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Abstract. We discuss mathematical and computational models of two applications
important for global climate and energy recovery involving the evolution of methane gas
in the subsurface. In particular, we develop advanced models of adsorption occuring
in coalbed methane recovery processes, and discuss the underlying conservation laws
with non-standard terms. Next we describe the phase transitions relevant for modeling
methane hydrates in subsea sediments where the major challenge comes from implemen-
tation of solubility constraints. For both applications we formulate the discretization
schemes and outline the main challenges in convergence analysis and solver techniques.
We also motivate the need for continuum and discrete models at porescale.
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1. Introduction. Methane is both a greenhouse gas and an energy
resource. In this paper we discuss the challenges in computational model-
ing of methane in two applications important for global climate and energy
studies, namely Enhanced Coalbed Methane (ECBM) recovery, and mod-
eling methane hydrate evolution in subsea sediments (MH).

Coalbed methane is a form of natural gas extracted from coal beds. In
recent decades it has become an important source of energy in the United
States and other countries, and coal and methane are important energy
resources exported from the US. In the ECBM technology, carbon dioxide
and/or nitrogen or other gases are injected into unmineable coal seams to
promote displacement and extraction of methane. Recent pilot projects
in various countries evaluated ECBM as a potential carbon sequestration
technology [140, 51, 148, 82, 135, 49, 46]. The technology appears promising
but is associated with various uncertainties and hazards, not the least of
which include incomplete understanding of the underlying processes and
difficulties with carrying out experiments.
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Methane hydrates (MH), an ice-like substance containing methane
molecules trapped in a lattice of water molecules, are present in large
amounts along continental slopes and in permafrost regions and, there-
fore, are a possible source of energy [129, 3, 86, 47], and at the same time
a potential environmental hazard [38, 33, 127, 57, 29]. There are recent
initiatives by DOE’s National Energy Technology Laboratory (NETL), in
collaboration with the U.S. Geological Survey (USGS), and an industry
consortium led by Chevron, in gas hydrate drilling, research expeditions
[6], and observatories [5, 7] which help to evaluate methane hydrate as an
energy resource. Although the existence of gas hydrates in nature has been
known for many decades, our understanding of their potential impact on
slope stability, the biosphere, carbon cycling, and climate change is still
evolving.

In this paper we overview the many open mathematical and com-
putational questions that arise for these applications. They are relatively
unknown to the mathematical and numerical community. We first overview
their traditional continuum models which are systems of partial differen-
tial equations (PDEs) at mesoscale, i.e., lab or field scale. See Section 2
for notation, and Sections 3 and 4 for ECBM and MH models, respec-
tively. Since these PDEs are nonlinear and coupled, no general theory
of well-posedness or of convergence of approximation schemes is available.
However, some analyses can be pursued for submodels of ECBM and MH,
and their structure calls for a family of related mathematical and compu-
tational techniques and solvers. For the latter, some techniques originally
developed for optimization are emerging as effective methods for solving
nonlinear problems with inequality constraints and piecewise smooth non-
linearities.

The accuracy of computational models depends on the ability of the
physical models themselves to describe all relevant phenomena and on the
precision of their data. One common theme for ECBM and MH models
is that they describe metastable phenomena such as adsorption and phase
transitions whose physics may be either poorly understood or difficult to
capture at mesocale. In addition, these evolution phenomena affect the
porescale which in turn changes the flow and transport characteristics. In
Section 5 we propose some models at porescale which can help to overcome
the limitations of continuum modeling and provide a look-up library for the
missing experimental data. In the future these models can be combined
with the continuum models in static or dynamic hybrid schemes.

2. Processes and continuum models. The models of methane evo-
lution must account for multiple phases and multiple components evolving
in time in a porous reservoir Ω ⊂ R

d, 1 ≤ d ≤ 3 under the earth surface of
depth D(x),x ∈ Ω, and porosity φ and permeability K. Recall that φ is a
positive scalar, and K is a uniformly positive definite tensor. Also, let P, T
denote pressure and temperature. Multiphase multicomponent flow and
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transport models are generally coupled systems of nonlinear PDEs with
additional volume, capillary, and thermodynamic constraints; see standard
developments in [67, 45, 28].

The mass conservation equations written per each component C read

storage
︷ ︸︸ ︷

StoC +

advection
︷ ︸︸ ︷

AdvC +

diffusion
︷ ︸︸ ︷

DiffC =

source
︷︸︸︷
qC , in Ω, (2.1)

in which the individual terms depend on the component C under study,
on the process, and its scale. Alternatively, one can write such equations
per each component C and each phase p, and account for the transfer of
mass of a component between phases. Data for this dynamics is hard to
obtain experimentally; however, it can be provided by porescale studies,
see Section 5.

The definition of StoC is crucial for each application since it speci-
fies how a component moves out of one form or phase, and whether the
phase transitions or adsorption take place in equilibrium or via a kinetic
model. The StoC terms include the time rate of change of all forms of the
component C dissolved in various flowing liquid or gas phases, present in a
stationary phase such as adsorbed on a surface of porous skeleton or part
of a gas hydrate crystal. In other words,

StoC :=
∂

∂t
(φNC) :=

∂

∂t
(φ
∑

p

ρpSpχpC).

Here we used the total mass concentration of a component NC , with Sp

denoting the saturations/volume fractions, and ρp density of phase p, re-
spectively. We have Sp ≥ 0, and

∑

p Sp = 1, and densities are given from
an appropriate equation of state. Also, we used mass fractions of a com-
ponent C in phase p denoted by χpC . We have χpC ≥ 0 and for each phase
∑

C χpC = 1.
Next we discuss the terms Adv,Diff . Their definitions depend on the

application and scale. Typically, the diffusion/dispersion terms Diff are
the divergence of diffusive fluxes formulated using Fick’s law

DiffC := ∇ ·

(

φ
∑

p

ρpSpDpC∇χpC

)

, (2.2)

and Adv includes divergence of mass fluxes

Up = −K
krp

µp
(∇Pp − ρpG∇D(x)), p = l, g, (2.3)

AdvC := ∇ ·
∑

p

χpCρpUp, (2.4)

with the velocities given via the multiphase extension of Darcy’s law, where
krp, µp denote relative permeability and viscosity of phase p and G the
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gravity constant. In addition, the phase pressures of mobile phases Pl, Pg

are coupled via the capillary pressure relationship Pg − Pl = Pc(Sl) given
by Brooks-Corey relationships or van-Genuchten correlations [67, 56, 28].

