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We consider approximation of solutions to conservation laws with memory represented by a Volterra term
with a smooth decreasing but possibly unbounded kernel. The numerical scheme combines Godunov method
with a treatment of the integral term following from product integration rules. We prove stability for both
linear and nonlinear flux functions and demonstrate the expected order of convergence using numerical exper-
iments. The problem is motivated by modeling advective transport in heterogeneous media with subscale
diffusion. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 000: 000–000, 2013
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I. INTRODUCTION

In computational modeling of flow and transport in heterogeneous domains, one frequently has
to work with a practical modeling scale which is much larger than that of some coupled diffusion
processes. This occurs, in particular, in highly heterogeneous porous media where the advection
dominates any other transport mechanisms in the highly permeable part of the domain of flow.
This advective transport is coupled to the local diffusion phenomena in the adjacent, much less
permeable domains, in which advection is negligible. To avoid modeling at all the spatial scales
involved, one can use an upscaled model in which appropriate memory terms account for the
subscale diffusion [1–3].

Transport models with memory are used in industrial applications, for example, to describe
gas transport in coal seams involving adsorption and diffusion in meso- and micropores [4–9], a
process accompanying methane recovery and carbon sequestration in coalbeds. Another example
is that of transport models in subsurface and hyporheic zones [10–12]. Memory terms appear in
other applications such as viscoelasticity, heat conduction in materials with memory, and electro-
magnetism in dispersive media. We review various model applications for transport with memory
in Section II.
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In this article, we develop and analyze numerical discretization of the prototype model

ut + β ∗ ut + f (u)x = 0, x ∈ R, t ∈ (0, T ), (1.1)

in which the unknown u is, for example, the concentration of some species being advected in
the medium, f is a linear or strictly increasing nonlinear convex flux function, and the Volterra
convolution integral

(β ∗ ut)(x, t) :=
∫ t

0
β(t − s)ut (x, s)ds, (1.2)

has kernel β whose properties are crucial for analysis and efficient approximation of (1.1).
Throughout the article, we assume that β is nonnegative, nonincreasing, and smooth,

β(t) ≥ 0, ∀t > 0, (1.3)

β ′(t) ≤ 0, ∀t > 0, (1.4)

β ∈ L1
loc(R+). (1.5)

It is important to distinguish two cases depending on behavior of β at t = 0

β ∈ B∞ := {β ∈ C0(0, ∞) : lim
t→0

β(t) = +∞}, (1.6)

β ∈ Bb := {β ∈ C0([0, ∞)) : β(0) = b}. (1.7)

Typical examples of kernels from these two classes are, respectively, β(t) = t−1/2, and
β(t) = exp(−t). For notation convenience, we also consider β ∈ B0, that is, β ≡ 0.

Many of the technical results we develop for (1.1) can be easily extended, to the fractional
conservation law

β ∗ ut + f (u)x = 0, x ∈ R, t ∈ (0, T ), (1.8)

in which β ∈ B∞. In particular, if β(t) = 1
�(r)

t r−1, r ∈ (0, 1), then one can identify β ∗ ut as the
fractional derivative of u of order 1 − r [13]. The model (1.8) is itself important in applications,
see Section II.

It is therefore natural to combine (1.1) and (1.8) and consider the initial value problem

αut + β ∗ ut + f (u)x = 0, x ∈ R, t ∈ (0, T ) (1.9a)

u(x, 0) = u0(x), x ∈ R (1.9b)

with α = 1 or α = 0, respectively. The case with an arbitrary α > 0 can be considered via
rescaling.

When α = 1 and β ∈ B0, the Eq. (1.9a) is a scalar conservation law whose analysis and
approximation encounters well-known difficulties. The approximation of scalar conservation laws
is well-understood [14–17]. In contrast, we are not aware of any known results for numerical
approximation to (1.9) if β �≡ 0. In this case, the solutions may have an interesting structure due
to the presence of the integral terms which give rise to certain smoothing effects, for example,
prevent or mollify development of singularities. In particular, as recently reviewed in Ref. [18]
with α = 1, β ∈ B∞, and linear f , the solution to Riemann problem, that is, with u0 = 1−H(x),
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SCALAR CONSERVATION LAW WITH MEMORY 3

where H is the Heaviside function, is continuous for t > 0; see also Refs. [19–22]. On the other
hand, as shown in Ref. [18], there is no such smoothing involved if f is nonlinear or β ∈ Bb.
However, if α = 0, β ∈ B∞, the solution is continuous [22].

The purpose of this article is to define and analyze a numerical approximation scheme for (1.9).
We consider the well-known upwind scheme which arises naturally for the case α = 1, β ≡ 0,
and extend it to (1.9) by an appropriate treatment of the convolution term β ∗ut following the idea
from [23, 24] where a similar term appeared in a parabolic equation with memory. The scheme
and the notation are introduced in Section III.

In Section IV, we consider the case of linear flux f and use von-Neumann stability analysis
to show that an explicit scheme proposed in Section III is stable as long as a condition similar
to CFL condition [14] holds. Specifically for α = 1, the time step k must satisfy k ≤ C(β, f )h,
where h is the spatial step, and where C(β, f ) grows with the increasing singularity of β and
decreases with increasing Lipschitz constant for f . The case α = 0 is handled similarly but the
stability is guaranteed only if β ∈ B∞ and under a severe restriction on k; in particular, for r = 1

2
we find that k = O(h2) is required. Thus, in this case, an implicit scheme which is shown to be
unconditionally stable, may be preferable. For nonlinear flux f , β ∈ B∞, and under additional
assumptions, we show in Section V that the explicit scheme is T V -stable.

In Section VI, we present numerical examples. On one hand, we confirm our theoretical con-
vergence results. On the other hand, we provide simulations to illustrate the smoothness of the
solutions depending on the singularity of β.

In this article, we consider only first-order schemes in one spatial dimension for scalar prob-
lems. The extensions to higher-order schemes as well as to realistic multicomponent systems
and multidimensional application examples are forthcoming. This article is a first step toward
the understanding of interplay between smoothing effects due to memory effects and nonlinear
advection, and the numerical stability and instabilities arising from these, respectively.

Finally, the analysis of the discrete scheme for (1.9) in this article is completely different from
that in Refs. [23, 24] which relied on energy estimates. It is also distinct from the analysis of
schemes for viscoelasticity and other problems with memory terms β ∗ Au with nonsingular and
weakly singular kernels β [25–27] which strongly relied on energy estimates for the second-order
differential operator A.

