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Abstract. An implicit black-oil model with capillary effects is studied. Various primary
unknowns which include one of the phase pressures are considered, and qualitative and
quantitative consequences of a choice are discussed. In particular, a total compressibility
condition is defined and a local nonlinear problem is studied. A numerical method to
solve the local problem is discussed.
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1. Introduction

Computational modeling of multiphase flow and transport in porous
reservoirs is of great importance to the economy and environment, as it is
essential to optimize production of natural energy resources and to predict
and control contamination risks and remediation efforts. In this paper, we
focus on a the black-oil model which has been known in reservoir engineering
since 1970s (Peaceman, 1977; Watts, 1986; McCain, 1990; Killough, 1995).
The motivation for this work arose originally from a benchmark problem
with large capillary pressure Killough (1995) simulated with the computa-
tional black-oil model from IPARS reservoir simulation framework (Inte-
grated Parallel Accurate Reservoir Simulator) (Wheeler, 2000; Lu, 2000; Lu
et al., 2001) and from studies of an optimal choice of primary unknows in
such a model.

The black-oil model is a functional subset of a comprehensive composi-
tional model; the latter is very complex and even with today’s computational
power it can still rarely be used for simulations over large computational
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domains. The black-oil model approximates its functionality while it is
capable of accounting for significant variations in the amount of gas and in
its pressures. Fully implicit formulations of a black-oil model are solved for
three unknowns per cell only: such a lean and substantial structure makes
it an attractive element in coupled flow, seismic, and geomechanics simu-
lations (Aziz and Settari, 1979; Minkoff et al., 2003, 2004) as well as in
multidomain couplings (Peszyńska et al., 2002; Lu et al., 2002; Wheeler
and Peszyńska, 2002; Peszyńska, 2003).

In such coupled systems it is not uncommon for the current initial or bound-
ary condition of an individual model to fall outside a set of physical values,
that is, those that can represent physical quantities and pressures observable
in a porous medium. This can be caused by, and in turn can cause a conver-
gence failure or near-failure of another part of the coupling, or an inherent
inconsistency in the formulation of a part or of the whole of the coupled sys-
tem. Related is the issue of robustness and consistency of individual models,
for example, the presence of mass errors inherent in time-lagged or time-split
formulations (Trangenstein and Bell, 1989; Coats, 1999; Chen et al., 2004). It
turns out that fully implicit models, albeit complex, are the best candidates for
robust and stable “black box” elements of coupled systems. It is then desirable
to find explicit conditions defining the admissible inputs and correct outputs of
such models and to improve their efficiency, if possible.

In this paper, we investigate the choice of primary unknowns ϒ in an
implicit formulation of a black-oil model with capillary effects in saturated
and unsaturated conditions written as

F (ϒ)=0. (1)

The set of three independent primary unknowns in ϒ includes usually
at least one pressure unknown P and several saturation or concentration
unknowns. We investigate how certain choices of unknowns in ϒ influence
the structure of the model and its numerical implementation.

In particular, we define the coefficients of total compressibility c̄t and total
mobility λ̄t and study the structure of the pressure equation in the case when

c̄t � 0, λ̄t >0. (2)

We then derive explicit conditions on the data sufficient for (2) which can
be used to verify internal consistency of the data of the model as well as
the physical meaningfulness of the current guesses for ϒ. They are inde-
pendent of how we choose P in ϒ.

Next, we consider practical consequences of the choice of ϒ and in particu-
lar, the ease with which model variables can be computed from ϒ. Some such
calculations are explicit, others may be implicit. In some instances the map
ϒ �→Sw, where Sw is water saturation, is implicit; Sw is found numerically as a
solution of a local nonlinear problem parametrized by ϒ denoted by



AN IMPLICIT BLACK-OIL MODEL WITH CAPILLARY EFFECTS 203

f (ϒ;Sw)=0. (3)

Below we show how to construct a robust and efficient solver for (3) whose
cost is similar to that of an explicit evaluation; this study is supported by
our analysis of f and by numerical evidence.

The plan of the paper is as follows. In Section 2, we recall the black-oil
model and give examples of ϒ. In Section 3, we discuss the total com-
pressibility condition for the black-oil model in unsaturated and saturated
conditions with capillary effects; these results extend (Watts, 1986; Chavent
and Jaffre, 1986; Trangenstein and Bell, 1989; Coats, 1999; Chen, 2000).
In Section 4, we analyze f , discuss a local nonlinear numerical solver, and
provide criteria that verify whether values of ϒ are physically meaningful.
The results are illustrated by numerical experiments.

2. The Black-oil Model

Here we briefly recall the black-oil model of flow. Generally, we follow (Bear,
1972; Peaceman, 1977; Lake, 1989; McCain, 1990). We consider a porous res-
ervoir � and the coefficients of porosity φ(x) and permeability K(x), x ∈�

as defined in Bear (1972) and recall that their values may not be indepen-
dent of one-another; moreover, they are, in general, correlated to the specific
area and tortuosity coefficients of the porous medium. Finally, these coeffi-
cients depend in general on the pressure and temperature in the medium;
such effects however for lack of space will not be discussed in this paper.

Our focus in this paper is on the fluids which fill the void (pore) space of
�. The fluids can exist in different phases, can be made of different com-
ponents, and are classified according to their composition and pressure–
volume–temperature (PVT, phase behavior) properties. We consider three
phases: aqueous, oleic and gaseous, denoted by subscripts w,o,g, respec-
tively. We also consider three components: the water component denoted
by subscript W, and various hydrocarbon components. In the black-oils it
is known that more than 20 mole percent components are heavy; these are
lumped in the (heavy) oil pseudo-component denoted by O; the other (light)
gas pseudo-component is denoted by G. These components can remain in
one phase only or can be partitioned between many phases depending on
PVT conditions; general phase behavior of arbitrary fluids is possible using
a full equation of state (EOS) (McCain, 1990; Coats et al., 1995). Gener-
ally one assumes a local equilibrium between light and heavy components
expressed quantitatively by a pressure-dependent gas–oil ratio.