The model (2.1) is very general; difficulties in its analysis and approx-
imation arise from the presence of multiple components as well as from
the various nonlinear couplings. Additionally, the data for some of these
couplings are difficult to obtain, see Section 5. Special modeling constructs
can be used to decrease the computational complexity associated, e.g.,
with multiple scales, non-equilibrium conditions, and metastability. On
the other hand, these require additional care in numerical approximation.

We illustrate some of the relevant issues in a discussion of scalar (one-
component) equations in d = 1 to follow. Throughout we rescale the vari-
ables and eliminate constants, e.g., φ, to emphasize the qualitative rather
than quantitative structure of the models.

First we consider similarities and differences in the generic scalar PDEs
for ECBM and MH. In Sections 3 and 4 we elaborate on their details.

In the single-phase rescaled scalar version of (2.1) for ECBM we have

∂

∂t
(χ+Υ) +Adv +Diff = 0, (2.5)

where χ denotes the concentration or mass fraction of the mobile com-
ponent, and Υ is that of the adsorbed amount. The connection between
χ,Υ and/or their rates has to be provided via an equilibrium, kinetic, or
hysteretic relationship

(χ,Υ) ∈ F. (2.6)

Here F is a single- or multi-valued stationary or evolution relationship
related to the graph of an adsorption/desorption isotherm.

For MH, the evolution of methane component is governed, in a sim-
plified rescaled version, by

∂

∂t
((1−Υ)χ+RΥ) +Adv +Diff = 0. (2.7)

Here (χ,Υ) are methane solubility and hydrate or gas saturation, respec-
tively, and R is a constant. The variables (χ,Υ) are bound together by the
volume and solubility constraints that can be written as (2.6).

The discretization of the models (2.5), (2.7) depends on the definition
of Adv,Diff and their relative significance. For example, for dominant
diffusion, finite elements in space and implicit backward Euler schemes in
time can be used. For dominant advection, conservative consistent finite
difference schemes are needed, and the advection terms are typically han-
dled explicitly in time. When both diffusion and advection are present we
can use an operator splitting procedure.
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For a simple F in (2.6), fairly well-known results on the discretization
and analyses are available. For complicated F , the handling of (2.6), espe-
cially for multi-valued relations and analysis are a challenge. In Sections 3
and 4 we provide details relevant to ECBM and MH; we focus on the rep-
resentation and approximation of F and discuss the associated stability
and solver issues. In Section 5 we propose the use of hybrid computational
models which can be used to obtain data for F and other essential model
ingredients.

Finally, the initial and boundary conditions need to be specified to
close any system of PDEs and to discuss its well-posedness. However,
analysis of either ECBM or MH has not been attempted, and coupled
nonlinear systems of partial differential equations of mixed, variable, and
degenerate type do not have a general well-posedness theory except for
special submodels [125, 98, 10, 11, 25]. The lack of general theory makes
the numerical approximation delicate; it is necessary to thoroughly under-
stand each subproblem as well as the challenges of the coupled system, to
the extent possible, before a particular numerical discretization method is
selected and its results are used. Various simulators have been successfully
implemented for typical multiphase multicomponent models, and these are
based on carefully selected spatial discretization schemes and nonlinear
solvers [77, 104, 97, 45, 138, 70, 2, 110, 4]. In the exposition below we
discuss avenues for possible analyses and algorithmic extensions of some of
these schemes.

3. Transport with adsorption in ECBM. Coalbeds have the form
of coal seams surrounded by sandstone, gravel, mudstone or shales. The
coal seams have a multiscale structure of microporous coal matrix inter-
spersed with cleats i.e. fractures or macropores. The majority of transport
occurs in the cleats accompanying the flow of gas and possibly of water,
while the majority of storage occurs in the matrix where gases undergo
diffusion and adsorption, close to supercritical conditions. For ECBM, the
components are C = M,D,N, (W ) methane, carbon dioxide, nitrogen, and
(for wet gas models) water. The phases in which these components can re-
main are p = g, a, l: gas, adsorbed gas, and liquid phase (for wet gas).

In a simple dry-gas model with Sg = 1 for ECBM with C = M,D,N ,
with p = g, a we have

χgM + χgD + χgN = 1, (3.1)

χaM + χaD + χaN = 1, (3.2)

so that the equations (2.1) are written for the evolution of NM , ND, NN .
When gases such as carbon dioxide are injected into coal seams, they

make their way through the cleats into the micropore structure of the
matrix. Here they preferentially adsorb, displacing methane from adsorp-
tion sites; subsequently, this methane is transported through cleats and is
available for extraction. The predominant transport mechanism in cleats
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(macropores) is that of advection while the transport into and out of the
coal matrix occurs through diffusion into mesopores and micropores, where
the gases undergo adsorption and desorption at the surface of the grains.

Adsorption is a surface phenomenon in which particles, molecules, or
atoms of adsorbate attach to the surface of adsorbent. It has numerous
technical applications ranging from water purification, chromatography, to
drug delivery, and is fundamental in ECBM. There is current research on
the nature and occurence of adsorption-desorption hysteresis [27, 122, 112],
and competitive, or preferential adsorption [23, 24, 21, 123, 62, 55, 78].
Functional relationships that fit some of experimental data were proposed
in [26, 27, 20, 91, 81, 126, 31], but comprehensive models are lacking.

3.1. Adsorption models. Consider now a relationship between χ :=
χgM and Υ := χaM that needs to be provided to complement (3.1), (3.2)
for the methane component C = M . (Similar relationships are needed for
C = D,N). Basic experimental models are usually given as equilibrium
isotherms [1, 39] such as

Υ = f(χ), (3.3)

where f is a known smooth monotone increasing function which describes
the surface coverage Υ of adsorbent depending on the gas or vapour pres-
sure χ of adsorbate, at constant temperature, in equilibrium. For example,
the well-known Langmuir type-I isotherm [1] has the form

Υ = f(χ) = Υmax bχ

1 + bχ
, (3.4)

where b,Υmax are constants, and is derived from monolayer assumption and
equality of adsorption and desorption rates. This isotherm applies well in
a variety of microporous, meso-to macro-porous media in sub, near-, and
supercritical conditions [39, 62]. Note that Υ = f(χ) is smooth concave,
increasing, and Lipschitz.