II. APPLICATIONS OF CONSERVATION LAWS WITH MEMORY

The model (1.9) is a simplification of a more general equation motivated by the experimental
results in [1, 28]

ut + β ∗ ut + vux − Duxx + β1 ∗ uxxt + β2 ∗ uxt = 0, (2.1)

which we obtained in Ref. [2]. Here, D > 0, v are the macroscopic diffusion and advection coeffi-
cients, and the kernels β, β1, β2 are derived from the solutions to microscopic advection-diffusion
cell problems. In Ref. [3] the first set of simulations confirmed good agreement between (2.1)
and an underlying model of transport with memory in highly heterogeneous media comprised of
highly permeable medium interlaced with low permeability zones. The model (2.1) differs from
the usual homogenized models in that it does not assume scale separation and allows a continuum
of contrasts between the two zones. The scale separation constant plays a role in the relative
importance and magnitude of the kernels β1, β2 with respect to β, with the latter known as the
primary diffusion kernel. The kernel β can be computed analytically or numerically for simple
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geometries of microblocks, for example, is given by weakly-singular Fourier–Bessel series (see
Ref. [23]), whereas its qualitative nature is well-described by β(t) ∼ t−1/2 [23, 29]. For high
contrast between the zones and large flow rates, D ≈ 0, β1 ≈ β2 ≈ 0. More studies and rigorous
analyses are underway extending [3] and this article.

A model similar to (2.1) with β1 ≡ β2 ≡ 0

ut + β ∗ ut + vux − Duxx = 0, (2.2)

was used in modeling hyporheic zones [10–12] where the contaminants moving quickly in a
stream or river interact with the storage in the sediment and banks surrounding the stream. Here,
β(t) ∼ t r , r = −0.28 was found by a match with experiments.

The use of memory terms as models of subscale diffusion dates back to double-porosity mod-
els such as the Warren–Root model [29–31], which has been popular in modeling fractured oil
reservoirs. More recently, such models are used routinely to describe gas transport involving
adsorption and diffusion of methane and carbon dioxide in coalbeds [4–9]. In particular, consider

ut + at + vux = 0, (2.3)

where u is the concentration of species being transported through coal and a is the amount
adsorbed, and v is the transport velocity. Because coals have multiporous structure, it is known
that an equilibrium model a = g(u) is not adequate. [Here, g(·) is an increasing smooth function
called isotherm [32].] Instead one should use the full-microblock diffusion-adsorption model in
which at = β ∗ g(u)t ; here β(t) ∼ t−1/2. Via a change of variable, this model shares structural
similarity with (1.9).

As a simplification, Ref. [5] uses the quasi-static (kinetic) model in which

at + τ(a − g(u)) = 0. (2.4)

It is not difficult to calculate that with β(t) = τexp(−τ t)

at (x, t) = β ∗ g(u(x, t))t + β(t)(a(x, 0) − g(u(x, 0)), (2.5)

thus making (2.3)–(2.5) similar to the nonlinear model (1.9) with a bounded kernel.
A more general multicomponent model of methane and/or carbon dioxide adsorption in coal

formulated for the needs of industry in Refs. [4–9] should account for dependence of v = v(u),
an extension to a system, as well as compressibility effects. See Ref. [32] for an exposition on
models of methane evolution and a multicomponent nonequilibrium example. A comprehensive
model will require approximate Riemann solvers and an equation of state, but the analysis is
outside the present scope.

The model (1.9) we study in this article is thus clearly a simplification of each of (2.1), (2.2),
and (2.3). It includes, however, the memory terms, that is, those elements of each of (2.1), (2.2),
and (2.3) which set them apart from standard models. It is the goal of this article to address
and analyze its numerical discretization, so that eventually more comprehensive models can be
treated.

III. DISCRETIZATION SCHEMES FOR (1.9)

We follow the usual nomenclature as in Refs. [14, 15, 17, 33, 34]. To avoid unnecessary tech-
nicalities associated with the treatment of boundaries, we consider the solution to the IVP
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(1.9) only for initial data with compact support and assume that the spatial domain of inter-
est is covered by a uniform spatial grid with parameter h. Thus, we consider the spatial grid
at xj = jh, j = −∞ . . . ∞. We consider only uniform time-stepping with a parameter k,
that is, with time steps given by tn = nk, n = 0, 1, . . .. We define and analyze approximations
un

j ≈ u(xj , tn). Let Wn := (wn
j )

∞
j=−∞, n = 0, 1, . . . denote a grid function. The grid norms are

defined as

‖ Wn ‖1 := h
∑

j

|wn
j |, (3.1)

‖ Wn ‖2 := √
h

√∑
j

|wn
j |2. (3.2)

We denote λ := k

h
as usual and keep it fixed.

A. Discretization with No Memory Terms

We first recall basic notation and facts for a linear scalar conservation law without memory, that
is, α = 1, β ≡ 0, and f (u) = vu [14,34]. Let v > 0. Recall the explicit upwind scheme for (1.9)
which defines an approximation un

j ≈ u(xj , tn) explicitly as

un
j = un−1

j − vλ(un−1
j − un−1

j−1) := un−1
j − Dn−1

j ,−1u, n = 1, 2, . . . . (3.3)

We assume (u0
j )j is an appropriate projection of the initial data u0.

This scheme has a local truncation error of first-order in h and k, and is first-order convergent
provided the stability condition (Courant-Friedrichs-Levy (CFL) condition) vλ ≤ 1 holds. This
well-known fact follows directly, for example, from von-Neumann stability analysis for (3.3), in
which the ansatz un

j := ρneijθ in (3.3), after some algebraic manipulations, yields for the mag-
nification factor in (3.3) ρ = ρupwind = 1 − γupwind := 1 − vλ(1 − e−iθ ). Assuming vλ ≤ 1 we
have |ρupwind| = |1 − γupwind| ≤ 1. This ensures that the numerical scheme uses only the values
from the domain of dependence of (1.8) which does not include, for v > 0, the point xn−1

j+1 . For
that reason, the centered scheme

un
j = un−1

j − v

2
λ(un−1

j+1 − un−1
j−1) := un−1

j − Dn−1
j ,0 u (3.4)

is unstable, with the corresponding von-Neumann analysis delivering

ρcenter = 1 − γcenter := 1 − vλi sin(θ), (3.5)

and the magnification factor clearly satisfying |ρcenter| ≥ 1.
We also recall that the upwind and centered schemes are unconditionally stable if we use an

implicit in time treatment of the spatial derivative terms, that is, if we replace Dn−1
j ,p in (3.3) or

(3.4) by Dn
j ,p. This follows from

|(1 + ρ)−1| ≤ 1, ∀ρ, (3.6)

and, thus, for any λ, it holds for ρ = ρupwind, ρ = ρcenter. However, as implicit schemes require the
solution of a linear system at each time step, they are rarely used for purely advective transport.
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B. Discretization of Memory Terms

Now we consider β �≡ 0 and discuss the convolution term β ∗ ut in (1.9a). We set

bm :=
∫ tm+1

tm

β(s)ds. (3.7)

Since tm = mk, we can write

bn−m =
∫ tn−m+1

tn−m

β(s)ds =
∫ tn−tm−1

tn−tm

β(s)ds =
∫ tm

tm−1

β(tn − s)ds.

Since β is integrable, the following approximation is well defined even if β ∈ B∞:

(β ∗ ut)|x,tn =
n∑

m=1

∫ tm

tm−1

β(tn − s)ut (x, s)ds

≈
n∑

m=1

1

k
(um

j − um−1
j )

∫ tm

tm−1

β(tn − s)ds =
n∑

m=1

1

k
(um

j − um−1
j )bn−m. (3.8)

This discretization based on product integration rules was used in Refs. [23, 24] for a parabolic
equation with memory for which we proved appropriate convergence results for both bounded
and weakly singular kernels. Other approaches were used in Refs. [25–27] for bounded kernels
and Volterra terms involving derivatives other than ut .