Phases. Phases are characterized by several quantitative properties. Phase
saturations (volume fractions), relative permeabilities, pressures, viscosities,
densities, and reference densities, are denoted by Sm, km, Pm, µm, �m, �mr,
respectively. Phase mobilities are λm = km/µm. If a phase m is absent then
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Sm = 0. In general, for each phase m we have 0 � Sm � 1,∀m. The phase
saturations satisfy the volume constraint:

Sw +So +Sg =1. (4)

In this paper, we are concerned with water-wet reservoirs, that is, reser-
voirs in which the water phase w is always present so that Sw >Sw,r, where
Sw,r >0 denotes the residual water saturation. In consequence, other phases
cannot occupy more than the fraction 1−Sw,r of pore space:

0 � Sm <1−Sw,r, m=o, g, 0 � So +Sg <1−Sw,r. (5)

Phase velocities are given by the multiphase (Muskat) extension of Darcy’s
law for the volumetric phase velocity �Vm

�Vm =−Kkm

µm
(∇Pm −�mg∇D)=−Kλm (∇Pm −�mg∇D) , (6)

where g denotes the gravity constant and D(x), x ∈� the depth.
We recall that phase relative permeabilities km =km(Sm) increase with their

phase saturations Sm; for a more general situation (Chavent and Jaffre, 1986).
The interface between phases is due to capillary forces: we have

Po −Pw :=P c
ow(Sw), (7)

Pg −Po :=P c
go(1−Sg)=P c

go(Sw +So). (8)

Typical properties of capillary pressure in water-wet reservoirs are given in
(A1). Multiple rock types and dependence on other phase saturations are
discussed in Lake (1989), Helmig (1997) and Chavent and Jaffre (1986).

(A1). Define AS := (Sw,r,1] and assume that P c
ow, P c

go P c′
ow � 0, P c′

go � 0,
for S ∈AS, and P c

go(Sw,r
+)=+∞, P c

ow(Sw,r
+)=+∞. Assume also P c

ow(1) �
0, P c

go(1) � 0.

Components. The mass conservation equation for each component is

∂

∂t
(φNM)+∇ · �UM =qM, x ∈�, (9)

where qM denotes the component’s source or sink terms due to injection
and production wells. The components M can exist in different phases m;
this is described by mass fractions ηMm. Here we consider the “standard”
black-oil model (Peaceman, 1977; Watts, 1986; Lake, 1989; Trangenstein
and Bell, 1989) and assume ηWw =1 so the water component can be iden-
tified with the aqueous phase. Also, we assume ηGg =1, ηOo >0. It follows
that ηOo +ηGo =1: the gas component G is partitioned between the oleic o
and gaseous g phases; the components O, G make up the oil phase o, but
the gaseous phase g, if it exists, is made only of component G.
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The concentrations of components are NW = Sw(�w/�wr), NO =
ηOoSo(�o/�or), NG = ηGo(So�o/�gr) + Sg(�g/�gr), where �mr is the reference
density of that phase m=m(M) which is naturally associated with the given
component M, that is, w with W, o with O, g with G. We use the phase
formation volume factors Bm =�mr/ηMm�m,m=m(M), with Bm =�mr/�m for
m=w,g. Also, we use the component gas/oil ratio Ro =ηGo�or/ηOo�gr. Thus
NW = (Sw/Bw), NO = (So/Bo), NG = (SoRo/Bo)+ (Sg/Bg)=NORo + (Sg/Bg).
The flux of a component M is �UM = ∑

m ηMm �Vm�m/�m(M)r; we can write
�UM = �Vm/Bm, M =W,O, m=m(M), and �UG = �VoRo/Bo + �Vg/Bg.

In summary, the black-oil model is given by (4), (7), (8) and (9), along
with appropriate definitions. It can be written as a square system (1) whose
size is determined by the Gibbs’ rule: the number of unknowns in ϒ and
the number of equations in (1) is three.

To complete the model, we assume either the no-flow boundary con-
ditions or that the values of primary unknowns ϒ(x, t)|x∈∂� are speci-
fied. Also, initial values ϒ(x, t)|t=0, x ∈ � must be given. Conditions on
whether these boundary and initial data are physical will be discussed in
the sequel.

2.1. phase behavior

Recall the definition of compressibilities as cm =−(B ′
m/Bm). In the slightly

compressible case we have cm ≡ const. In general, for the uni-component
phases cw, cg � 0; typically cg 
 cw, where cg is a highly varying decreas-
ing function of pressure. In general, Bg and Bw are given as reservoir data.

Next consider the oleic phase m = o which is composed of two hydro-
carbon components O and G: we have three distinct cases, summarized in
Table I. We note that data on Bo in unsaturated conditions where the oleic
phase behaves like a liquid (McCain, 1990) is rarely available; a physically
meaningful formula defining Bo must match the data Bdo and Bso in their
respective dead-oil and saturated limits. Here we use a linear formula pro-
posed in Lu (2000).

Typical properties of the rock-fluid data are given in (A2).

(A2) Assume that Bw,Bg,Bdo,Bso,Rs are continuous and piecewise
differentiable on IR+

0 . In addition,

Bw :B ′
w � 0, Bw(0)=1 � Bw >0, (10)

Bdo :B ′
do � 0, Bdo(0)=1 � Bdo >0, (11)

Bso :B ′
so >0, Bso(0)=1, (12)

Rs :R′
s >0, lim

P→+∞
Rs(P )=+∞, (13)

Bg :B ′
g � 0, (14)
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Table I. Summary of oil/gas PVT definitions

Case Pressure Gas/oil ratio Ro Oil formation Sg

volume factor Bo

Dead-oil any NG =0, Ro =0 Bo =Bdo Sg =0
Unsaturated P � P ∗(Ro) 0<Ro � Rs(P ), Bo =Bdo +Ro/Rs Sg =0

Ro =NG/NO [Bso(P
∗)−Bdo(P

∗)]
Saturated P >P ∗ NG

NO
>Rs(P ) Bo =Bso Sg >0

The following functions are given as rock-fluid data: dead-oil formation volume factor
Bdo :=Bo|NG=0, the saturated gas/oil ratio Rs, or its inverse P ∗(Ro) with P ∗(Ro) called the
saturation (bubble) pressure, and the saturated oil formation volume factor Bso.

Remark 1. From (12) and (11) we see that Bso(P ) � Bdo(P ) for any pres-
sure P and that whenever NG >0, we have Bso(P )>Bdo(P ). It follows that
if Ro < Rs is fixed, then B ′

o(P ) � B ′
do(P ) � 0. Also, if NG > 0, then we

have B ′
o < B ′

do � 0. In other words, the compressibility co|Ro<Rs of “live”
oil with dissolved gas in unsaturated conditions, which behaves like a liq-
uid, is larger than the one of “dead-oil”. At the same time, co|0<Ro<Rs is
always positive because B ′

o(P ) � −R′
s < 0. Also, by (11) and (13) Bmin

o :=
limP→∞ Bo(P ) � 0.