An alternative to the equilibrium model (3.3) is the kinetic model

dΥ

dt
= r(f(χ)−Υ), (3.5)

in which Υ is an exponential follower (with rate r) of the equilibrium model
f(χ). See [14, 16, 15, 35, 36] where numerical schemes for (2.5) and (3.3)
or (3.5) were proposed and analyzed. Difficulties arise if the isotherm is
not Lipschitz in (3.3)–(3.5) but this case is not relevant for ECBM. See also
[133] for a discussion of stability of the Godunov (upwind) method for the
equilibrium case and the one for kinetic model, as well as their relationship
in d = 1.

We discuss now the model for Diff ∼ 0, Adv = ∇ · χ. Then (2.5) is
of hyperbolic type and can be rewritten as a scalar conservation law via a
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change of variable w = χ+Υ

wt +∇ · g(w) = 0, (3.6)

with an increasing and convex flux function g ∼ (I + f)−1. It is well
known [71] that its solutions develop singularities in finite time from smooth
initial data. An appropriate numerical method needs to be conservative and
stable. For example, this is satisfied by the Godunov method, written here
in primary variables for (2.5)

χn
j +Υn

j + λ(χn−1
j − χn−1

j−1 ) = χn−1
j +Υn−1

j , (3.7)

where λ = k
h , k is the time step, and h is the spatial discretization pa-

rameter. The discretization is defined at the discrete spatial and temporal
points xj = jh, tn = nk. The scheme is stable provided λ ≤ 1 + f ′(χn

j ),
which is easy to satisfy if, e.g., λ ≤ 1.

Strictly speaking, a Godunov scheme for (3.6) is entirely explicit and
does not require a solution of any global linear or nonlinear system. How-
ever, the scheme in (3.7) is not, since it requires solving

χn
j +Υn

j = χn
j + f(χn

j ) = Aj , (3.8)

where Aj := −λ(χn−1
j − χn−1

j−1 ) + χn−1
j +Υn−1

j is known from the previous
time step, and where we substituted (3.3) in (2.5).

Solving of (3.8) has to be done only locally at every grid point. In
fact, for some isotherms, e.g., Langmuir, the algebraic form of (3.8) is
very simple and (3.8) can be solved explicitly for χn

j . In other cases, a
simple local Newton iteration suffices, since I + f is a smooth bijective
function. To avoid unphysical negative iterates for χn

j it is sufficient to use
an initial guess determined from the zero of the linear model of f at 0, i.e.,
of f(χ) ≈ Υmaxbχ.

Now consider the non-equilibrium case, i.e., when (2.5) is comple-
mented by (3.5). Formally we have to solve now, in addition to (3.7), a
coupled ODE defined at every grid point

Υn
j = Υn−1

j + kr
(
f(χñ

j )−Υn̄
j

)
, (3.9)

where n̄, ñ denote either n or n− 1. For small r and moderate f ′ one can
find a sufficiently small k to ensure the conditional stability of the explicit
solution. For large r the system is stiff and therefore calls for implicit
treatment with n̄ = ñ = n so that

χn
j +Υn

j = Aj , (3.10)

−krf(ηnj ) + (1 + kr)Υn
j = Bj = Υn−1

j . (3.11)

where Aj , Bj are known from previous time step. Its solvability for a
monotone f is analyzed similarly to (3.8).

In what follows we first discuss the extensions to the basic scalar mod-
els defined above and next we discuss the multicomponent case.
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3.2. Diffusion into micropores and transport with memory

terms. In ECBM, the predominantly advective transport in cleats is ac-
companied by a range of diffusive phenomena in which the molecules of
methane and carbon dioxide migrate and get adsorbed to the meso- and
micro-pores of the coal. This is known to affect the molecular struc-
ture of coal matrix and leads to the experimentally observed phenom-
ena such as coal matrix swelling which has a distinct kinetic character
[90, 24, 123, 150, 78, 137].

The micropore and mesopore diffusion have been included in the classi-
cal bidisperse model [114, 65] extended to include adsorption in micropores
in [26] and to realistic gas transport models [124], with ECBM-related ex-
perimental work on the rates of kinetics in [20]. See also [65, 114, 123, 26].

These models include in the StoC the quantity Υ living in micropores
which is governed by its own diffusion equation at a lower scale. Thus, Υ
is related to χ via a convolution

∂Υ

∂t
:=

∂χ

∂t
∗ β :=

∫ t

0

∂χ

∂t
(t− s)β(s)ds. (3.12)

Here β ∈ C1(0, T ) is a weakly singular or bounded monotone decreasing
kernel, i.e., is locally integrable, with β′ ≤ 0. When (3.12) models the
micropore diffusion, β(t) ∼ t−1/2 close to t = 0. Some approximations
[26, 20] use β(t) = βexp(t) := rexp(−rt) with a rate r > 0. Note also that
the kinetic model (3.5) can be written as a mild generalization of (3.12)

where, up to terms associated with the initial values of Υ, Υ := ∂f(χ)
∂t ∗ β

with β = βexp.
Combine now (2.5),(3.12) written together as

∂χ

∂t
+

∂χ

∂t
∗ β +Adv +Diff = 0. (3.13)

We recognize (3.13) as a double-porosity model [12, 59] for slightly com-
pressible flow in oil- and gas reservoirs with fractures and fissures. Also, see
[99] for other multiscale analyses leading to a system whose part is similar
to (3.13), and [95, 105, 106, 41, 100, 147] for other computational models
of double-porosity.

To properly approximate the solutions to (3.13) we need to discretize
the term ∂χ

∂t ∗ β; here the difficulty is the singularity of β at t = 0. An
appropriate discretization based on product integration rules was proposed,
and the analysis of the resulting scheme for Adv ≡ 0 carried out, in [107,
105].

