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Abstract. In this paper we show that multiphysics couplings for the simulation
of multiphase flow can be realized without loss of accuracy and with decreased
computational complexity when compared to single model codes. Specifically, we
address the couplings of oil-gas-water models of flow in porous media. An interface
is introduced between three-phase and two-phase regions and the problem is solved
by combining local simpler solutions coupled with conditions across the interface.
Here we discuss issues of matching of variables across the interface and show com-
putational results which demonstrate efficiency and accuracy of the coupling.

1 Introduction

In geosciences, various applications have relied on multiphysics couplings
which connect models or algorithms in adjacent or in overlapping compu-
tational domains. As examples of the latter, multiphase flow models and the
geomechanics, or reactive transport models have been coupled together [5,9].

In this paper we address couplings of oil-gas-water models of flow in adja-
cent domains in porous media. Our method falls into the category of hetero-
geneous domain decomposition methods, which include, e.g., fluid-structure
interactions. In contrast to the latter, in our algorithm, the interface across
which the coupling of models occurs, is not a physical interface but rather it
is one introduced for computational reasons. Specifically, it is fairly common
that in a reservoir 2 C R® some phases or some components are absent in
large parts of {2 over large time intervals I = (0,T'). For example, due to
gravitational separation, free gas (gas phase) typically collects at the top of
reservoir. Traditional algorithms simulate the flow by applying a model that
can handle a superset of all phases and components. In our multiphysics ap-
proach we apply locally simpler models wherever appropriate. For the global
solution, coupling conditions are defined. This approach allows the reduction
of computational time.

In what follows, we consider an isothermal, three-phase black-o0il model,
and a simple two-phase oil-water model [6]. Their coupling was first defined
and discussed in [8,3]. Similar issues for the coupling of the oil-water and
single-phase (water) models were discussed in [7]. For details on discretiza-
tion using expanded mixed finite element methods and mortar spaces, fully
implicit solver issues, as well as multiscale features see [1,10] and refs. therein.
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Below we briefly formulate the models, discuss the coupling, and present
computational results which were obtained using the multiphase flow and
transport framework IPARS, see [11] and refs. therein. We would like to
acknowledge Qin Lu, Mary F. Wheeler and John A. Wheeler for discussions
related to this work.

2 Multiphase flow models

Here we consider three components M = W, O, G: water, oil (or an ensemble
of heavy hydrocarbons), and gas (or an ensemble of light hydrocarbons) [4],
respectively, in reservoir of porosity ¢(z) and permeability K (x), with gravity
g, and depth D(z), z € 2. We use the mass conservation equation

2 (6Nw) +V Uy =qu, z€ 2, (1)

where Nj; denotes the component’s concentration, and Uy, qar denote its
flux and source(s), respectively. Equation (1) is a special case of general
multicomponent / multiphase equations given in [6,2].

These three components can be present in one or more of the three fluid
phases denoted by subscript m = w,0,g (water, oleic, gaseous). The dis-
tribution between phases is described using 7y, which denotes the mass
fraction of component M in phase m. Phase saturations, relative permeabil-
ities, pressures, viscosities, densities, and reference densities, are denoted by
Sy Ems s Py bm s Omy Omr, respectively. We say that a phase m is absent if
Sm = 0, and we refer to [7] for discussion of residual conditions and phases
that are present but immobile.

We use the multiphase extension of Darcy’s law for the momentum equa-
tion of phase m which defines the volumetric phase velocity V,,:

Vo = -EEm (9P, — 0ngVD). @

P

The saturations must satisfy the constraint: Sy + S, + S, = 1, and capillary
pressure data is given for the differences P, — P, and P, — P,. The model
is complete when concentrations, fluxes and densities are defined. In most
cases, Nop = D, M SmOm /0«73 Unt = Y, tmm V m0Om/0«r where x is a
specially chosen phase. However, definitions, units, and constraints on the
distribution of components between phases, vary between models. Here we
are interested in a black-oil, two-phase and single-phase models.