It remains to point out that Ro,Bo are nondifferentiable at the phase
transition point P = P ∗ where NG/NO = Rs(P ). In addition, the piecewise
representations of the rock-fluid data are not differentiable either. In other
words, both the data and phase properties make F in (1) only piecewise
smooth. These facts introduce mild additional numerical difficulties when
solving (1) numerically.

Two more assumptions are formulated on the data that will be needed
in the sequel. These can be used to verify internal consistency of data and
unknowns of the model.

(A3) B ′
so −BgR

′
s � 0 (see Coats, 1999),

(A4) 1+NOB ′
soP

′
goc � 0.

2.2. primary unknowns

The results presented in this paper are essentially independent of the spatial
discretization and are valid for a fully implicit in time temporal discretiza-
tion with backward Euler implicit time-stepping. Hence, in what follows we
identify the continuous problem (1) with its fully discrete form; details on
the latter can be found in Lu et al. (2002).
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The system (1) is solved by Newton iteration, where in each Newton
step n=0,1,2, . . . we solve

DF n �ϒn =−F n, ϒn+1 =ϒn +�ϒn, (15)

with F n = F (ϒn),DF n = DF (ϒn). The initial guess ϒ0 is determined by
extrapolation from previous time steps; the nonlinear (1) and linear (15)
iterations terminate when some stopping criteria are satisfied. This is a
standard setting, see Lu (2000) and Lu et al. (2001, 2002) for details and
Kelly (1995) Lacroix et al. (2003) for information on the solvers.

The choice of unknowns ϒ in (1) is motivated by several criteria. First,
ϒ must describe the state of reservoir without ambiguity and must have an
easy physical interpretation. Second, all quantities in (1) and (15) should be
easy to compute from ϒ. Third, the conditioning and pre-conditioning of
the Jacobian DF must be considered, in particular, in the presence of var-
ious types of injection and production wells and in degenerate conditions.

It is customary to include in ϒ some pressure variable(s) and some of
the concentration- or saturation-based variables. In fact, in implicit mod-
els the inclusion of at least one pressure unknown in ϒ is necessary in
order for the reservoir pressure to be known. The use of more than one
of the phase pressures is undesirable because it creates a large pressure
block, requires resolution of capillary relationships which is ill-posed close
to degenerate conditions, and may cause unphysical numerical countercur-
rent phase flows.

The pressure unknown P can be one of phase pressures Pm,m=w,o, g

or one of global- or pseudo-pressures as in (Chavent and Jaffre, 1986; Chen,
2000); the latter are convenient in analysis but cumbersome in implemen-
tation of implicit models. In this paper we choose the former; here one
should choose this phase m=w,o, g which has the most likelihood of being
continuous in the reservoir and throughout the simulation time: this crite-
rium eliminates Pg. Next, when water movement is deemed relatively insig-
nificant, Po can be selected (ecl, 1998; Chen, 2000). However, the oleic
phase may be discontinuous in water-wet reservoirs as well as in aquifer
parts of reservoirs such as in (Killough, 1995); there, Pw should be used.

The remaining two unknowns in ϒ are the concentrations or satura-
tions; the former are preferable in mass conservative implicit formulations
in compressible conditions. The hydrocarbon concentrations NO,NG, or
their ratio NG/NO must be used in order to describe unsaturated conditions
unambiguously; in addition, the use of NW provides less information than
either of NG,NO.

It is logical therefore to consider only ϒ = (P,NO,NG) where P is either
Pw or Po. In the remainder of this paper we investigate these two choices
in view of (i) and (ii). A comprehensive comparison including (iii) is regret-
tably beyond our scope.
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3. The Total Compressibility Condition

The structure of multiphase flow models is revealed through the transfor-
mation of the original system (9) to a system composed of one pressure
equation and two saturation-like equations. Typically, it is found that, based
on some conditions, the pressure equation has a (degenerate) parabolic–
elliptic (diffusion-like) character and that the saturation-like equations have
a (degenerate) parabolic–hyperbolic (transport-like) character.

Here we investigate the former; it is derived from (9) in the form

φc̄t
∂P

∂t
=∇ · (Kλ̄t∇P)+ q̄t, (16)

where c̄t is a“compressibility-like” term and λ̄t is a “mobility-like” term.
Both c̄t, λ̄t depend nonlinearly on the data and on ϒ; therefore, the char-
acter of (16) may change locally. The term q̄t contains lower order deriv-
atives and source terms which do not influence the structure of (16) but
preserve the coupling between (16) and other equations.

By change of variable from P to v = ∫ P

0 λ̄t(q)dq (Kirchoff transforma-
tion), one can consider, in place of (16), the abstract problem

φc̄tλ̄
−1
t

∂v

∂t
=∇ · (K∇v)+ q̄t. (17)

If (2) holds, then the structure of (17) is nonlinear degenerate parabolic;
see the analysis in Showalter (1997) and the applied point of view in
(Coats, 1999). Since, by physical reasoning, this is the expected behavior of
the pressure equation, (2) can be used for verification of internal consis-
tency of the data of a model.

We now proceed to find sufficient conditions that guarantee (2) for the
full model with nonzero capillary pressure in both unsaturated and satu-
rated conditions in which the primary presssure unknown is one of the
phase pressures. We note that in a similar discussion in Watts (1986),
Trangenstein and Bell (1989), Coats (1999); the capillary pressures are
ignored; in Chavent and Jaffre (1986) and Chen (2000) only the1 global
pressure is considered; in Chen (2000) only the saturated case is considered
and in Chavent and Jaffre (1986) the water phase is deemed immobile or
absent. In this paper, we demonstrate that conditions (A1)–(A4) are suffi-
cient for (2) and in turn that they guarantee the expected behavior of the
pressure equation for all considered choices of primary unknowns.
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3.1. derivation of the pressure equation

Here we derive (16). We multiply each of (9) for M =W,O by Bm with m=
m(M) and manipulate terms to get

∂

∂t
(φSm)+φSm

(−1
Bm

∂Bm

∂t

)

(18)

=Bm

(
−∇ · �UM +qM

)
, M =W,O, m=m(M).

For M = G we multiply (9) by Bg from which we subtract (9) written for
M =O multiplied by BgRs, and we get

∂

∂t
(φSg)+φSg

(−1
Bg

∂Bg

∂t

)

+φ

(
SoBg

Bso

∂Rs

∂t

)

(19)

=Bg

(
−∇ · �UG +qG

)
−BgRs

(
−∇ · �UO +qO

)
.