However, in ECBM, we have Diff ≡ 0,Adv 6≡ 0. Now the appropriate
numerical approximation of (3.13) falls in the class of schemes for scalar
conservation laws with memory. In our recent work in [94] we developed
convergence analysis for a scheme combining the Godunov scheme with
the approximation of memory terms similar to that in [105, 107]. These
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Desorption

Adsorption isotherm
Xa=f(X l)

Adsorption-desorption hysteresis
Output vs input 

described by the hysteresis functional, n=5

 

 

Primary scanning UP
Primary scanning DOWN
Scanning from the differential model

Fig. 1. Left: adsorption/desorption hysteresis similar to those in [55, 112, 122].
Right: a graph obtained with a Preisach model of hysteresis with |A| = 5 as described
in [98]

results relate to the analysis of problems with memory in [30, 52] in which
the smoothing effects of the memory terms upon the solution to (3.13) are
discussed. These in turn can be interepreted in ECBM from the physical
standpoint as follows: the presence of the subscale diffusion into and out
of the coal matrix has the potential to smooth out any sharp fronts, should
they arise in the cleat.

As concerns multicomponent transport with memory, practical imple-
mentation results for (3.13) were reported for ECBM in [123, 149]. More
accurate models combining multi-porosity with IAS adsorption can be de-
veloped, see Section 3.4.

3.3. Adsorption Hysteresis. Desorption is a mechanism reverse to
adsorption. In equilibrium both are described by the same isotherm (3.3).
The adsorption hysteresis occurs in special non-equilibrium circumstances
when these processes are described by different isotherms, see Figure 1. The
many theories that explain adsorption hysteresis do so either by studying
phenomena in a single pore in the so-called independent pore theories, or
by attributing the hysteresis to the presence of a complex interconnected
pore network [13]. The first class of theories studies metastable states such
as superheating and undercooling of a fluid undergoing phase transition in
a single pore as well as the lack of symmetry of the gas-liquid interface
upon filling and emptying. The second mechanism studies adsorption in
pore networks and the pore blocking and obstruction of desorption by the
liquid remaining in the narrow necks of the pores [44, 115].

As concerns continuum computational models of adsorption hysteresis,
one can proceed in (at least) one of two ways. The first as in [122] uses
separate isotherms fj , j = 1, 2 as in (3.4), each with its own parameters
Υmax

j , bj . However, it is not clear from [122] how the intermediate scanning
curves are created when the desorption occurs at an intermediate value of
χ between the primary bounding curves; also, no analysis is available.

The second possibility is to consider a family of differential models of
hysteresis [98, 96, 136] which is amenable to analysis. In the Preisach model
of hysteresis, one generalizes (3.5) and considers a multivalued maximal
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Maximal monotone graph

(X,Y) in F=sgn-1

-1 1
X

Y

0

Y=X

Y=X-1Y=X+1

Fig. 2. Construction of an elementary hysteresis loop which serves as a building
block for more complicated graphs. Left: a graph F . Right: hysteresis loop using F .

monotone graph F instead of the function f in the form

∂Υ

∂t
+ F (Υ− χ) ∋ 0. (3.14)

This construction allows an unambiguous representation of primary bound-
ing and secondary scanning curves and, thanks to the convex-concave prop-
erties of the resulting hysteresis graph (see Figure 1, right) it leads to
well-posedness and higher regularity of solutions than those of usual con-
servation laws; see [98].

For terminology on monotone operators we refer to [125] and explain
only briefly how (3.14) works to deliver, e.g., a graph such as in Figure 1,
right. Consider F = sgn−1, with domain DF := [−1, 1], see Figure 2. We
can identify F with its graph and write F := {−1} × (−∞, 0) ∪ (−1, 1) ×
{0} ∪ {1} × (0,∞). The relation (3.14) means that Υ − χ remains in
the domain of F , and that the rate Υt is either positive, negative, or zero,
depending on whether Υ−χ is equal to −1, +1, or is in (−1, 1), respectively.
Paraphrazing, given an increasing input χ, the output Υ is allowed to either
not change or increase along Υ = χ − 1. In contrast, for χ decreasing, Υ
can only remain constant or to decrease along Υ = χ+ 1.

Now, using sgn−1 as a building block (but any other maximal mono-
tone graph can be used), define fα(s) := sgn−1( 2

αs + 1), for some α > 0,
and let Υα satisfy an analogue of (3.14) in which F is replaced by fα.
This allows one to construct a complicated convex-concave graph via Υ =
∑

α∈A Υα, in which A ⊂ IR+ is a finite collection of parameters; see the
graph shown in Figure 1, right, with |A| = 5. A more complicated, i.e. con-
tinuum set A can be used instead, but this is irrelevant for a computational
model. See [98] for details.

Consider a numerical scheme for (2.5) coupled with (3.14); the diffi-
culty here is in the understanding the differential inclusion in (3.14). This
follows from the theory of evolution equations with monotone operators.
We define the resolvent Jǫ := (I + ǫF )−1 for any ǫ > 0, and the Yosida ap-
proximation Fǫ :=

1
ǫ (I − Jǫ) to F . Both Jǫ and Fǫ are monotone Lipschitz

functions with Lipschitz constants bounded by 1 and 1
ǫ , respectively.
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We propose two avenues towards discretization of (3.14) beginning
with |A| = 1. First, we can use a regularized model for (3.14) ∂Υǫ

∂t +Fǫ(Υǫ−
η) = 0 in which we have replaced a multi-valued F by the single-valued
Yosida approximation Fǫ, and an inclusion by an equation. Its numerical
approximation should be implicit because for ǫ → 0, the ODE is very stiff.
Either way, the error will depend on ǫ.

Second, we can consider an implicit in time discretization of (3.14)

Υn
j −Υn−1

j

k
+ F (Υn

j − χn
j ) ∋ 0. (3.15)

This inclusion can be understood unambigously using the resolvent Jk =
(I + kF )−1. Multiply (3.15) by k and subtract χn from both sides to see,
after regrouping, that

Υn
j − χn

j + kF (Υn
j − χn

j ) ∋ Υn−1
j − χn

j .

Now apply the resolvent Jk to both sides to get

Υn
j − χn

j = Jk(Υ
n−1
j − χn

j ). (3.16)

This form, coupled with (3.7) is now amenable to analysis and implemen-
tation. The analysis reveals that the scheme is stable as long as λ ≤ 1.
However, questions remain as concerns the (order of) consistency of the
scheme, see [93].