We can easily show that (3.8) is first-order consistent.

Lemma 3.1. Let (1.5) hold. Then the local truncation error in (3.8) is of order O(k).

Proof. Recall that the consistency error is the residual remaining after we plug the exact solu-
tion of a problem u(x, t) evaluated at the appropriate discrete points (xj , tm) into the scheme. The
calculations use Taylor series expansions of u in terms of its time derivatives and the consistency
order is derived formally assuming u is smooth.

Consider

1

k

n∑
m=1

(u(x, tm) − u(x, tm−1)) bn−m = 1

k

∫ tm

tm−1

n∑
m=1

(u(x, tm) − u(x, tm−1)) β(tn − s)ds. (3.9)

Now expand using Taylor series

u(x, tm) = u(x, s) + (tm − s)ut (x, s) + 1

2
(tm − s)2utt (x, s) + . . .

u(x, tm−1) = u(x, s) + (tm−1 − s)ut (x, s) + 1

2
(tm−1 − s)2utt (x, s) + . . . .

The difference of these two equations can be used to estimate the contribution to the truncation
error from approximation of the integral term, that is, the difference of the term on the left side
of (3.8) and its discretization in (3.9)
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|(β ∗ ut)|x,tn − 1

k

n∑
m=1

(u(x, tm) − u(x, tm−1)) bn−m|

≤ 1

k

∫ tm

tm−1

n∑
m=1

β(tn − s)
(
Cuk

2
) = Cuk ‖ β ‖L1(0,tn) .

where we have used (1.3), (1.5), and Cu := 1
2 maxx∈R,t∈(0,tn) |utt (x, t)|.

C. Memory-Upwind Scheme for Linear Flux

With (3.8), we formulate a general memory-upwind scheme for (1.9a) in the form

α
1

k
(un

j − un−1
j ) +

n∑
m=1

1

k
(um

j − um−1
j )bn−m + Dn∗

j ,−1u = 0, (3.10)

in which the approximation of the convolution term (3.8) is combined with the upwind approxi-
mation Dn∗

j ,−1u to (vux)|(xj ,tn) as in (3.3). Here, one can use either the explicit n∗ = n − 1 or the
implicit-in time n∗ = n treatment.

Lemma 3.1 combined with standard truncation error analysis for the nonmemory terms in
(3.10) such as, for example, in Ref. [14], lead to the following

Corollary 3.2. The order of consistency of (3.10) is that of O(h + k).

This consistency result combined with appropriate stability results to be proved in Section IV
under CFL-like conditions imply convergence of the scheme (3.10). Extension to nonlinear f is
discussed in Section V. The order of convergence is numerically confirmed for smooth solutions,
whereas a suboptimal order is obtained for nonsmooth solutions; see Section VI.

IV. STABILITY OF MEMORY-UPWIND SCHEME FOR LINEAR FLUX

We prove below that for α = 1, the stability of the explicit scheme (3.10) is conditional and
based on a CFL-like condition which enforces k = O(h) and thus leads, by Corollary 3.2, to
optimal linear convergence for smooth solutions. For α = 0, the stability condition depends on
β; in particular, for the fractional conservation law with β(t) ∼ t−1/2, we require k = O(h2) and
the linear convergence order O(k + h) is suboptimal.

An implicit scheme is unconditionally stable for either α = 0 or α = 1, and the convergence
order is linear.

In the stability proof, we use the following consequence of Rouché’s theorem [35].

Lemma 4.1. Let n ≥ 1 and ρ be the root of the polynomial

ρn + an−1ρ
n−1 + . . . + a1ρ + a0 = 0. (4.1)

Then

|ρ| ≤ max

{
1,

n−1∑
m=0

|am|
}

. (4.2)
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Theorem 4.2. Let β satisfy (1.3)–(1.5). The following schemes are stable under the additional
conditions as below.

i. For α = 1 and β ∈ B∞ ∪ Bb the explicit upwind scheme

(un
j − un−1

j ) +
n∑

m=1

(um
j − um−1

j )bn−m + λv(un−1
j − un−1

j−1) = 0. (4.3)

is stable provided vλ ≤ 1.
ii. For α = 0 and β ∈ B∞, the explicit upwind scheme

n∑
m=1

(um
j − um−1

j )bn−m + λv(un−1
j − un−1

j−1) = 0. (4.4)

is stable provided vλ ≤ b0 − b1.
iii The implicit upwind scheme

α(un
j − un−1

j ) +
n∑

m=1

(um
j − um−1

j )bn−m + λv(un
j − un

j−1) = 0, (4.5)

is unconditionally stable for α = 1 with β ∈ B∞ ∪ Bb, or when α = 0 with β �∈ B0.

Proof. First rewrite the terms in (3.8)

(β ∗ ut)|x,tn ≈ 1

k

[
(u1

j − u0
j )bn−1 + (u2

j − u1
j )bn−2 + . . . (un−1

j − un−2
j )b1 + (un

j − un−1
j )b0

]
= 1

k

[
b0u

n
j + (b1 − b0)u

n−1
j + (b2 − b1)u

n−2
j + . . . + (bn−1 − bn−2)u

1
j − bn−1u

0
j

]

= 1

k

[
b0u

n
j + (b1 − b0)u

n−1
j +

n−2∑
m=1

um
j (bn−m − bn−m−1) − u0

j bn−1

]
. (4.6)

To prove (i)–(ii), we apply (4.6) in (3.10), that is, in (4.3) and (4.4). We get

(α + b0)(u
n
j − un−1

j ) +
[
b1u

n−1
j +

n−2∑
m=1

um
j (bn−m − bn−m−1) − u0

j bn−1

]
+ vλ(un−1

j − un−1
j−1) = 0.

(4.7)

It follows next, with the ansatz un
j := ρneijθ , that the magnification factor ρ satisfies

(α + b0)(ρ
n − ρn−1) +

[
b1ρ

n−1 +
n−2∑
m=1

ρm(bn−m − bn−m−1) − bn−1

]
+ vλρn−1(1 − e−iθ ) = 0.

(4.8)

Rearranging terms we get

(α + b0)ρ
n + (b1 − α − b0)ρ

n−1 + vλρn−1(1 − e−iθ ) +
n−2∑
m=1

ρm(bn−m − bn−m−1) − bn−1 = 0.