Now we exploit (4) to eliminate the term
∑

m
∂
∂t

(φSm)=0; as a result, (16)
with appropriately defined c̄t, λ̄t, q̄t is derived. We consider separately the
unsaturated and saturated cases.

Unsaturated case. Here Sg = 0; we add (18) for M = W,O, substitute
∂Bm/∂t =B ′

m(∂Pm/∂P )(∂P/∂t), and use the definition of phase compress-
ibilities. We define

c̄t|Sg=0 :=
∑

m

Sm

(

−B ′
m

Bm

)
∂Pm

∂P
=

∑

m

Smcm
∂Pm

∂P
, (20)

λ̄t :=
∑

m

λm
∂Pm

∂P
, (21)

q̄t :=
∑

M

qMBm − cm∇Pm · (λmK∇Pm), m=m(M), (22)

to get the desired pressure equation (16).

Saturated case. Here Sg > 0; we add both of (18) and (19), use Bo =
Bso,Ro =Rs to get

φSw

(−1
Bw

∂Bw

∂t

)

+φSo

(−1
Bso

∂Bo

∂t
+ Bg

Bso

∂Rs

∂t

)

+φSg

(−1
Bg

∂Bg

∂t

)

=−Bw

(
∇ · �UW

)
− (Bso −BgRs)

(
∇ · �UO

)
−Bg

(
∇ · �UG

)

+BwqW + (Bso −BgRs)qO +BgqG

Now substitute

∂Bm

∂t
=B ′

m
∂Pm

∂P

∂P

∂t
,
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use Rs =Rs(Po) and define

c̄t|Sg>0 :=− Sw

Bw
B ′

w
∂Pw

∂P
− So

Bso
(B ′

so −BgR
′
s)

∂Po

∂P
− Sg

Bg
B ′

g
∂Pg

∂P
. (23)

Equivalently, we have

c̄t|Sg>0 =−NWB ′
w

∂Pw

∂P
−NO(B ′

so −BgR
′
s)

∂Po

∂P
− (NG −NORs)B

′
g
∂Pg

∂P
.

Also, λ̄t can be defined in a manner analogous to (21).
If P is the common reservoir pressure with no capillary effects included,

then ∂Pm/∂P = 1 for any phase m and (23) reduces to the expressions in
(Watts, 1986; Coats, 1999). In that case, by (10) and (14), cw � 0, cg � 0
and we see that for c̄t|Sg>0,P c

ow≡0≡P c
go

� 0 it is sufficient and necessary to
assume (A2)–(A3) (Coats, 1999).

If capillary pressure effects are not ignored, then one needs to make
explicit the terms ∂Pm/∂P . These depend on the choice of P in ϒ. As
shown below, in general, (2) follows from (A1) to (A4).

3.2. total compressibility in unsaturated case

Let NG � 0 be given with Ro � Rs, so that Sg =0. The appropriate defini-
tion of c̄t follows from (20) where we select ϒ and compute ∂Pm/∂P . For
instance, if ϒ = (Pw,NO,NG), that is, P =Pw then we calculate ∂Po/∂Pw =
1 + P c′

ow∂Sw/∂Pw from (7) and obtain ∂Sw/∂Pw by implicit differentiation
from Sw = 1 − NOBo(Pw + P c

ow(Sw)) which follows from the definition of
NO and from (4). After some manipulations we get an expression for c̄t =
Swcw +NO(−B ′

o)1/(1+NOB ′
oP

c′
ow). In consequence, for c̄t � 0 (or for (2)) it

is sufficient to have (10) and in view of (A1) to require also that B ′
o � 0;

the latter is consistent with requirement that the unsaturated oleic phase
behaves “like a liquid” (see Remark 1). The expression for λ̄t and analysis
of when λ̄t >0 follow from similar calculations and will be omitted.

For other choices of primary unknowns, calculations and conditions
that guarantee c̄t � 0, λ̄t >0 are similar. Some such calculations for all pos-

Table II. Definitions of c̄t, λ̄t for various choices of ϒ

ϒ ∂Sw
∂P

∂Pm′
∂P

c̄t λ̄t

(Po,NO) + � 1 Swcw(1− coSoP
c′
ow)+Soco λw(1− coSoP

c′
ow)+λo

(Pw,NO) + (0,1] Swcw +Soco
1

(1−coSoP c′
ow)

λw +λo
1

(1−coSoP c′
ow)

(Pw,NW ) − � 1 Swcw +Soco(1− cwSwP c′
ow) λw +λo(1− cwSwP c′

ow)

(Po,NW ) − (0,1] Swcw
1

(1−cwSwP c′
ow)

+Soco λw
1

(1−cwSwP c′
ow)

+λo

Phase m′ is the phase “other” than phase m for which Pm is included in ϒ.
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sible choices of ϒ when NG = 0 (dead-oil case) are given in Table II. We
see that (A1) and (A2) are necessary and sufficient to ensure (2) that is,
that the pressure equation is parabolic–elliptic. We note in passing that the
same results can be obtained when P is a global or pseudo-pressure (not
shown here). Finally, while we have demonstrated that the sign of c̄tλ̄

−1
t as

well as the qualitative character of (17) are independent of the choice of
P in ϒ, we remark that the magnitude of c̄tλ̄

−1
t is strongly dependent on

the selection of ϒ; the latter fact is significant for efficiency of associated
iterative solvers but will not be pursued further.

3.3. total compressibility in saturated case

Let c̄t be defined as in (23) and ϒ = (P,NO,NG) with P equal to Po or Pw.
By implicit differentiation applied to

Sg = [NG −NORs(Po)]Bg(Po +Pgo
c(1−Sg)) (24)

we get

∂Sg

∂P
=T

∂Po

∂P
, (25)

where T := (a −NOBgR
′
s)/(1+aP c

go
′) with a := [NG −NORs]B ′

g. By (8) and
(25)

∂Pg

∂P
= ∂Po

∂P
−P c

go
′ ∂Sg

∂P
= ∂Po

∂P

[
1−P c

go
′
T

]
. (26)

Since So =NOBso(Po) from Table I, we have ∂So/∂P =NOBso
′∂Po/∂P . Sub-

stitute these in (4) differentiated with respect to Pw to get

0= ∂Sw

∂P
+ ∂So

∂P
+ ∂Sg

∂P
= ∂Sw

∂P
+ ∂Po

∂P
T1, (27)

where T1 :=NoB
′
so +T . It follows that

∂Sw

∂P
=−T1

∂Po

∂P
. (28)

It is immediate that (14), (13), (A1) imply a � 0 and T � 0.
The remaining terms in c̄t by (25) can be written as

−NO
[
B ′

so −BgR
′
s

] ∂Po

∂P
− [NG −NORs]B ′

g
∂Pg

∂P

= ∂Po

∂P

[
−NO

[
B ′

so −BgR
′
s

]−a
[
1−P c

go
′
T

]]
=−∂Po

∂P
T1.
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This can be seen, after we manipulate terms, as

−NO
[
B ′

so −BgR
′
s

]−a
[
1−P c

go
′
T

]

=
−NO

[
B ′

so −BgR
′
s

]−a
[
1+NOP c

go
′B ′

so

]

1+P c
go

′a
=−T1.