Now we describe how to solve (3.16). Substitute (3.16) in (3.7) to
obtain a local nonlinear problem to be solved at each grid point j

H(χn
j ) := χn

j + χn
j + Jk(Υ

n−1
j − χn

j ) = Aj . (3.17)

Since 2I+Jk is bijective, (3.17) is uniquely solvable. Since H is also piece-
wise linear and therefore, semi-smooth, the Newton’s method will converge
q-superlinearly; see [134], Prop. 2.12, 2.25.

Now consider the case when |A| > 1. For each α ∈ A we can choose
a scheme based on Yosida approximation or on the resolvent. It appears
most practical to use the latter scheme since it does not depend on the
regularization parameter. Thus, per each grid point j, n, a local system
of equations composed of (3.7), and |A| variants of (3.16), with a sparse
Jacobian, have to be solved.

Finally, adapting the construction above to arbitrary shape scanning
curves is part of our current work since the symmetry of the graph F in
may be undesirable from the point of view of applications; compare the
graphs in Figure 1. Furthermore, multicomponent extensions are needed,
see Section 3.4.

3.4. Multicomponent transport with adsorption. The models
discussed in Sections 3.2 and 3.3 are scalar, i.e., are defined for only one mo-
bile component χ interacting with one adsorbed component Υ. In ECBM
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we have, however, several interacting components such as M , D, and N .
For multiple components several issues arise: one concerning numerical
approximation and analysis, and another, concerning the data for (2.6).

We start with the first issue and discuss the multicomponent model
as derived from (2.1). We assume for simplicity (3.1), (3.2) and ignore the
presence of C = N so that the nitrogen serves as a carrier only and does
not get adsorbed. Further, let the flow displacement velocity Ug ≡ const

in the model be known. Thus we only consider equations for C = D,M .
Further assume constant gas densities. Now, with rescaling, and AdvC =
∇ · (UgχgC) and DiffC = ∇ · (DgC∇χgC), we can write the equations for
C = M,D, each of which is similar to (2.5)

∂

∂t
(χgM + χaM ) +AdvM +DiffM = 0, (3.18)

∂

∂t
(χgD + χaD) +AdvD +DiffD = 0. (3.19)

To complete this model, we need relationships between χaC and ΥaC for
C = M,D. These extend either the equilibrium (3.3), kinetic (3.5), double-
porosity, or hysteretic relationships from Sections 3.2, 3.3 and are coupled.
For example, the equilibrium isotherm for C = M depends on the other
components ΥM := χaM = χaM (χlM , χlD) because the adsorption capacity
of any porous system is finite and thus the species compete for available
adsorption sites.

Position x

C
on

ce
nt

ra
tio

n

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

M, mobile
M, adsorbed
D, mobile
D, adsorbed

Displacement of M by D, IAS

PVI

R
ec

ov
er

y

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

M with EL
D with EL
M with IAS
D with IAS

Comparison of EL and IAS

Fig. 3. Left: illustration of competitive adsorption when methane CH4 (C = M)
initially present in the coal matrix is displaced by the injected carbon dioxide CO2

(C = D) which adsorbs more strongly. Right: comparison of CH4/CO2 recovery using
Extended Langmuir (EL) and Ideal Adsorbate Theory (IAS). Plotted are breakthrough
curves with respect to pore volume injected (PVI). Both examples use physical parame-
ters from [62, 123], with nitrogen N2 ignored

The functional form of the multicomponent isotherms could be ob-
tained experimentally. However, the number of necessary experiments ap-
pears unpractical for systems with a large number of components. Instead,
theoretical models for multicomponent mixtures have been proposed in the
literature as extensions of single-component isotherms. For example, an
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extension of the Langmuir model is

ΥM = fMD(χM , χD) := Υmax
M

bMχM

1 + bMχM + bDχD
, (3.20)

with a similar equilibrium isotherm fDM written for ΥD, where we have
used the simplified notation χC := χgC ; ΥC := χaC .

Assuming that the isotherms fMD, fDM are given, we consider briefly
the numerical approximation of the equilibrium model. Here we can use an
appropriate extension of the first order Godunov scheme (3.7) for systems.
Since the transport term itself is linear, we can simply use the upwind
method, and the lack of an exact Riemann solver for the system is not an
issue. However, we need to resolve the coupling in the storage terms which,
for Diff ≡ 0, extends (3.8) to a system of coupled algebraic equations

χn
M,j +Υn

M,j = χn
M,j + fMD(χn

M,j , χ
n
D,j) = AM,j , (3.21)

χn
D,j +ΥN

D,j = χn
D,j + fDM (χn

M,j , χ
n
D,j) = AD,j . (3.22)

See an illustration of preferential adsorption and displacement of one com-
ponent by the other in Figure 3.

However, the extended Langmuir model (EL) (3.20) appears thermo-
dynamically inconsistent [39]. A consistent more accurate model follows
from the Ideal Adsorbate Solution (IAS) theory [39, 149]. IAS takes ad-
vantage of the easy-to-obtain single component isotherms and derives a
system of algebraic equations from the equality of potentials similar to
vapor-liquid equilibria represented by Raoult’s law. Theoretically, this sys-
tem needs to be solved in a pre-processing step to provide lookup table
values for fMD, fDM . In fact, however, this step can be easily combined
with solving (3.21)–(3.22). An illustration of the nontrivial difference be-
tween the use of EL and IAS is given in Figure 3.

Having settled on an equilibrium model, we need to see if it is amenable
to kinetic, double-porosity, and hysteresis extensions. Consider first an ex-
tension of a kinetic model (3.5) to the multicomponent case; it readily
follows from a given equilibrium model but we now need to know various
rates rM , rD which are hard to measure and may be actually functions
rather than constants. In addition, double-porosity models and/or hys-
teresis models are more difficult to conceptualize, and their analysis and
numerical approximation is more complex. Overall, it appears that one
avenue available for the study of these complex multicomponent processes
is to consider a completely different characterization of adsorption. See
Section 5 for a discussion of adsorption at porescale.

4. Methane Hydrate models. For methane hydrates [76, 48] one
considers two mobile fluid phases l, g (brine, gas) and an immobile hydrate
phase h (hydrate). In addition to the methane M , the main components
of the fluids in the porespace are water W and salt S. Usually the pore
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space is mainly saturated with water phase, with only a small amount of
methane in the gas or hydrate phase being present.