(4.9)
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Equivalently, ρ is the root of the (monic) polynomial (4.1) where, with γupwind as in (3.3), we have

an−1 = 1

α + b0
(b1 − α − b0 + γupwind), (4.10)

am := 1

α + b0
(bn−m − bn−m−1), 1 ≤ m ≤ n − 2, (4.11)

a0 := −bn−1

α + b0
. (4.12)

By Lemma 4.1, to bound ρ ≤ 1, and therefore to conclude the stability proof, it remains to show

n−1∑
m=0

|am| ≤ 1. (4.13)

To this aim, by (1.3) and (1.4) we have bm ≥ 0 and bm − bm+1 ≥ 0. Thus, for any 0 ≤ m ≤ n − 1
we have

n−1∑
m=0

|am| =
n−2∑
m=0

|am| + |an−1| = 1

α + b0
[| − bn−1| + |bn−1 − bn−2| + . . . + |b2 − b1|] + |an−1|

= 1

α + b0
[bn−1 + bn−2 − bn−1 + . . . + b1 − b2] + |an−1|

= 1

α + b0

(
b1 + |α + b0 − b1 − γupwind|

)
. (4.14)

Now (4.13) is equivalent to demonstrating

|α + b0 − b1 − γupwind| ≤ α + b0 − b1. (4.15)

Because α + b0 − b1 ≥ b0 − b1 ≥ 0, (4.15) can only be true if γupwind has a nontrivial real part
satisfying an additional condition to be determined.

First, we note that the assumptions in (i) and (ii) imply for both α = 0 and α = 1

vλ ≤ α + b0 − b1. (4.16)

For α = 1, we see that vλ ≤ 1 is sufficient for |1 − γupwind| ≤ 1. Now (4.16) suffices for
vλ

1+b0−b1
≤ 1 and |1 − γupwind

1+b0−b1
| ≤ 1, thus also for (4.15), and (i) is proved.

For α = 0, similarly, (4.15) is equivalent to |1 − γupwind
b0−b1

| ≤ 1 as long as b0 − b1 > 0 which

holds if β �∈ B0 and in particular if β ∈ B∞. Thus vλ

b0−b1
≤ 1 leads to (4.13) and (ii) is proved.

Superficially, it appears that β ∈ Bb suffices for (ii); however, the stability condition cannot be
satisfied; see Remark 1.
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To prove (iii), we proceed similarly as before and find that the magnification factor ρ is the
root of (4.1) with the coefficients am given for the implicit scheme as

an−1 = 1

α + b0 + γupwind
(b1 − α − b0), (4.17)

am := 1

α + b0 + γupwind
(bn−m − bn−m−1), 1 ≤ m ≤ n − 2, (4.18)

a0 := −bn−1

α + b0 + γupwind
. (4.19)

To show a statement analogous to (4.13), we telescope the terms and see that one needs to show
0 < α + b0 ≤ |α + b0 + γupwind|. But this follows directly and unconditionally from (3.6) for the
upwind scheme (and for centered scheme) as long as α + b0 > 0 which is guaranteed for each of
the two cases in hypotheses of (iii).

Remark 1. To interpret the stability condition in Theorem 4.2 (ii), for α = 0, consider first
β ∈ B∞ and in particular, β(t) = t r , r ∈ (−1, 0). Then

b0 − b1 =
∫ k

0
β(t)dt −

∫ 2k

k

β(t)dt = 2 − 2r+1

r + 1
kr+1. (4.20)

Therefore, in order to satisfy

v
k

h
= vλ ≤ b0 − b1, (4.21)

we need gr(k) := kr+1 ≤ Cr
h

v
with some constant Cr > 0 dependent on r . This can be done

because limk→0 gr(k) = 0. In particular, for r = −1/2, we see that
√

k ≤ Cr
h

v
or, equivalently,

that k needs to scale with O(h2). This condition, albeit restrictive, can be satisfied in practical
computations.

We note that the condition k = O(h2) derived for the fractional conservation law with r = 1/2
is reminiscent of stability conditions for explicit finite difference discretizations of a diffusion
equation. The latter can be considered a “square” of the former and thus the stability condition is
not surprising.

Remark 2. Now consider β ∈ Bb, for example, β(t) = exp(−t). Here, we find that for (4.21)
to hold, one needs g(k) = k

1−2e−k+e−2k ≤ h

v
to hold. Now g(k) is unbounded at 0 thus (4.21) cannot

hold with h, k → 0. This illustrates why the condition β ∈ B∞ is necessary in Theorem 4.2, (ii).

V. STABILITY FOR NONLINEAR FLUX

Consider (1.9a) with nonlinear f (·). For conservation laws with no memory, that is, β ≡ 0,
various discretizations have been formulated. In convergent schemes, approximations to the flux
term f (u)x must be consistent and conservative. In this article, we use first-order Godunov’s
method which is well-known to possess such properties [14–16] and which exhibits first-order
convergence for smooth solutions.
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For simplicity in what follows we assume f (·) is increasing and convex, for example, as in
Burger’s equation f (u) = u2

2 . For such f (·), the Godunov method is the same as the nonlinear
version of the explicit upwind method.

For nonlinear scalar conservation law with memory, we extend easily (3.10) to the Godunov-
memory scheme

α(un
j − un−1

j ) +
n∑

m=1

(um
j − um−1

j )bn−m + λ(f (un−1
j ) − f (un−1

j−1)) = 0. (5.1)

The stability of (5.1) is assessed differently than for the linear f (·) in Theorem 4.2, and the
analysis involves the total variation of a solution

T VT (U) :=
N∑

n=1

kT V (Un)+ ‖ Un − Un−1 ‖1,

whose spatial part T V (Un) := ∑
j |un

j −un
j−1|, and the temporal part ‖ Un −Un−1 ‖1 are bounded

independently.
The boundedness of T VT (U) allows to take advantage of the compactness properties of (sets

of) solutions with bounded total variation and with compactly supported initial data to prove
convergence of numerical schemes, see, for example, [14], [Theorem 15.2]. Below, we prove this
stability property for α = 1 and weakly singular kernels and demonstrate other results applicable
to more general circumstances. The proof is achieved in a sequence of auxiliary results.

A. Estimate Variation in Space

When no memory terms are present, one can prove l1–contractiveness of the scheme which implies
that the total variation is diminishing which in turn implies the TV-stability, see [15].

When β �≡ 0, the contracting type bounds do not hold. In particular, T V (Un) ≤ T V (Un−1)

may not be true because T V (Un) depends on the entire sequence

T V (Um), m = 0, 1, . . . = n − 1.

We are, however, able to show that T V (Un) ≤ T V (U 0), thus is uniformly bounded.

Lemma 5.1. Given some W 0, consider Wn = (wn
j )j , n ≥ 1 satisfying

α(wn
j − wn−1

j ) +
n∑

m=1

(wm
j − wm−1

j )bn−m + λvj ,nw
n−1
j − λvj−1,nw

n−1
j−1 = 0, (5.2)

where (vj ,n)j are given.
Assume (i) bm ≥ 0, ∀m, (ii) 0 ≤ λvj ,n ≤ α + b0 − b1, ∀j , n, (iii) bm − bm−1 ≥ 0, ∀m. Then

Wn satisfies ∑
j

|wn
j | ≤ C0 :=

∑
j

|w0
j |. (5.3)

Proof. We first demonstrate the assertion for vj ,n constant in n and in the end we comment
on the general case.
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Proof of (5.3) is by induction. For n = 1 (5.2) reads

α(w1
j − w0

j ) + (w1
j − w0

j )b0 + λ(vjw
0
j − vj−1w

0
j−1) = 0.

