressure. With the evidence above, it
is still necessary to test different physical conditions. While comprehensive
study is beyond the scope of this paper, it appears that the behavior of
capillary pressure curves is the main factor determining the convergence. In
this direction, we study model cases which use a different capillary pressure
relationship than case A.

Consider the capillary pressure relationships shown on Figure 1B, with
curve F in which capillary pressure effects are very small and curve G
in which the inflection point of the P, curve is moved towards smaller
saturations and where a negative capillary pressure values occur for larger
saturations. Curve G can be considered as an example of a mized-wet
system [8, 4] or of an imbibition P, curve. Simulation cases F and G use
the grid from case A and capillary curves F, G from Figure 1B, respectively.
Additionally, case H uses grid from case C and capillary pressure curve F.

The function evaluation count for cases F, G, H is shown in Table 7.
It is not surprising to see that the choice of A' appears to be the least
stable in case F. This is because the values of P, as well as of P are small,
therefore making it harder to get S,, from equation (3.6). The same effect
is amplified in case H. Another observation is that the use of “natural”
ordering of fluxes seems inappropriate for A%, A%. For case G, the results
shown are as anticipated: the largest number of iterations occurs near
singularity of P.. This means that reduction to multiphysics cases is not
appropriate for case G.

3.6. Long time behavior of the interface algorithm. It is im-
portant to discuss the same issues as above over production lifetime of a
reservoir (up to the time well after breakthrough). For these purposes, we
consider case C geometrically congruent to C and scaled down by a factor
of 10x10x10 in all directions. The purpose of the scaling is to make the
reservoir so small that the breakthrough occurs after merely a couple of
months and the computations complete faster. Still, the case C is very
similar to C in that the iteration counts for first time step (not shown) for
case C are similar to those for case C.

We run several simulation with case C using different combinations of
primary variables and ordering of fluxes. The case(s) are run over suffi-
ciently long time so that the waterflood front actually moves through the
whole reservoir and the water saturation close to the interface I' ranges
from .2 to .7 during simulation. For example, for the top case in Table 8§,
the saturation at 500 days (197 time steps) near the block interface is close
to .7. We report that qualitative results of simulations (not shown here)
for different choices B7(A*) exhibit only minor difference up to 0.3% in
the well rates.

Table 8 contains the average number of evaluations and timings for case
C. These demonstrate the longterm behavior of the multiblock algorithm
which essentially follows the trends observed for the first time step only.
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TABLE 8
Long term effects of use of different primary variables for case C scaled by
10X 10X 10. FEV=aqaverage number of evaluations per time step. Time is computation
time.

Swinit | 00 01 10 11 20 21
case with Sy, init = .35, 500 days (197 tsteps), coarse mortars
FEV 11.96 10.28 9.75 10.32 11.68 10.21
time 307.12 276.64 299.35 305.60 302.21 271.94
case with Sy, init = .2, 1000 days (367 tsteps), coarse mortars
FEV 10.68 9.05 9.82 9.87 10.38 8.95
time 552.51 493.16 599.58 596.34 553.20 481.11

In summary, choice 21 appears as the most efficient for all runs over the
production lifetime of the reservoir.

4. Multiphysics solution of degenerate cases. In the water-wet
conditions it is natural to consider the oil-phase as immobile and practi-
cally absent from the problem in the residual conditions. The appropriate
algebraic reduction is realized by the multiphysics algorithm.

In the multiphysics couplings, we replace one of the subdomain solvers
in the original multiblock two phase oil-water subdomain solver by the
single phase solver. This requires that the boundary conditions that we
impose on the subdomain problem are now modified. In particular, the
single phase flow model needs a boundary condition imposed on only one
variable, specifically, on its subdomain solver primary variable ! P,,. Also,
the single phase subdomain solver delivers values of flux for one phase only.
The studies presented in the previous section show that the natural and
efficient choice of the (mortar) interface variable for which we derive the
Dirichlet boundary condition values P is water pressure P,,.

Schematically, the algorithm is as follows. In every iteration, the in-
terface algorithm comes up with values of interface degrees of freedom
corresponding to one variable A = (P,,) only. This value is then projected
to deliver values of pressure }4P;", in the single phase model in block A and
values of water pressure 4P in block B. In the two phase flow model
assigned to block B, we additionally need the values of oil concentration
ZN;. These must correspond to the residual conditions and are taken from
initialization step at the beginning of simulation. Both values, (3P;; and
2N}), are then transformed to deliver values of 4S5} and in what follows
values of % P;. Finally, the set (3P;, 4N7) is used by the subdomain (two
phase) solver. The algorithm can be represented schematically as

AT (hP{;) solv}il,A)

1 .
solve(2,B) AUw|I‘ s HBw(A)
sA* = (3P) ’

2Unlr - M5

A PR
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Note that algebraically, this algorithm describes the reduction of the orig-
inal two phase interface problem to a single phase problem which in the
Jacobian / residual formulation can be seen as

9B, OBy
éP, ON, AP,
4B, 08B, AN,
aP, ON,

B OB
=_[Bj]red_“;=e[a_l;:][mw]=_[3w].
In the implementation, this reduction can be done globally for all inter-
faces, or locally only for some selected interfaces. The choice between
these options depends on the physical conditions which exist near a partic-
ular interface: whether they are of residual type or not. Furthermore, this
reduction or “switch” to multiphysics can be done adaptively in time. For
example, in case C discussed in section 3.6, the results show that after 500
days of simulation the oil phase near block interface is practically immo-
bile. From that time on, one can continue the original two phase multiblock
simulation in the multiphysics mode which could dramatically increase the
efficiency of computation.