The distribution of components between phases is governed by ther-
modynamics. Typically we have

χgM = 1, (gas phase contains methane only),

χhM + χhW = 1, (both known for a fixed hydrate nuumber),

χlM + χlW + χlS = 1, (unknown variables).

Phase behavior data for methane hydrates is available from various sources
albeit the models vary slightly in complexity and detail. In [101] we
used phase behavior data from [131, 48, 127] for i) the equilibrium (melt-
ing/dissociation) pressure PEQ = PEQ(T, χlS) and ii) maximum solubility
χmax
lM (P, T, χlS) of methane M in liquid phase p = l; see Figure 4 for il-

lustration. Other thermodynamics properties needed in a comprehensive
model follow from an equation of state (EOS) [127, 48, 131, 34, 43, 42].

4.1. Simplified one equation model. The simple model (2.7) ex-
plains well the main modeling constructs and solubility constraints. It can
be obtained under the following simplifying assumptions. First, assume
that P, T are given in a reservoir and that they follow a static distribution
due to hydrostatic and geothermal gradients, respectively. Next, ignore the
dependence of PEQ and χmax

lM on the salinity χlS , and set χlS ≡ const. If
pressure and temperature are low enough i.e., above a certain depth be-
low the earth surface, only a hydrate can form, see Figure 4, left. On the
other hand, below a certain critical depth, the pressure and temperature
are higher and only free gas can form. Finally, the hydrate and/or free gas
can form only if the amount of methane NM exceeds the amount associated
with the maximum solubility at that depth, see Figure 4, right.
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In the hydrate zone we have Sg = 0 and 1 ≥ Sl > 0 with 1 > 1 −
Sl = Sh ≥ 0. Assume constant φ, ρl, ρh, χhM . The equation (2.1), after
rescaling, becomes then

∂

∂t
((1− Sh)χlM + ShRh) +AdvM +DiffM = 0 (4.1)

where Rh ≡ const, and where we have used Sh + Sl = 1. We now need a
relationship between Sh and χlM , or their rates.

In equilibrium between the liquid and hydrate phases, we have the
solubility constraint χlM ≤ χmax

lM and the volume constraint Sh ≥ 0. At
most one of these inequalities can be sharp which is expressed by Sh(χ

max
lM −

χlM ) = 0. This can be also written as (χlM , Sh) ∈ F := [0, χmax
lM )× {0} ∪

{χmax
lM )× (0, 1), see Figure 5.
A similar model can be formulated in the free gas zone for liquid-gas

phase equilibria where Sh = 0, Sl > 0, Sg ≥ 0. Such a model in which free
gas phase may appear or disappear resembles the gas component part of
the black-oil model [77, 97], carbon sequestration models such as [111], or
hydrogen storage [50].

∂

∂t
((1− Sg)χlM + SgRg) +AdvM +DiffM = 0 (4.2)

where Rg ≡ const. We note that the constants Rh, Rg exceed χmax
lm by

about two orders of magnitude, a fact that is useful in the analysis of the
numerical scheme for (4.1), (4.2).

Before we propose the discretization, we comment on the transport
terms in these simplified equations. In (4.1) the hydrate phase is immobile
and methane can be transported only by diffusion within brine. In (4.2)
the gas phase can be mobile for large enough Sg; in addition, transport
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occurs by diffusion within the liquid phase. Overall, advection may be
negligible if the system is close to hydrostatic equilibrium. On the other
hand, diffusion may be negligible when the system changes rapidly away
from equilibrium due to the heat or gas fluxes across the boundaries. See
[145, 75, 144, 33, 34, 88, 34, 33, 79] for various examples and scenarios with
different time and spatial scales of interest; see also [101].

4.2. Numerical model for the simplified case. Now we discuss
the numerical approximation of the phase equilibria in the generic model
(2.7) which includes (4.1) and (4.2) as special cases with Υ := Sh, R = Rh,
and Υ := Sg, R = Rg, respectively, and with χ := χlM .

We discretize (2.7) in time and space and get

(1−Υn
j )χ

n
j +RΥn

j + kDiff n̄
j = −kAdvn−1

j

+ (1−Υn−1
j )χn−1

j +RΥn−1
j , (4.3)

(χn
j ,Υ

n
j ) ∈ F. (4.4)

The usual treatment is to handle the advection explicitly and diffusion
implicitly so that n̄ = n, but in the exposition below we may use n̄ = n−1.
The computational realization of (4.4) is the crux of the algorithm.

Following the ideas in [50] we express (4.4) by recognizing that the
mirror image of F , see Figure 5, is a level curve of the “min” function so
that (4.4) is equivalent to

min(χmax − χn
j ,Υ

n
j ) = 0. (4.5)

This characterization of the graph F now lends itself to a nonlinear iteration
that can be applied to (4.3) and (4.5). Here we follow the ideas from [50]
and consider a class of semi-smooth Newton methods described recently
in [134]. For relevant background on complementarity conditions, see also
[32, 60]. We outline this method below.

Let n̄ = n− 1 so we can write out the system (4.3) and (4.5) that has
to be resolved at each grid point j, n as a local 2× 2 system of equations

H(χn
j ,Υ

n
j ) = 0 ≡

{
(1−Υn

j )χ
n
j +RΥn

j = Aj

min(χmax − χn
j ,Υ

n
j ) = 0,

(4.6)

where Aj is given from (4.3).

Now the problem (4.6) can be solved by Newton’s iteration. However,
we notice non-differentiability of the second component of H across IR2 ⊃
A := {(χ,Υ) : Υ = χmax−χ}. Away from that singularity, H is smooth in
both variables, and thus is a semi-smooth function on B := {(χ,Υ) : 0 ≤
χ ≤ χmax, 0 ≤ Υ < 1}, see [134], Prop. 2.25.
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We can calculate the Jacobian H ′ where it exists

H ′ :=







M1 :=

[
1−Υ R− χ

−1 0

]

, χmax − χ > 0

M2 :=

[
1−Υ R− χ

0 1

]

, Υ > 0

. (4.7)

From (4.7) we can further compute its Bouligand subdifferential as the set
∂BH := {M1,M2} and its convex hull, the Clarke’s generalized Jacobian
∂H,

∂H := {

[
1−Υ R− χ

α α+ 1

]

,−1 ≤ α ≤ 0}.