By (i), (ii) we can estimate

(α + b0)|w1
j | ≤ |w0

j |(α + b0 − λvj ) + λvj−1|w0
j−1|

Summing over j and multiplying by h we get

(α + b0)
∑

j

|w1
j | ≤

∑
j

|w0
j |(α + b0 − λvj ) +

∑
j

λvj−1|w0
j−1|.

=
∑

j

|w0
j |(α + b0) −

∑
j

|w0
j |λvj +

∑
j

λvj−1|w0
j−1|.

We can cancel the (equal) sums involving vj and vj−1 in the last identity because w0
j is zero outside

a finite set of indices. This means we proved (5.3) for n = 1.
Now, assuming (5.3) holds for m = 1, 2, . . . n− 1, we demonstrate it for m = n. Rewrite (5.2)

taking advantage of (3.8)

(α + b0)w
n
j = αwn−1

j + (b0 − b1)w
n−1
j + (b1 − b2)w

n−2
j + . . . + (bn−2 − bn−1)w

1
j + bn−1w

0
j

− [
λvjw

n−1
j − λvj−1w

n−1
j−1

]
. (5.4)

To estimate, we group the first and last terms on the right hand side, exploit (i), (ii), (iii), and sum
over j

(α + b0)
∑

j

|wn
j | ≤

∑
j

|wn−1
j |(α + b0 − b1 − λvj ) +

∑
j

λvj−1|wn−1
j−1|

+ (b1 − b2)
∑

j

|wn−2
j | + . . . + (bn−2 − bn−1)

∑
j

|w1
j | + bn−1

∑
j

|w0
j |

(5.5)

Similarly as above, we collapse together the first two sums. Also, by induction assumption,∑
j |wm

j | ≤ C0 for each m. Collecting terms we get

(α + b0)
∑

j

|wn
j | ≤ C0(α + b0 − b1 + b1 − b2 + . . . bn−2 − bn−1 + bn−1) = C0(α + b0),

which ends the proof for vj ,n constant in n. To complete the proof for general vj ,n we notice that
the steps above do not depend on its variability between time steps.

Now we use Lemma 5.1 to prove that T V (Un) is bounded uniformly for all n. We follow
calculations and steps similar to those in the proof of Ref. [[14], Chapter 15].
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Lemma 5.2. Let f be increasing and strictly convex. Also, let β satisfy (1.3)–(1.5) and
β ∈ B∞ ∪ Bb \ B0. Let Un, Ũ n be defined by (5.1), each with separate unitial data U 0, Ũ 0,
respectively. Let M > 0 be given depending on U 0, Ũ 0. Assume also that the time step k satisfies

0 < λf ′(θ) ≤ 1, ∀θ : |θ | ≤ M . (5.6)

Then ∑
j

|un
j − ũn

j−1| ≤
∑

j

|u0
j − ũ0

j−1|. (5.7)

Proof. We provide only a sketch as the proof is similar to those in Ref. [[14], Example 15.6].
First, we note that the assumptions on β imply (i),(iii) in Lemma 5.1. To estimate the difference
Un − Ũ n, we subtract the two difference equations defining these grid functions. Now consider
the terms f (un−1

j ) − f (ũn−1
j ) that appear in the result and apply mean value theorem yielding

f (un−1
j ) − f (ũn−1

j ) = vj (u
n−1
j − ũn−1

j ), where vj = f ′(θj ) for some θj between un−1
j and ũn−1

j .
To see that θj is bounded, we can proceed by induction considering its value at n = 1 depending
on u0

j and ũ0
j . By (5.6), the assumption (ii) in Lemma 5.1 holds. Thus, Lemma 5.1 can be applied

to W = Un − Ũ n which completes the proof.

Now let Un be the approximation defined by (5.1) corresponding to the original initial value
problem (1.9a) and (1.9b), with initial data U 0 obtained from u0. Let Ũ n be a grid function
obtained from Un by shifting indices, that is, by ũn

j = un
j−1. Now, we use Lemma 5.2 to get a

bound on T V (Un).

Corollary 5.3. Assume hypotheses of Lemma 5.2. Then

T V (Un) ≤ T V (U 0). (5.8)

B. Estimate Variation in Time

Now, we obtain an O(k) bound for ‖ Un − Un−1 ‖1; this is necessary to show that the total
variation is uniformly bounded.

For β ≡ 0, a simple proof via Gronwall’s-type inequality is provided in Ref. [[14], Lemma
15.1].

When β �≡ 0, this simple strategy does not work because the presence of memory terms causes
a tremendous accumulation of error. To show this need not occur, we exploit the special structure
arising from the Volterra integral with weakly singular kernels. We use delicate discrete inequali-
ties that were proved in, for example, [36,37]. Specifically, we take advantage of the result [[37],
Theorem 1] which was formulated for the needs of convergence analysis of discretized weakly
singular Volterra integral equation; see also Ref. [[38],Theorem 6.1]. We extract the relevant part
of the proof of this result in the following Lemma.

Lemma 5.4 (Part of Theorem 1 Ref. [37]). Let (en)
N
m=1 be a nonnegative sequence of numbers

for which it holds

en ≤ A +
n−1∑
m=1

Bnmem, 1 ≤ m ≤ N , (5.9)
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where A > 0 and Bnm := Ck(tn − tm)r for some −1 < r < 0 and C > 0. Then

en ≤ A

n−1∑
m=0

Rm

(m!)1+r
≤ AH, (5.10)

where R > 0, H > 0 are constants independent of k but dependent on r and T = Nk.

This Lemma will be used in the stability proof below for β(t) = t r .
We assume below as is customarily done that f (·) is globally Lipschitz continuous. This is

not satisfied, for example, for Burgers’ flux f (u) = u2

2 if its arguments live outside a compact
set. However, one can modify easily the line of reasoning in Ref. [[14], Section 15] to see that
(5.8) implies that Un is bounded and thus a hypothesis of global Lipschitz constant for f acting
on arguments from Un is justified.

Proposition 5.5. Assume that the flux function f (·) has a Lipschitz constant Lf and that
β(t) = t r for some −1 < r < 0. Assume also α = 1. Then

‖ Un − Un−1 ‖1≤ CT k, (5.11)

where CT > 0 is independent of k but dependent on f .

Proof. To apply the construction apparent in Lemma 5.4, we first consider n = 1 in (5.1)
where we have

(α + b0)(u
1
j − u0

j ) = −λ(f (u0
j ) − f (u0

j−1)).

Next, we proceed similarly as in one step of Ref. [[14], Lemma 15.1]. Since f is Lipschitz
continuous, we have

(α + b0)|u1
j − u0

j | ≤ λLf |u0
j − u0

j−1| = k

h
Lf |u0

j − u0
j−1|.

Sum over j , multiply by h, and divide by α + b0 to get

‖ U 1 − U 0 ‖1= h
∑

j

|u1
j − u0

j | ≤ kLf

α + b0
|u0

j − u0
j−1| = kLf

α + b0
T V (U 0),

and we set e1 :=‖ U 1 − U 0 ‖1, A := kLf T V (U 0).
Now for n > 1 we rewrite (5.1) to get

(α + b0)(u
n
j − un−1

j ) = −λ(f (un−1
j ) − f (un−1

j−1)) −
n−1∑
m=1

bn−m(um
j − um−1

j ).