It is clear then that in order for c̄t � 0 for any combination of phase
saturations, we must have −∂Po/∂PT1 � 0. Hence, in addition to (A3)
some growth condition on P c

go
′ which yields T1 � 0 must be imposed. One

can show that T1 � 0 provided (A3), (A4) and (A1), (A2) hold.
In order to resolve the remaining relationships in c̄t we make a choice

of P as either P =Po or P =Pw. In both cases (A1)–(A4) imply (2).
Case ϒ = (Po,NO,NG). Here we first calculate ∂Pm/∂Po for m = w,g.

Obviously ∂Po/∂Po = 1. From (7) and (28) we find that ∂Pw/∂Po = 1 +
P c

ow
′T1 and from (25) we have ∂Pg/∂Po =1−P c

go
′T ... Manipulating terms we

get c̄t = −NWB ′
w

[
1+P c

ow
′T1

] + T1 that is, c̄t � 0 provided (A3), (A4) hold.
We also have

λ̄t :=λw
∂Pw

∂Po
+λo +λg

∂Pg

∂Po
=λw

[

1−P c
ow

′ ∂Sw

∂Po

]

+λo +λg

[

1−P c
go

′ ∂Sg

∂Po

]

.

and see λ̄t >0 from (25) provided (A1)–(A4) hold.
Case ϒ = (Pw,NO,NG). Here by (7) we have ∂Po/∂Pw =1+P c

ow
′∂Sw/∂Pw

and resolving (28) we get ∂Sw/∂Pw = −T1/1+P c
ow

′T1, and ∂Po/∂Pw = 1 +
P c

ow
′∂Sw/∂Pw = 1/1+P c

ow
′T1. Rewriting (23) and eliminating terms we get

c̄t = −NWB ′
w − T1(∂Po/∂Pw) = −NWB ′

w − T1/(1+P c
ow

′T1). By (A1) we see
that 1 � ∂Po/∂Pw � 0; hence, c̄t � 0.

We also obtain similarly as above

λ̄t :=λw +λo
∂Po

∂Pw
+λg

∂Pg

∂Pw
=λw +λo

∂Po

∂Pw
+λg

[
∂Po

∂Pw
−P c

go
′
T

∂Po

∂Pw

]

>0

These calculations end the proof of the following proposition:

PROPOSITION 1. In both unsaturated and saturated conditions the assump-
tions (A1)–(A4) guarantee (2) regardless of the choice of ϒ.

4. Resolution of Local Non-linearities

Consider the Newton step (15) and evaluation of F n,DF n, given ϒn. This
requires that we find the water saturation values Sn

w; it turns out that the
values of unknowns other than those in {ϒ, Sw} and, hence, of F ,DF ,
can then be computed explicitly. However, ϒn �→Sn

w is itself in general not
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Figure 1. Left: behavior of f (ϒ;S) from case studies: (A) (Killough, 1995), (B) PVT data
as in case (A) and capillary pressures as in Coats et al. (1995), and (C) PVT data typical
for Prudhoe Bay (Minkoff et al., 2003) and very small capillary pressures. In each case
ϒ is selected so that S∗(ϒ)∈AS exists, see plot of Nph(ϒ;S) in the middle. Notice that
the root S of f (ϒ;S) = 0 in case (A) is the root of f2(S) = 0 and in cases (B), (C) is
the root of f3(S)= 0. Right: solution Sw : f (ϒ;Sw)= 0 found for various physical values
of ϒ = (Pw,NO,NG)∈Aϒ (Case A).

explicit. It is given via the local problem

f (ϒ;Sw)=0 Sw ∈AS. (29)

which must be solved numerically. Note that (29) must be solved for each
spatial discretization point, at each time step, and for each Newtonian iter-
ation n. This looks like a formidable additional computational burden.

Recall that a similar need to resolve local non-linearities associated with
phase behavior and local equilibria exists in full EOS formulations for a
compositional model, or, more generally, in chemical reaction modules. In
that context the solvers for local implicit problems such as (29) are called
flash solvers; these are typically multidimensional non-differentiable optimi-
zation algorithms and because of their complexity, capillary pressures are
not taken into account. It is not practical to use flash solvers for (29) (see
Lu et al., 2001).

Next, consider alternatives to solving (29). These include time-lagging or
iteration-lagging of Sw, that is, using some S̃w from a previous time step
or iteration. Another possibility is to use some explicit approximation Ŝn

w
to Sn

w, for example, by ignoring the capillary pressure. Such alternatives
allow to bypass a potentially computationally expensive step of solving (29)
numerically. Unfortunately, from our experience, it appears that they may
lead to either a subsequent failure of Newtonian iteration, or to an exces-
sive number of Newton steps required to solve (1), and as a result may
cause costly iteration failures and time-step cutting. Such step or iteration
failures are hard to deal with in coupled models.

The construction of a solver for (29) is complicated due to the singu-
lar character of f (ϒ; ·); the latter is likely the very cause of the failure of
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lagging. The plots of f (ϒ; ·) in Figure 1 illustrate the difficulties. These
are overcome through a careful analysis which guides the construction of a
robust and fast solver for (29). Additionally, this analysis provides insight
into which values of ϒ can be accepted as physically meaningful guesses
which we associate with the requirement that the phase saturations com-
puted from ϒ satisfy (5). All physical guesses ϒ are denoted as members
of a set Aϒ .

Finding Aϒ is equivalent to deriving realistic bounds on the amount of
components which can fit within the available pore space. Naively, since the
phase compressibilities are positive, one should be able to fit any amount of
fluids within a given volume, if only the pressure is high enough. However,
infinite pressures are hardly the reality of reservoir exploration; realistically
Pm,min � Pm � Pm,max. Also, (7) and (8) must hold.