We find then that any selection M from ∂H, thanks to R >> χn
j and Υn

j <

1, is always positive definite thus nonsingular. Thus, from [134], Prop. 2.12,
we conclude that the Newton’s method converges q-superlinearly.

Now consider the implicit treatment of diffusion, i.e., n̄ = n. At each
time step n we have to solve a system of nonlinear equations with 2 ×M

unknowns, whereM is the number of spatial discretization points. Jacobian
of that system is sparse and its blocks resemble H ′ in (4.6) because the
constraints (4.5) have to hold at every point j, n. The properties of that
system follow from analyses similar to that for n̄ = n− 1.

4.3. Remarks on the full model. Thanks to several simplifying as-
sumptions concerning P, T, χlS we derived (2.7) for which our discussions
in Sections 4.1 and 4.2 lead to the insight into the main difficulties of nu-
merical hydrate modeling. These model simplifications must be removed
for realistic simulations, and (2.7) must be complemented by an energy
equation including the latent heat of phase transition. Furthermore, gas,
hydrate, and brine phase compressibilities, as well as the dependence of
transport properties upon the primary variables, need to be accounted for.
In addition, gas phase mobility and fluxes, also through hydrate zone, can-
not be ignored; in fact, capillary pressure needs to be included in the model,
since from the observations of hydrates in subsea sediments it is known that
the methane bubbles percolate the hydrate zone through various free gas
conduits.

The comprehensive models described in [76, 48, 101, 80, 29, 87, 132] are
quite general and account for most of these dynamic effects using available
experimental data and, when the experimental data is missing, using some
heuristic relationships. For example, a model of hydrate evolution should
account in some way for the hydrate growth in pore space, and most models
[48, 76] do so via heuristic relationships such as φ = φ(Sh), K = K(Sh),
which are unsupported by experiments or first principles models. The full
mesoscale models for hydrate evolution are therefore lacking precision due
to the lack of qualitative and quantitative information on the dynamics
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of hydrate formation and dissociation and its effects on porescale. See
Section 5 for a discussion of qualitative and quantitative model elements
following from porescale studies.

5. Porescale modeling. In Sections 2-4 we discussed the need for ac-
curate models of dynamics of certain phenomena in ECBM and MH which
are unavailable or hard to obtain experimentally. In ECBM models it is
important to model porescale changes to the coal matrix under adsorp-
tion due to swelling [90, 91]. However, there is virtually no experimental
work on porescale; this can be partially explained by the softness of coal
and the difficulty to obtain rock coal samples other than those made from
pulverized coal. For MH, we are interested in phase transitions associated
with hydrate formation and dissociation, a phenomenon not yet entirely
understood, see [127], Chapters 3-5. It is known that it proceeds in several
steps, one of which includes the (Langmuir) adsorption of gas particles into
the water structure surrounding the trapped gas molecules. The hydrate
formation process includes heat and mass transfer, and metastable states,
while dissociation is an endothermic process because heat must be supplied
to break the bonds between guest and water molecules and the hydrogen
bonds between water molecules. Finally, there is substantial permeabil-
ity decrease due to the presence of hydrate [88, 29, 76]; there are ongoing
porescale imaging efforts [3, 117] which show that the models depend on
the type of sediment and processes. However, experiments are difficult due
to the instability of hydrates in standard conditions. In related work, [61]
discusses the dependence between capillary invasion and fracture opening
parametrized by grain size; however, changes in the geometry due to the
transport of dissolved methane and/or hydrate formation are not accounted
for. We argue that the nonlinear relationships necessary for ECBM and MH
can be obtained from porescale computational models which can provide a
virtual laboratory for much of the detailed data.

Until about a decade ago, most modeling in porous media relied on
continuum models at mesoscale, carrying the quantitative information up-
wards to reservoir scale by upscaling or multiscale modeling. There ex-
ist now various pore network [73, 74, 8, 18], Lattice-Boltzmann methods
[141, 128, 121, 139], as well as continuum-based models [108, 103, 102]
which simulate processes at porescale and supply data for the meso-scale
models, or support them qualitatively (our references are rather incom-
plete due to lack of space). Other discrete methods based on so-called
first principles have been successful in various disciplines and these include
molecular dynamics (MD), density functional theory (DFT), and various
Monte Carlo techniques, see [9, 113, 54, 146, 69]. More generally, statistical
mechanics offers an approach in which “deterministic equations describing
(large systems of) particles are replaced by assumptions on their statisti-
cal behavior” [19]. Particularly relevant for ECBM and MH are equilib-
rium lattice gas models and specifically, those based on mean field theory
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(MFEQ) [22, 130, 92]. Below we outline possible directions for ECBM and
MH tied to some of our current work on porescale.

5.1. Porescale models of φ,K. Let the porespace ω = ωR ∪ ωF =
⋃N

i=1 ωi be a collection of rectangular cells (sites) ωi, with random variables
t,n denoting matrix (rock) and fluid occupation variables; see Figure 6 for
illustration. The geometry of ω whose comes either directly from tomog-
raphy and X-ray analyses, or is constructed synthetically based on some
heuristics or on experimental structure factors such as mean, percolation,
and two-point correlations. Note that t is usually called a (quenched) dis-
order. At a site i,

ti =

{
1, cell is open to fluid
0, cell is blocked by solid

(5.1)

ni =

{
1, cell is occupied by fluid
0, cell is not occupied by fluid

(5.2)

We have ωF :=
⋃

i:ti=1 ωi and we will denote |ωF | :=
∑

i ti with the porosity

given by φ = |ωF |
|ωF |+|ωR| =

NF

N . Also, the rock-fluid interface is denoted by

γ := ∂ωF∩∂ωR. In discrete models only ti, ni are important; the continuum
models are posed with respect to a position variable y ∈ ωF .