Now we sum over j , multiply by h, and estimate

(α + b0)h
∑

j

|un
j − un−1

j | ≤ λhLf

∑
j

|un−1
j − un−1

j−1| +
n−1∑
m=1

bn−mh
∑

j

|um
j − um−1

j |.
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By (5.8), we get

(α + b0) ‖ Un − Un−1 ‖1≤ kLf T V (U 0) +
n−1∑
m=1

bn−m ‖ Um − Um−1 ‖1 .

To apply Lemma 5.4, we need now to check if we can bound bn−m by Bn,m = Ck(tn − tm)r .
This follows directly by estimating bn−m = ∫ tn−m+1

tn−m
trdt from above by the left rectangular rule

bn−m ≤ k(tn−m)r = k1+r (n − m)r and we are done.

At the current time, we are unable to provide a proof for an arbitrary β ∈ B∞ or α = 0 so that
Proposition 5.5 can be extended. However, our numerical experiments (not reported) indicate that
‖ Un − Un−1 ‖1 is of order k for any kernel and for α = 0.

C. Summary of Nonlinear Stability Results

Taking advantage of Corollary 5.3 and Proposition 5.5, we see that the total variation of the
numerical approximation to (1.9) is bounded, at least for the case of weakly singular kernels of
type t r , and α = 1.

Theorem 5.6. Let the assumptions of Corollary 5.3 and Proposition 5.5 hold. Then the solution
Un to the numerical scheme (5.1) satisfies

N∑
n=1

kT V (Un)+ ‖ Un − Un−1 ‖1≤ CT V S . (5.12)

The bound (5.12) combined with the knowledge of compact support of Un together mean that
the scheme (5.1) is TV-stable. Although we do not provide a formal proof concerning the support
of Un, we remark that it can be carried out mimicking any such proof for β ≡ 0.

VI. NUMERICAL RESULTS

In this section, we confirm the first-order convergence rate expected for the discretization schemes,
also for cases not covered by our theory. We also illustrate smoothing effects associated with
memory terms.

We provide results only for explicit schemes. As we have shown and as is easy to believe, the
implicit schemes are unconditionally stable. For problems without memory, they are rarely used
because they require significantly more computational work, except when the benefits of uncon-
ditional stability counter those of cost per time step. In addition, it is well-known that the implicit
schemes introduce errors due to numerical diffusion much larger than those in explicit schemes;
see, for example, Ref. [[17], Section 2.3]. In our experience, for example, with an implicit scheme
for Burgers’ equation with no memory, the fronts are substantially smeared out even for a rela-
tively fine grid. Because one of the objectives in this article is to illustrate the delicate interplay
between nonlinearity and smoothing effects due to memory terms, we choose to use only explicit
schemes. Otherwise, the use of implicit schemes would make it hard to recognize the source of the
smoothing between numerical diffusion and subscale diffusion encapsulated by memory terms.
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A. Set-Up of Experiments

The results presented below for explicit schemes vary depending on the smoothness of the solu-
tions which, in turn, are directly related to the choice of the initial data u0, flux function f , and
memory kernel β. We consider several representative choices.

Linear flux examples use f (u) = u and the nonlinear flux is the Burger’s flux f (u) = u2

2 . For
the latter, as long as maxx(|u0(x)|) = 1, we have conveniently that the global Lipschitz constant
V = max |f ′(u0)| = 1 for both choices of f .

For the memory kernels β, we use one of three choices of βi , i = 0, 1, 2 with β1(t) = e−t ∈ Bb

or β2(t) = t−1/2 ∈ B∞. For comparison purposes, we also consider β0(t) = 0 ∈ B0.
We consider initial data u0 = gk , k = 1, . . . 4, with g1(x) = sin(x), g2(x) = max(0, 1 − |x|),

g3(x) = 1 −H(x), g4(x) = H(x), where H(x) is the Heaviside function. Although g1 ∈ C∞(R)

we have g2 ∈ C0(R) and is piecewise C1–smooth, whereas g3, g4 are only piecewise C0-smooth.
The initial data is in fact truncated to have compact support. When computing the grid norm, we
only consider xj ∈ (a, b) with (a, b) = (0, 2π) for g1, and (a, b) = (−1, 3) for all other choices.
We set L = b − a to denote the length of the simulation window.

In all experiments, we ensure that the stability condition is satisfied. In fact, if α = 1, we use
k = 0.99h/V , that is, the time step close to but not equal to the “magic” time step k = h/V . If
α = 0 and β = β2, we use k = 1

2 (
h

V
)2.

If the true solution u(x, t) is known, we compare it to uh constructed from (un
j )j ,n. In fact, we

report only the error at tN = T and consider various error norms of u(xj , tn) − un
j . We denote

the error by Ep(α, g, β; h) for p = 1, 2 grid norms. For additional interest, we report on the
E∞(α, g, β; h) error in L∞ grid norm for which no theory is given but which for smooth enough
u behaves similarly to the errors measured in L1 and L2 grid norms. The order of convergence
is calculated by comparison of errors from subsequent time steps. The error is shown to be of
linear order if the solutions are smooth enough. In the convergence plots, we include the plots of
h versus h labeled “linear” and of

√
h labeled “root”.

If the true solution u(x, t) is not known, we use instead the solution uhmin computed at a very
fine grid with hmin as given below. Ideally, h/hmin should be at least an order of magnitude. How-
ever, in some examples below for α = 0, we cannot afford a very small hmin due to the stability
constraints. Therefore, we report also on experiments in which h/hmin ≈ 3.

B. Convergence Rate for Linear Flux f with Known u

Here, we let the analytical solution u(x, t) = sin(x− t) be given so that the initial data is u0 = g1.
We compute the right-hand side function in an extension to (1.9a)

αut + β ∗ ut + vux = F(x, t). (6.1)

In the implementation of (4.3), we include appropriately the term F n
j = F(xj , tn) to account for

the right hand side.
Because the solution u is C∞ smooth, a very good behavior of convergence is expected. To

confirm, consider first the conservation law with memory that is α = 1. For β = β1, we can
compute the right hand side F(x, t) = ut + β ∗ ut + ux with

β ∗ ut = −1

2

(
sin(x)(sin(t) − cos(t) + e−t ) + cos(x)(cos(t) + sin(t) − e−t )

)
.

For the weakly singular β = β2 ∈ B∞, the convolution integral in β∗ut is not elementary; we com-
pute F(x, t) numerically with Gauss–Kronrod’s quadrature in MATLAB®’s function quadgk.
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TABLE I. Convergence results for linear flux, u0 = g1, and α = 1 (top), and α = 0 (bottom).