Black-oil model. Here we assume that nw, = 1,mgy, = 1 and that
Noo+Mce = 1,M00 > 0. We use formation volume factors B, (Py) = 0mr/0m
for m = w, g. We also define B, = 9,r/1000,- The amount of G in o at a
given pressure is represented using the gas/oil ratio R, = 1Go0or/1000gr
which is less than or equal to the saturated gas/oil ratio Rs,(P,) given as
reservoir data. We consider a phase change occuring in component G at bub-
ble pressure Psqt, at which R, = Rs,(Psat). At P, < Psy, part of the gas
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component enters gas phase, or vice-versa, if P, > Py, all gas component
dissolves in oil phase. The concentrations and mass fluxes are defined as
Ny = Sy /Bm, Upm = Vi / By, for those components M = W, O, which are
naturally associated with their phases m = w, 0. For gas component, we have
Ng =84/Bg+ SoRo/B, and Ug = V,R,/B, + V4, /B,.

To complete the formulation, we define the oil phase density which de-
pends on the pressure and on the amount of dissolved gas. Usually, reservoir
data is available [2,4] for the formation volume factor of oil i) without any
gas dissolved By, and ii) in saturated conditions Bs,. If P > Ps4¢, then g, =
(0or + Ro04r)/ Bo, where the compressibility of the oil-gas mixture is given as
B, = Bao + (Bso(Psat) — Bao(Psat))Ro/ Rso and we have here R, = Ng/No.
If P, < Psqt, then Sy > 0, R, = Rgo and 9, = (0or + Rs00gr)/ Bso-

Two-phase model. The popular, immiscible, two-phase oil-water model
can be seen as a subset of the black-oil model with no gas component present
(nGo = 0,m00 = 1) where obviously S, = 0,k, = 0. Oil and water are slightly
compressible: g, = gmrexp(cmPm) with constants c¢,,. Concentrations are
Ny = Smom/ 0mr for m = o,w and M = O, W, respectively.

Single-phase model. Here additionally we set S, = 1.

3 Interface coupling of oil-water model with black-oil
model

Consider ¢ € I and a decomposition of 2 = 2(t) U 23(t) defined as follows:
D2(t) = {x : S,(x;t) = 0}, 23(t) = 2\ 22(t). Note that at a given ¢, each
of 22(t),23(t) (but not both) may be empty if the pressure is low (high)
enough. Define the free boundary Iss(t) = 8022 (t) N 923(t) between the two-
and three-phase region. In general, it is difficult to trace Ih3(t) in numerical
computations.

Let {2}, be a union of the finite elements covering (2. For simplicity assume
2, = 2. Now consider the time-independent decomposition of 2, = 27 U2
where 27 C ;¢ 01 22(t). The actual definition of 27 is allowed to vary, see
below. For completeness, 25 = (2, \ 2. Define the interface I'?® = 802:N002;.

The whole idea of multiphysics coupling between the two-phase model and
the black-oil model is in applying each of these models, respectively, in .Q,ZL
and 23, coupled by interface conditions on I'?3. Note that 27 can be chosen
in any way that is convenient for modeling or computational purposes. In
particular, it is desirable for {27 to be as large as possible in order to save
computational time. Furthermore, we choose (27 so that I'?® has a convenient
geometry. In particular, when using mortar spaces [1] to resolve non-matching
grids over (27 and (23, it is advantageous for I'?® to have the most “straight”
pieces possible to allow for multiscale and adaptive approximations [10].

In analogy to the above, we can define 21(t) =: {z : Sy(z;t) = 1} and
v C Nieo,m) 2'(t). These single-phase regions are used in computational

examples shown below. Note that 22(t) D 2'(t), 27 D 02}.
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Coupling conditions. Here we use I' =: I'?®. Note that I" is “artificial”,
i.e., it does not follow any material boundaries. Therefore, we apply the same
conservation principles of momentum and mass on I' =: I'?3, as those ap-
plied across boundaries of finite elements. These are realized, respectively, by
matching of phase pressures P2 |r = P3|r,Vm, and by matching of compo-
nent mass fluxes. In consequence, from capillary pressure relationships, phase
saturations must match (unless rock types do not match, see [3]), and we have
to account properly for the existence of phases and components on each side
of I'. In particular, phase densities computed on I" from the side 22 must
match those from the side 25.