Precise characterization of when ϒ ∈Aϒ is implicit; in what follows we
find some useful explicit approximations Asuff

ϒ ⊆Aϒ ⊆Anec
ϒ which are easy

to compute; these are extremely useful to determine whether the current
Newton guess in (15), or an initial or boundary condition applied to (1),
should be rejected or accepted.

4.1. construction of f (ϒ; ·). physical values of ϒ

We consider ϒ = (Pw,NO,NG) and ϒ = (Po,NO,NG) and discuss the map
f (ϒ, Sw) as well as conditions verifying whether ϒ is physical, that is,
whether ϒ ∈Aϒ .

EXAMPLE 1. Let ϒ = (Po,NO,NG) be given, with NG =0 (dead-oil case).
From (4) explicitly Sw =1−NOBdo(Po). To ensure that Sw and ϒ are phys-
ical we check (5). For this we must have NO � 0, NOBdo(Po) < 1 − Sw,r .

A sufficient condition by (11) is NO <(1−Sw,r)/(Bdo(Po,min)) � 1 − Sw,r; a
necessary one is NO < (1−Sw,r)/Bdo(Po,max). These two conditions define
Asuff

ϒ ,Anec
ϒ , respectively.

Now consider ϒ = (Pw,NO,NG) with NG = 0. The equation 1 − NOBdo

(Pw + P c
ow(Sw)) − Sw = 0 is implicit in Sw. For ϒ to be physical it is

sufficient that NO < (1−Sw,r)/Bdo(Pw +P c
ow(1)); it is necessary that NO <

(1−Sw,r)/Bdo(∞), as otherwise (5) does not hold.

EXAMPLE 2. Here let ϒ = (Po, NO, NG) and NG >0. To find saturations,
we first compute the value of R̄s(Po) and compare it to the ratio NG/NO.
Following Table I we find whether Sg =0 (unsaturated case) or Sg >0 (sat-
urated case).

In the unsaturated case solution of (29) is explicit: we compute So, then
Sw from (4) with Sg = 0. In the saturated case we first solve for Sg the
implicit relationship (24). Once Sg is known, we compute Sw from (4).
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Finding Sg numerically is just one step of implicit calculations necessary in
Example 3; as such, it is discussed in Section 4.3.

To find Asuff
ϒ we proceed similarly as in Example 1 and get the sufficient

condition NO <(1−Sw,r)/Bo(Po,min). Similarly, we get the necessary condi-
tion NO <(1−Sw,r)/Bo(Po,max).

In the saturated conditions we bound both NO and NG from (5)
NOBso + [NG −NORs]Bg < 1 − Sw,r. Here Bso and Rs are explicitly com-
puted from Po but the remaining parts are not explicit because Bg =Bg(Sg).
However, we obtain explicit conditions for ϒ ∈ Asuff

ϒ from (12), (14) as
NO <(1−Sw,r)/Bso(Po,max) and with (A1) we impose NORs <NG <NORs +
(1−Sw,r)/Bg(Po). A pair of necessary conditions is as follows NO < 1 −
Sw,r, NORs < NG < NORs + (1−Sw,r)/Bg(Pg,max). or NORs < NG = NORs <

(1−Sw,r)/Bg(∞). Finally, a useful sufficient and necessary condition on NO

in saturated conditions is that 0<NO <(1−Sw,r)/Bso(Po).

EXAMPLE 3. Assume ϒ = (Pw,NO,NG) is known with NG >0. Here it is
not possible to know if Sg =0 explicitly. This difficulty is one of the reasons
why ϒ = (Po,NO,NG) may be preferred over ϒ = (Pw,NO,NG). We discuss
this situation in Section 4.2; in Section 4.3 we show how these difficulties
can be overcome by an efficient numerical solution of (29).

Assume that somehow we do know whether Sg = 0 or not. If Sg = 0, then
we find Sw as a fixed point of Sw =1−NOBo(Pw +P c

ow(Sw)) and value of So

follows from (4) with Sg =0. If Sg >0, then from (4), (7), (8) we solve for Sw

Sw =1−NOBo(Pw +P c
ow(Sw))− [

NG −NORs
(
Pw +P c

ow(Sw)
)]

×Bg

(
Po +P c

go

(
Sw +NOBo

(
Pw +P c

ow (Sw)
)))

. (30)

Then we get Po, So, Sg by (7) and (4).
In the unsaturated case, we find that ϒ ∈ Asuff

ϒ if only NO < (1−Sw,r)/

Bo(Pw +Pc(1)). Also, we must have NO <(1−Sw,r)/Bo(∞) for ϒ ∈Anec
ϒ .

In the saturated case, we derive that ϒ ∈ Asuff
ϒ if NO < (1−Sw,r/

Bso)(∞), NG <NORs(Pw +P c
ow(1))+ (1−Sw,r)/Bg(Pw +P c

ow(1)); also that we
must have NO <1−Sw,r, NORs(Pw +P c

ow(1))<NG, for ϒ ∈Anec
ϒ .

Now we put together the above examples; we emphasize the “harder”
case ϒ = (Pw,NO,NG) from Example 3. We define f in (29) as

f (ϒ;S) :=
{

f2(ϒ;S), Nph(ϒ;S)=2,

f3(ϒ;S), Nph(ϒ;S)=3,
(31)

f2(ϒ;S) :=1−S −NOBo(P̃o(S)), (32)
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f3(ϒ;S) :=1−S −NOBso(P̃o(S)) (33)

−
[
NG −NORs(P̃o(S))

]
Bg

(
P̃g(S)

)
, (34)

where P̃g(S) := P̃g(ϒ;S) = P̃o(S) + P c
go(S + NOBso(P̃o(S))); P̃o(S) :=

P̃o(ϒ;S)=Pw +P c
ow(S), and

Nph(ϒ;S) :=
{

2, NG � NORs(P̃o(ϒ;S)),

3, NG >NORs(P̃o(ϒ;S)).
(35)

As is apparent from examples in Figure 1, the function f (ϒ;S) is decreas-
ing and equals f2(ϒ;S) close to Sw,r where its derivative has a pole. These
general properties of f are proven below; they help (i) to see that (29) has
a unique solution as well as (ii) to find an appropriate numerical solver for
(29) which can handle the special character of f .

4.2. analysis of the local map ϒ �→Sw

Here we prove the properties of f defined by (31) and establish that the
local problem (29) has a unique solution provided that ϒ is physical and
that the data satisfy (A1)–(A4); these are the same conditions as those
which guarantee (2). The significance of these technical results is that the
choice of ϒ = (Pw,NO,NG) in the implicit black-oil model with internally
consistent data is sound.