Ep(1, g1, β1; h) Order Ep(1, g1, β2; h) Order

L/h p = 1 p = 2 p = ∞ p = 1 p = 1 p = 2 p = ∞ p = 1

100 0.03685 0.03548 0.04032 0.02882 0.02378 0.03538
200 0.01342 0.01219 0.01837 1.1021 0.01860 0.01804 0.02055 0.9865
300 0.00863 0.00819 0.01241 1.0908 0.01243 0.01209 0.01379 0.9938
400 0.00632 0.00618 0.00937 1.0837 0.00933 0.00910 0.01038 0.9972
500 0.00496 0.00496 0.00753 1.0789 0.00746 0.00729 0.00832 0.9995

Ep(0, g1, β2; h) Order

L/h p = 1 p = 2 p = ∞ p = 1

100 0.06349 0.02943 0.01765
200 0.03318 0.01533 0.00917 0.9362
300 0.02245 0.01036 0.00619 0.9635
400 0.01696 0.00782 0.00467 0.9743
500 0.01363 0.00628 0.00376 0.9800

When α = 0, we compute F similarly; we only use weakly singular β = β2 for which the scheme
is stable.

For all the cases reported here, we confirm linear order of convergence of the scheme (4.3) for
h small enough, see Table I and Figure 1 for evidence. As h decreases, the order becomes close
to 1.

The results reported for this example are entirely unsurprising but serve as a good reference
for the more interesting cases to follow.

C. Convergence Rate for Linear Flux with Unknown u

Now, we use F = 0, L = 4, and initial data g2 or g3. Because the true solution is not known, we
approximate it with uhmin with hmin = L/5000 except when α = 0 in which case hmin = L/500.

When computing the error at t = T , an additional consideration is necessary. Because k is
chosen automatically for each h, and as only uniform time stepping is used, we have to interpolate
between the time steps to find uh|tn=T for some choices of h. Thus, the error behavior can be some-
what poor for large h. This is easily understood once we realize the deficiency of interpolation
in time, for example, for the travelling wave solution. For reference, the error computed this way
for β0 and g2 has a ragged behavior until h ≤ L/1000, whereas the use of a known analytical
solution rewards us with a perfect linear order of convergence.

Consider now the results in Figure 2 for piecewise smooth initial data g2 with the correspond-
ing numerical evidence in Table II. These confirm that the order of convergence is linear for E1

and E2. In fact, when α = 1, the average order in E1 is 1.13 and 1.14 for β1 and β2, respectively.
When α = 0, the average order is 1.0762. We note that in the latter case we can afford only a
small number of experiments and relatively large h due to the suboptimal stability requirements
on k.

Equally interesting is the linearly convergent behavior of the error in L∞ grid norm for the
weakly singular kernel β2. This appears to suggest that the true solution (which we do not know)
is smoother than the initial data. This does not occur for bounded kernel β1 for which E∞(·; h)

appears to behave like O(
√

h).
Our next set of results is for piecewise constant initial data g3; see Figure 3 and Table III. With

the bounded kernel β1, the solution is not smooth enough and we cannot expect linear order of
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FIG. 1. Results for linear flux and u0 = g1. Top left: plot of numerical solutions at T = 1, computed with
L/h = 500. Other figures: plots of E1(·, h), E2(·, h), E∞(·, h) for different data. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

convergence in E2, and the error E∞ may not even converge to zero. In fact, we observe sublinear
order of convergence for small h in E1(:, h) and E2(:, h). However, when β2 is used, we observe
linear order of convergence in all E1, E2, E∞, suggesting that u is indeed quite smooth; the latter
is also suggested by the plots of solutions.

D. Nonlinear Flux Examples

Here, we use F = 0, L = 4, and hmin = L/5000 if α = 1, and hmin = L/500 if α = 0. When
computing the error, we use uhmin instead of u which is unknown.

It is well-known [14] that for nonlinear flux f and no memory effects β ≡ 0, even for smooth
initial data, the solution u to (1.9) develops discontinuities in finite time. Therefore, optimal lin-
ear convergence is generally not expected around the singularities, however, subtle differences
appear depending on the initial data; see convergence plots in Figure 4 and plots of corresponding
solutions included in Figures 5 and Figures 6.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



SCALAR CONSERVATION LAW WITH MEMORY 19

FIG. 2. Results for linear flux and u0 = g2. Top left: plot of numerical solutions at T = 1, computed with
L/h = 500 for α = 1 and L/h = 100 for α = 0. Other figures: plots of E1(·, h), E2(·, h), E∞(·, h) for
different data. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

If memory effects are present, with g3 as initial data and nonlinear flux, some singularities
likely persist according to Ref. [18]. From theory, it is not clear what smoothing and what con-
vergence rates can be expected. However, our numerical experiments and convergence plots offer
a hint to what could be expected.

The plots in Figure 5 and 6 show the solutions to (5.1) and convergence plots for piecewise
smooth initial data g2, and piecewise constant data g3, respectively. See also numerical evidence
in Tables IV and V, respectively. We discuss these results below.

The case of piecewise smooth g2 appears to be qualitatively similar to that of g1, even if
bounded memory kernel β1 is used, and we observe optimal linear convergence properties of the
scheme (5.1).

For piecewise constant initial data g3, one is led to believe that the solutions to (5.1) for
α = 1, β1 or α = 0, β2 may not be smooth enough for optimal convergence. This is confirmed
for profiles evolving from g3, where sublinear convergence is observed for E2 and poor behavior
of E∞ is observed. However, E1 appears to have at least linear convergence, even for bounded
kernels.
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TABLE II. Convergence results for linear flux, u0 = g2, and α = 1 (top), and α = 0 (bottom).

Ep(1, g2, β1; h) Order Ep(1, g2, β2; h) Order

L/h p = 1 p = 2 p = ∞ p = 1 p = 1 p = 2 p = ∞ p = 1

100 0.00949 0.00658 0.00905 0.01538 0.01074 0.01277
200 0.00461 0.00321 0.00550 1.0417 0.00740 0.00518 0.00619 1.0553
300 0.00298 0.00208 0.00400 1.0729 0.00479 0.00335 0.00401 1.0742
400 0.00217 0.00151 0.00303 1.1042 0.00349 0.00244 0.00293 1.0962
500 0.00171 0.00119 0.00270 1.0746 0.00273 0.00191 0.00229 1.1071

Ep(0, g2, β2; h) Order

L/h p = 1 p = 2 p = ∞ p = 1

20 0.11196 0.06686 0.06725
40 0.05957 0.03562 0.03595 0.9104
60 0.04014 0.02400 0.02430 0.9737
80 0.02998 0.01792 0.01816 1.0146
100 0.02371 0.01417 0.01437 1.0512

FIG. 3. Results for linear flux and u0 = g3. Top left: plot of numerical solutions at T = 1, computed with
L/h = 800 for α = 1 and L/h = 160 for α = 0. Other figures: plots of E1(·, h), E2(·, h), E∞(·, h) for
different data. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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TABLE III. Convergence results for linear flux, u0 = g3, and α = 1 (top), α = 0 (bottom).