Let φ and K respond dynamically to the formation stress and to
the presence of hydrates, adsorption in the matrix, and other phenomena,
which we write as

K = g(φ; ξ), (5.3)

where ξ is a model-dependent collection of variables.
Now let φ0,K0 be some reference values of φ,K; assume for simplicity

that K is isotropic. In ECBM the formula K
K0

= ( φ
φ0

)3 for (5.3) or its

generalizations have been used in [91, 83] but these do not account for the
coal matrix swelling. For MH, φ = φ0(1− Sh) shows the porosity changes
due to the hydrate presence via its saturation Sh, and K = K0(1 − Sh)

2

for the pore coating models, or, via a more rapidly decaying relationship,

K = K0(1 − S2
h + 2(1−Sh)

2

log(Sh)
) for the pore filling models [29, 76, 88]. These

expressions are based on conceptual models of porous media as a bundle

of capillaries, i.e., Carman-Kozeny [17, 67] formula K = φ
d2

g

12 , where dg
is the grain size. These models and correlations, while valuable in simple
circumstances, lack the precision for complex multicomponent phenomena.

A computational model to derive (5.3) starts with a given porescale
geometry ω and a given ξ, and solves fluid flow equations whose solutions
we can then average to obtain (5.3). For an evolving ξ we need to solve as
well the diffusive and advective transport models governing ξ at porescale;
see an illustration in Figure 6. In particular, for ECBM and MH these need
to account for adsorption and phase transition, respectively. A prevailing
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Fig. 6. Left: example of disorders t from porescale data from [109], courtesy
of Dorthe Wildenschild (OSU). Middle and right: flow and transport simulations at
porescale, in collaboration with Anna Trykozko (ICM UW)

number of computational models of adsorption and phase transitions at
porescale are discrete. However, some models [72, 116], allow the treat-
ment of adsorption as a surface reaction modeled by a boundary condition
of Robin- or Neumann type posed on γ. These have shown to be most
compatible in our studies thus far, while the discrete models appear to be
better for providing models for the dynamics of the phenomena such as
those in (2.6), discussed next.

5.2. Adsorption and phase transitions at porescale. The non-
linear relationships such as (3.3) or, more generally, (2.6), governing the
dynamics of adsorption and phase transitions are usually known experimen-
tally for some range of parameters and components. Precise quantitative
models for any set of parameters and any number of components are needed
for the computational simulations, and ultimately for better understanding
of the phenomena relevant for ECBM and MH at pore- and mesoscale. As
mentioned above, we have had some preliminary success with the discrete
rather than continuum models at porescale in this regard.

Specifically, the MFEQ theory accounts for the particles of fluid inter-
acting with each other and adsorbing on the porous matrix and/or undergo-
ing phase transitions. These interactions are expressed by a Hamiltonian,
i.e., an energy functional with various product terms which are simpli-
fied in the mean field approximation. There are successful MFEQ models
for adsorption and phase transitions developed in [64] based on the Ising
model [92, 68]; they have been refined and compared to other methods in
[63, 142, 143, 120, 53, 85, 118, 119]. For NR = N − NF >> 1, there are
several metastable equilibria in the Ising model [92, 37], and this leads to
adsorption/desorption hysteresis and irreversibility of phase transition.

The MFEQ models for adsorption were derived and validated for
single-component adsorbate in mesoporous glasses. We are working on
extending them to multiple components in micropores and macropores in
the sediments and coals; these models will provide the porescale counter-
parts of IAS-Langumir models from Section 3.4 and those with memory in
Section 3.2. Another modification accounts for the swelling of the matrix
which is directly linked to the adsorption. Next, the discrete models of ad-
sorption given by MFEQ provide scanning curves for adsorption-desorption
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hysteresis at arbitrary reversal points, and they have advantages over the
models derived from experiments or the differential models described in
Section 3.3 since they are easily extended to multiple components.

As concerns the phase transitions, the mean field approximation is
capable of producing some good qualitative approximations to phase tran-
sitions and critical phenomena [146, 92]. We are working on a simple
model of hydrate formation analogous to MFEQ models for adsorption.
Compared to the classical Ising model of phase transition, it is defined in
porespace, and its Hamiltonian can be formulated so as to promote either
pore coating or filling.

5.3. Hybrid models: connection between porescale and meso-

-scale models. The exposition above argues for implementation of pore-
scale models to provide missing data for mesoscale simulations. One needs
to consider several fundamental issues directly determining their usefulness.

First concerns the choice of porescale models. The discrete and sto-
chastic models at porescale are fairly easy to implement, but are typically
very computationally expensive and their interpretation is hard. On the
other hand, continuum models at porescale and mesoscale require deep
understanding in the start-up phase but the interpretation of the simulation
results is fairly standard.

Second issue concerns the qualitative properties of their solutions.
Once the porescale models are implemented, we should show, e.g., that
the isotherms provided by MFEQ calculations have indeed the qualitative
mathematical properties expected of the isotherms. An analogous issue
concerns other results of porescale simulations.

The last but not the least issue is that of computational complexity.
The common feature of the various porescale models is their large demand
on the computational time which increases with |ω|; the latter is as large
as possible since ω is intended to be a Representative Elementary Volume
(REV). In addition, we (may) need to consider several statistical realiza-
tions of the REVs. This combined computational complexity has precluded
dynamic connections between porescale and mesoscale so far, while the
mesoscale models are the only ones that can be used in optimization loops,
reservoir characterization, parameter identification, and control.

We believe it is possible for some of our porescale results to be encapsu-
lated as library entries similar to the lookup tables, with properties similar
to the traditional heuristic models. As concerns the complexity, coarse
grained discrete models coupled to continuum models have been successful
in other fields [40, 89, 84, 58]. Also, some porescale models can be perhaps
implemented efficiently on modern computer architectures such as multi-
core or graphic processing units. However, there are yet no universal ways
to overcome the computational complexity of the hybrid models.

6. Summary and acknowledgements. In this paper we have pre-
sented a collection of comprehensive and simplified models for ECBM and
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MH at mesoscale and underlined the main difficulties in their numerical
approximation. Furthermore, we indicated the need for detailed dynamics
information for some of the processes and proposed to use porescale com-
putations to derive these. We believe that some porescale models based
on coarse graining, and a careful choice of REVs and their samples, can
lead to dynamic hybrid models combining porescale and mesoscale models
which can be very useful for the needs of MH and ECBM modeling.
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[98] M. Peszyńska and R. E. Showalter. A transport model with adsorption hysteresis.
Differential Integral Equations, 11(2):327–340, 1998.
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