LEMMA 1. Let (A1), (A2) hold. Then (i) Nph(ϒ;S) is nondecreasing in S.
In addition, (ii) it satisfies Nph(ϒ;Sw,r

+)=2.

Proof. We need only to consider Nph across the “phase change” point
S∗(ϒ) defined by

S∗(ϒ) : NG =NORs(P̃o(ϒ;S∗)), S∗ ∈AS, (36)

if it exists. Note that S∗(ϒ) does not exist if NG < NORs(Pw + P c
ow(1)) in

which case the value of P ∗(NG/NO) − Pw is outside the range of P c
ow. If

S∗ does not exist, then we have Nph(ϒ;S)= 2,∀S ∈AS. However, if S∗(ϒ)

exists, then by (A1) P̃o(ϒ;S) is nonincreasing as a function of S and,
by (13), so is Rs(P̃o(S)). Fix ϒ ∈ Aϒ and S∗ = S∗(ϒ). If S < S∗, then
Rs(P̃o(S)) � Rs(P̃o(S

∗)) hence Nph(S)= 2 =Nph(S
∗). On the other hand, if

S > S∗, we have Rs(P̃o(S)) � Rs(P̃o(S
∗)), hence Nph(S) = 3 > 2 = Nph(S

∗).
This completes the proof of (i).

To show (ii), we see from (A1) and (13) that for a given NG,NO, we can
always find a small enough S̃ > Sw,r and a large enough P̃o(S̃), Rs(P̃o(S̃))

so that Nph((Pw,NO,NG); S̃)=2.
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LEMMA 2. Let (A1), (A2) hold. Then (i) f : (IR+
0 )3 ×AS → IR is uniformly

continuous. Also, (ii) f is differentiable except possibly at S∗(ϒ) and (iii) if
limP→∞ B ′

o(P )<0, then f ′ := ∂f /∂S is unbounded as S →S+
w,r .

Proof. By Lemma 1 we rewrite f (ϒ;S) as

f (ϒ;S) :=
⎧
⎨

⎩

f2(ϒ;S), S∗(ϒ) �∈AS,{
f2(ϒ;S), S � S∗(ϒ)

f3(ϒ;S), S >S∗(ϒ)
, S∗(ϒ)∈AS,

To show continuity of f we see that if S∗(ϒ) exists then f2(S
∗)=f3(S

∗). To
show uniform continuity we extend f (ϒ; ·) from AS to Sw,r; by Lemma 1,
we see limS→Sw,r f (S) = limS→Sw,r f2(ϒ;S) = 1 − Sw,r − NOBo(∞) which is
finite. That is, we have shown (i).

To show (ii), by (A1), (A2) we see that each of f2, f3 is differentiable.
We compute

∂f2

∂S
= ∂

∂S

[
1−NO

[
Bo(P̃o(S))

]
−S

]
=−1−NOP c′

owB ′
o, (37)

∂f3

∂S
=−1−No

[
B ′

so −BgR
′
so

]
P c

ow
′ −B ′

g [NG −NORs]
∂P̃g

∂S
, (38)

with ∂P̃g/∂S = P c
ow

′[1 + P c′
goNoB

′
so] + P c′

go. We see that in general f ′
2(S

∗) �=
f ′

3(S
∗) hence f is not differentiable at S∗ which completes (ii).

By Lemma 1 we see that close to Sw,r, f = f2 and we have ∂f2/∂S =
−1−NOB ′

oP
c
ow

′(S)→−∞, as S →Sw,r which shows (iii).

LEMMA 3. Let (A1), (A2) hold. Then f (ϒ, :) has different signs at two
endpoints of AS, i.e. it is bracketed on AS. Specifically, (i) f (ϒ;1) � 0 for
any ϒ ∈ (IR+

0 )3. In addition, for (ii) f (ϒ;S+
w,r) � 0 to be satisfied, it is suffi-

cient that ϒ ∈Asuff
ϒ . For (ii) it is also necessary, respectively, that ϒ ∈Anec

ϒ .
These sets are defined

Asuff
ϒ := IR+

0 ×
{

NO : 0 � NO <
1−Sw,r

Bo(P̃o(1))

}

× IR+
0 , (39)

Anec
ϒ := IR+

0 ×
{

NO : 0 � NO � 1−Sw,r

Bo(∞)

}

× IR+
0 . (40)

Proof. Part (i) is a consequence of NO � 0 and f (ϒ;1) = −C with
C = NOBso(P̃o(1)) + [NG − NORs(P̃o(1))]Bg, if Nph(ϒ;1) = 3, and C =
NOBo(P̃o(1)), if Nph(ϒ;1)=2. We note f (ϒ;1)=0 only if NO =NG =0 and
S =1 is the only solution to (29).

To show (ii) we see that as S →S+
w,r , P̃o(S)→∞, Bo(P̃o(S))→Bmin

o and
f (S+

w,r)=f2(S
+
w,r)= 1 −Sw,r −NOBmin

o . Thus, (ii) is equivalent to NOBmin
o <

1−Sw,r. To complete the proof, see the discussion in Examples 1–3.
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LEMMA 4. Let (A1), (A2) hold. Then (i) f2 is strictly decreasing. In addi-
tion, let S∗(ϒ) exist and let (A3) hold everywhere and (A4) hold for S �
S∗(ϒ). Then (ii) f3 is strictly decreasing and, in consequence, f is strictly
decreasing for all S ∈AS.

Proof. Part (i) follows directly from (A1), (A2) and Remark 1.
To show (ii), we investigate the terms in (38) to see that by (A1), (A3),

the term
[
B ′

so −BgR
′
so

]
P c′

ow � 0, hence the second term in (38) is nonpositive.
Next, we consider the term ∂P̃g/∂S in (38). We will have shown (ii) if we

ensure that the first term in ∂P̃g

∂S
is nonpositive; by P c′

ow � 0, this follows if
we bound |P c′

go(S)| for S ∈ [S∗ +NOBso(P̃o(S
∗)),1], which follows from (A4).

Finally combining this with (14) we see ∂f3/∂S � −1<0 which proves (ii).

Combining Lemmas 2–4 we get the following result, a direct application
of the Intermediate Value Theorem and monotonicity of f . We remark that
unique solvability of (29) follows from the same conditions as those which
guarantee c̄t � 0.

PROPOSITION 2. Let (A1)–(A4) be satisfied. If ϒ ∈Asuff
ϒ , then the solu-

tion to (29) exists and is unique. If, on the other hand, ϒ ∈ Aϒ\Anec
ϒ , then

the solution to (29) does not exist.