Ep(1, g3, β1; h) Order Ep(1, g3, β2; h) Order

L/h p = 1 p = 2 p = ∞ p = 1 p = 1 p = 2 p = ∞ p = 1

100 0.01125 0.01999 0.07223 0.012396 0.01399 0.01994
200 0.00717 0.02049 0.11238 0.6482 0.006085 0.00692 0.00982 1.0264
400 0.00374 0.01509 0.12437 0.9396 0.002902 0.00332 0.00472 1.0681
800 0.00188 0.00835 0.07808 0.9941 0.001320 0.00151 0.00216 1.1358

Ep(0, g3, β2; h) Order

L/h p = 1 p = 2 p = ∞ p = 1

20 0.07265 0.05601 0.08359
40 0.03889 0.02973 0.04422 0.9014
80 0.01884 0.01432 0.02077 1.0454
160 0.00786 0.00596 0.00847 1.2603

E. Discussion

Our theoretical results show stability in both L2 and L1 grid norms for linear f (·). For nonlin-
ear flux and weakly singular kernels with α = 1, we proved stability in L1 grid norm. In all
cases covered by our analysis, we confirmed that the schemes are stable and produce linearly
convergent solutions. In particular, this covers the cases of α = 1, f (u) = u, β ∈ B∞ ∪ Bb, and
α = 0, f (u) = u, β ∈ B∞, and α = 1, f (u) = u2

2 , β ∈ B∞. In addition, convergence appears to be

of linear order also in cases not covered by our theoretical results, that isα = 1, f (u) = u2

2 , β ∈ Bb,

and α = 0, f (u) = u2

2 , β ∪ B∞.
The simulation results and convergence plots analyzed together suggest that there is sufficient

smoothing involved when memory terms are present. The smoothing associated with β2 appears
to counteract, to a certain degree, the front sharpening caused by nonlinearity of f . On the other
hand, the smoothing associated with bounded memory kernel β1 does not seem significantly infe-
rior to that for weakly singular β2 for nonlinear flux or discontinuous initial data. At the same
time, the effect of memory terms with bounded kernels is weak for linear flux. Finally, there is

FIG. 4. Convergence results in the absence of memory effects (β = β0) for nonlinear flux and u0 = g2 or
u0 = g3. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 5. Results for nonlinear flux and u0 = g2. Top left: plot of numerical solutions at T = 1, computed
with L/h = 500 for α = 1 and L/h = 160 for α = 0. Other figures: plots of E1(·, h), E2(·, h), E∞(·, h) for
different data. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

not much qualitative difference in the smoothness of solutions obtained for α = 1 and α = 0
when weakly singular memory kernels are involved, but the effect for α = 0 seems quantitatively
stronger.

To support these remarks, we provide an additional set of simulation results for initial data
g4(x) = H(x). See Figure 7 where we show plots of solutions for both linear and nonlinear flux.
(Because the corresponding convergence results are very similar to those for g2, we do not show
nor discuss these). It is interesting, for, for example, α = 1, β = β1, to compare the solutions for
the linear and nonlinear flux, as their evolution is qualitatively different. This difference parallels
the one for α = 1, β = β0. In contrast, the solutions obtained with β = β2 are very similar to one
another, that is, their smoothness is comparable whether or not the flux is linear.

VII. SUMMARY

In this article, we considered scalar conservation laws with rate-dependent memory terms in the
form of Volterra convolution integrals. We have indicated several applications where such partial
differential equations (PDEs) are important.
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FIG. 6. Results for nonlinear flux and u0 = g3. Top left: plot of numerical solutions at T = 1, computed
with L/h = 800 for α = 1 and L/h = 160 for α = 0. Other figures: plots of E1(·, h), E2(·, h), E∞(·, h) for
different data. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE IV. Convergence results for nonlinear flux, u0 = g2, and α = 1 (top), α = 0 (bottom).

Ep(1, g2, β1; h) Order Ep(1, g2, β2; h) Order

L/h p = 1 p = 2 p = ∞ p = 1 p = 1 p = 2 p = ∞ p = 1

100 0.02254 0.03261 0.09127 0.01449 0.01276 0.02065
200 0.01169 0.01955 0.07294 0.9468 0.00713 0.00637 0.01119 1.0214
300 0.00775 0.01368 0.05369 1.0119 0.00465 0.00418 0.00756 1.0539
400 0.00572 0.01049 0.04288 1.0555 0.00341 0.00307 0.00565 1.0784
500 0.00451 0.00851 0.03770 1.0653 0.00267 0.00241 0.00447 1.0965

Ep(0, g2, β2; h) Order

L/h p = 1 p = 2 p = ∞ p = 1

20 0.10190 0.08651 0.14509
40 0.04813 0.04259 0.08915 1.0820
80 0.02290 0.02605 0.09596 1.0716
160 0.00937 0.01213 0.06106 1.2879
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TABLE V. Convergence results for nonlinear flux, u0 = g3, and α = 1 (top), α = 0 (bottom).

Ep(1, g3, β1; h) Order Ep(1, g3, β2; h) Order

L/h p = 1 p = 2 p = ∞ p = 1 p = 1 p = 2 p = ∞ p = 1

100 0.01734 0.05182 0.24487 0.02010 0.05579 0.25935
200 0.00882 0.02473 0.14634 0.9750 0.00881 0.02502 0.16954 1.1896
400 0.00420 0.01569 0.11548 1.0683 0.00427 0.01687 0.16302 1.0429
800 0.00225 0.01499 0.20534 0.9025 0.00199 0.01119 0.15355 1.1031

Ep(0, g3, β2; h) Order

L/h p = 1 p = 2 p = ∞ p = 1

20 0.09147 0.12129 0.23352
40 0.03551 0.04696 0.09521 1.3648
80 0.01837 0.03174 0.10863 0.9507
160 0.00773 0.01646 0.08609 1.2481

To our knowledge, this article is the first in which a numerical scheme for such PDEs has
been considered. We formulated and demonstrated convergence of simple Godunov-like schemes
combined with a consistent approximation to the memory terms allowing for weak singularity of
the convolution memory kernels. The conditions necessary for stability of the explicit schemes for
(1.1) are comparable to, or milder than, those for conservation laws without memory. However, the
conditions for fractional conservation laws, that is, for (1.8), require strict time step constraints,
and might in practice call for implicit rather than explicit schemes.

Using these numerical schemes, we provided illustration of the smoothing effects that the
memory terms introduce. The smoothing effects are quite dramatic if the kernel is weakly singu-
lar or for linear flux, and are less pronounced for nonlinear flux or bounded kernels. These results
are consistent with the available analysis of such PDEs. In addition, our numerical experiments
offered intuition concerning the nature and smoothness of solutions in cases not covered by the
theory.

FIG. 7. Simulation results for u0 = g4 and linear (left) and nonlinear flux (right). They were computed
with L/h = 800 for α = 1 and L/h = 160 for α = 0. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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More work extending that presented here is underway. In particular, we are considering more
applications-related terms and couplings, and rate-independent memory terms, as well as seek
ways to improve the efficiency of the schemes. More analysis is needed to discern the fine details
of smoothness of solutions to problems with memory and to analyze higher order convergent
schemes.

We thank the referees for detailed comments which helped to improve this paper.
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