To demonstrate the effectiveness of this approach consider a 2D dip-
ping reservoir example 800’ x20' (200x10 grid) for which, at equilibrium,
the water—oil contact (WOC) is located as shown in Figure 5. There is an
injection well alongside the bottom side of the domain as well as a pro-
duction well alongside the top side. The reservoir is decomposed into two
domains, with the interface " lying below WOC. Specifically, the interface
is at a distance of 200’ or 50 cells down form the upper corner. This decom-
position ensures that single phase or two phase degenerate conditions exist
in a neighborhood of the interface on the two phase (top) side. The top
block is assigned the two phase model, and the bottom block is assigned
the single phase model. The mortar grid is 5x1 (12 degrees of freedom)
and convergence tolerance is set to reduce the initial interface residual by
about a factor of 1073.

The results of simulation (pressure and saturation profiles) after 40
days are displayed in Figure 5. The first question concerning these results
is how they are related to the solution of the problem posed on the whole
domain (without domain decomposition) or, in other words, whether the
interface iteration converged to a physical solution. To answer this ques-
tion, we set up two simulations. The first one, (a), does not use domain
decomposition and the solution is obtained with only the two phase flow
code. The second, (b), uses multiblock multiphysics approach described
above. The comparison of the two is discussed below.

One of the ways to compare these results is to look at the pointwise
values of pressures and concentrations. These are not identical because
the continuity across interface is only imposed in the weak sense, recall
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TWO-PHASE

SINGLE-PHASE

block interface

wocC wocC

&y S

¥

F1G. 5. Grid and decomposition of multiphysics case (top). Profiles of pressure
(left bottom) and saturation (right bottom) after 40 days of simulation.

formulation in [13, 16]. However, the well rates (injection and production)
obtained for runs (a) and (b) as in Figure 6 show these well rates to be very
close. A closer quantitative inspection of differences between them shows
differences less than .1% for oil production and less than 1% for water
injection and production. Given the uncertainty of reservoir description,
these differences are negligible in comparison to the ones caused by the use
of different geostatistical permeability models or by different discretizations
[15]. In conclusion, the multiphysics approach gives satisfactory results.

The second question to ask is how efficient is the use of the multiphysics
approach. In other words, are the runs using multiphysics more cost—
effective than those with a traditional (single block) approach using one
two phase flow code over the whole domain. It is obvious that the most
significant factor in the comparison and in the efficiency of multiphysics is
the relative cost of the single phase and two phase models for the given
problem. These depend on the cost factors for the models which usually
scale like CN? where C is a model dependent constant, N denotes the
number of grid cells associated to a model subdomain, and g is a solver and
model dependent exponent typically satisfying 1 < 8 < 3. Note that 5 =1
may correspond to a single phase flow model with a multigrid solver and
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Well rates for two phase, 1 blk (solid)
and multiphysics, 2 blks (symbols)
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F1G. 6. Comparison of well rates for two phase single block and multiphysics runs.

B = 3 to a multiphase flow model with a direct solver. Other factors which
influence the cost of the multiphysics approach include the overhead of the
domain decomposition algorithm involving the outer iteration, projections,
etc. In addition, in runs on a parallel machine, one needs to use proper
load balancing between blocks and models.

To illustrate some of these issues, we present timings of some runs on
a single processor machine in Table 9. The last column of Table 9 contains
results for cases (a), (b) discussed above. It shows that for the problem
with fine grid and with single phase region three times as large as the two
phase region, the multiphysics simulation ran faster by more than a factor
of 2 than the single block code. For comparison, data in first and second
columns show timings for problems of different sizes and discretizations.
For example, the first two rows of the first column correspond to the case
where single phase domain was as large as the two phase domain, in which
case multiphysics was slower than single block approach. Also, the last two
rows of the first column correspond to the original case of size 800" with
coarse discretization. These results prove that the number of cells assigned
to each model is an essential factor in the cost—effectiveness of multiphysics.

5. Conclusions and acknowledgments. In this paper we discussed
the multiphysics approach viewed as an efficient domain decomposition
technique to solve two phase problems with residual conditions present
locally. The focus was on water-wet reservoirs and we indicated sensitivity
of the numerical algorithm to the physical conditions like wettability and
capillary pressure. Our studies are intended as a first step to adaptivity of
the multiphysics approach. However, more in—depth studies are necessary
in order to determine the best choice of primary variables and order of
fluxes for general multiphase multicomponent flow and transport problems.
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In particular, in the case of the black oil model [13, 12, 15], the choice of
only pressures as boundary conditions does not always lead to a well-posed
problem, as the amount of gas component in (undersaturated) oil phase

MALGORZATA PESZYNSKA

TABLE 9

Comparison of timings for single block and multiphysics runs.

Discretization in lateral direction:
(# of cells)x (cell dimensions)
Vertical discretization is 10x2'.

Influence of size

a) single block (two ph.) 66.58 257.41 533.10

b) multiphysics

267.20 250.45 245.67

Influence
of discretization

a) single block (two ph.) 7.12 33.79 533.10

b) multiphysics

9.59 32.65 245.67

may be completely arbitrary at residual gas phase saturation.

In the end, we would like to thank our colleagues: Qin Lu for his
work on implementation of multiphysics, Manish Parashar for development
of multiblock libraries and Bahareh Momken for her contribution to the
single phase code. Discussions with John Wheeler, Yuri Vassilevski, and
collaboration with coauthors of [13, 16] Mary Wheeler and Ivan Yotov are

gratefully acknowledged.
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