It is worthwhile to note that if the solution to (29) is found in AS (that
is, it is physical), then it can be shown that the other saturations So, Sg sat-
isfy (5).

4.3. local numerical solver

Now we show how to construct a robust and efficient solver for the local
problem (29) based on the qualititive information about f found above. We
also relate our practical numerical experience.

As a direct result of this section, one sees that there is no significant
advantage to using ϒ = (Po,NO,NG) over ϒ = (Pw,NO,NG) as primary
unknowns. As an indirect result, our construction can serve as a template
for similar situations where analysis of the problem reveals its natural phys-
ical structure in spite of that apparent complexity of an implicit equation
such as (29) appears prohibitive.

Consider a numerical method for solving (29); this requires that we
evaluate f and possibly also f ′ at the current guess S. The fastest root-
solving methods based on Newton’s method converge (quadratically) if f ′

exists and is smooth and bounded away from 0. However, f ′ is unbounded
close to Sw,r and f is not defined outside AS. (f is also not differentiable
at S∗ but this plays a small role since f remains monotone). Hence, the
applicable method(s) must keep the subsequent guesses bracketed in AS;
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in such algorithms derived from the falsi rule, the subsequent iterates are
given by the Newton’ step unless they fall out of the established bracket in
which case the method takes a bisection-like step. The associated conver-
gence order is superlinear (Press et al., 1992).

4.3.1. Initial Bracket

First, consider Aβ

S := [Sβ,1] ⊂ AS where Sβ := Sw,r(1 + β) < 1, β > 0. Since
f ′ is bounded on Aβ

S , one is tempted to solve, instead of (29), the prob-
lem f (ϒ;Sw)=0, Sw ∈Aβ

S . Its solution may however fail to exist, if β is too
large. In our experience β ≈ 10−3 led to failure but β ≈ 10−6 proved to be
successful.

4.3.2. Stopping Criteria

The iterations for (1) and (29) stop when, respectively, ‖ F (ϒn) ‖F � ηF ,

and |f (ϒn;Sn
w)| � ξ. with ηF and ξ predefined convergence tolerances for

the global and local problem. In general, ηF represents a combination of
both absolute and relative tolerances; it depends on how many significant
digits in the mass balance need to be preserved which is expressed by a
problem-independent tolerance η (Aziz and Settari, 1979); ηF can vary in
time, and is problem dependent.

The value of ξ controls how exactly (29) is solved. A small ξ results
in more accurate values of Jacobian DF and residual F , however, it may
require many local iterations and may be unnecessary if η is large; a large
ξ may cause lack of accuracy in evaluation of DF or F and consequently
difficulties in subsequent global Newtonian iterations (1). Our experiments
show that ξ should be two or three orders of magnitude smaller than η;
see also general discussion in Kelley (1995).

4.3.3. Fixed-Point Improvement of Initial Bracket

Now we discuss an enhancement of a numerical solver which is useful
when f ≡f2. This can accelerate the numerical solution of (29).

First we determine explicitely if f ≡ f2 on AS. Consider the follow-
ing decomposition of (IR+

0 )3 depending on the values of Pw and NO as
(IR+

0 )3 = Adead ∪ Aunsat ∪ Asat where Adead = (IR+
0 )2 × {0}, Aunsat = (IR+

0 )2 ×
{NG ∈ IR+

0 : 0 < NG � NORs(P̃o(1))}, and where Asat is their complement.
Note that f (ϒ;S)|Adead∪Aunsat =f2(ϒ;S).

Next we find an improved initial guess for (29) away from the singular-
ity at Sw,r. We define S̃w(ϒ;S) :=S +f (ϒ;S). It is clear that Sw is a solu-
tion to (29) iff it is a fixed point of

S̃w(ϒ;Sw)=Sw. (41)
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From the proof of Lemma 2 we see that as S → S+
w,r, P̃o(S) → ∞ and

S̃w(S+
w,r) = 1 − NOBmin

o . Consider ϒ ∈ Adead, S ∈ AS. From ∂S̃w(S)/∂S =
∂f (ϒ;S)/∂S +1 � 0, we get S̃w(S+

w,r)> S̃w(S) � S̃w(1). Therefore, a solution
Sw must satisfy S̃w(Sw,r) > Sw = S̃w(Sw) � S̃w(1) = 1 − NOBdo(P̃o(1)). This
lower bound can be used to find the left bracket Sw,min = max{S̃w(1), Sw,r}
for Sw which, if only NO <(1−Sw,r)/Bdo(P̃o(1)), is away from singularity.
We can further iterate on this argument since now Sw,min � Sw therefore
Sw = S̃w(Sw) � S̃w(Sw.min) which allows us to find the right bracket Sw,max =
min{S̃w(Sw,min),1} away from S =1.

It is not difficult to see that the above procedure is similar to Picard’s
iteration Sk+1 = S̃w(Sk), k = 1,2, . . . with the initial guess S0 = 1. In gen-
eral, its convergence is not guaranteed and thus it could not replace the
solver. However, it can substantially reduce the size of the initial bracket
when ϒ ∈Adead

ϒ ∪Aunsat
ϒ and in some cases also when ϒ ∈Asat

ϒ . Our compu-
tational experiments showed that the bracketing procedure can reduce the
number of iterations of the local solver to just a few (two or three) depend-
ing on the case.

4.3.4. Summary: Comparison of ϒ = (Po,NO,NG) and ϒ = (Pw,NO,NG)

As reported in Examples 2 and 3, the apparent difficulty associated with
chosing Pw in ϒ is that it leads to a local nonlinear problem which can
be computationally expensive. On the other hand, if Po is included in ϒ,
then an implicit relationship arises only in three-phase conditions. In other
words, in the map ϒ �→ Sw, ϒ ∈ Adead

ϒ ∪ Aunsat
ϒ is explicit when Po is used

but is implicit when Pw is used.
It is natural therefore to compare the efficiency of the local solver of

(29) to the cost of its explicit evaluation when ϒ ∈ Adead
ϒ ∪ Aunsat

ϒ . Thanks
to the fixed-point bracketing method which works well if ϒ ∈Adead

ϒ ∪Aunsat
ϒ ,

(29) can be solved in just a few iterations. Since the explicit calculation can
be considered as an equivalent of one iteration, no significant disadvantage
in using ϒ = (Pw,NO,NG) over ϒ = (Po,NO,NG) exists, at least, as con-
cerns the resolution of the local map (29). More comprehensive compari-
son is outside our scope.
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