o > /
20) injection .
production
=%

Fig. 1. Left: permeability field and geometry. Right: oil concentration contours at
t = 0 and well locations indicate that £2%(t) D B1 U Ba. Gas saturation (not shown)
indicates that £2°(t) C B3

Consider z € I' and the amount of gas at z. Obviously, P,(z) < Ps.:(z).
During simulation, we assume that R,(z,t)|r ~ R,(t). This is reasonable if
the reservoir is not too thick: for a typical reservoir (100’ thick), the differ-
ence is around 1% and for a thick reservoir (300’ thick), it can reach 2%.
Furthermore, we assume that this ratio remains approximately constant in
time, i.e., R,(t)|r = R with R. known at initialization. Finally, we assume
that the oil phase in 27 contains gas component with a fixed gas/oil ratio
~ RI'. Consequently, we need to find ¢2, and ¢? on 27 such that over a
certain range of pressures (Puyin, Pmaz), € I,

(63, + RL03,)

P, Pin, P, .
Bo(Po) »Lo E( mins maz) (3)

oorexp(Pocy) = 05la2 ~ 03l gs =
Given RI',B,, 03 ., the parameters g,.,c, can be found, for example, by a
least squares procedure. Obviously, for R > 0, the quality of such a match
depends, in particular, on the size of (Ppin, Pmaz)- From (3) it follows that
the concentrations (and fluxes) computed on each side of the interface match
only if a conversion factor is applied. To see that, multiply (3) on I' by the
saturations SZ|r = S3|r to get

(63, + R 63,)

ég’l‘Nf = Sgégremp(POéo) ~ Sg Bo(Po)

= (o}, + R 0}, )N?.
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Similar matching is obtained for fluxes, using the fact that in two-phase
conditions, k2(S2)|r = k3(S2)|r.

4 Examples

Here we present simulation results illustrating the concepts discussed above.
The computational domain (2, = By U By U Bj is presented in Fig. 1. We use
the mortar approach to resolve nonmatching grids and an iterative solver on
I'. I' is a subset of the union of faces between B;, B2, B3. Simulations can
be performed either using a traditional approach !2,3; = (2, denoted by b,
or using the domain decomposition approach in several variants. The most
natural choice (and one which proves to be most efficient) is one in which we
assign 2} = By, (22 = B, and (2; = B; (we shall call it shb).

Now we discuss results in Fig, 2. First, we compare the solutions obtained
b with those obtained with shb. It turns out that their agreement is excellent,
regardless of how much gas is present in the reservoir. Next, we consider

,,,,,,,
e
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S o ° b bb hb shb

Fig. 2. Left: comparison of the oil production rates obtained with multiphysics
(symbols only) and with single model (dotted, solid and dashed lines, respectively).
From top to bottom: in block B1: unsaturated oil; saturated oil but no gas cap; gas
cap. Right: efficiency of multiphysics couplings

the computational efficiency of the multiphysics procedure. In addition to
scenarios discussed above, we consider scenario hb in which !2,% = B; U B>
with 23 = Bs, as well as two additional scenarios: i) bb which is like hb with
black-oil model functionally replacing two-phase model, and ii) hhb which
is like shb in which two-phase model functionally replaces the single-phase
model over Bj.

As expected, the time per iteration which corresponds to total subdomain
time decreases, as more simple models are used. However, the number of in-
terface iterations increases with the number of subdomains. Therefore, the
total time does not decrease monotonically, but multiphysics shb is faster
than traditional b simulation. In general, the efficiency of multiphysics de-
pends mainly on the size of subdomains associated with individual models
and on the number of iterations necessary to achieve a desired accuracy of
the coupling.

Finally, we study sensitivity to the matching of densities: Fig. 3 contains
plots of @3|r and of g%|r for two different intervals (Pin, Pmaz) used in
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the matching procedure. When this interval is small, the multiphysics results
match very well those obtained by traditional simulation. When the interval
is large, a large discrepancy due to the density modeling error may occur.

= = <= = = DO exact, black oil
DO APPROX, match in (1800-2200)
DO APPROX, match in (1000-3000)

dengity [stbicu:fi]

of production rate [stb/day]

= Oil phasg,

DO

pressire [psi] e " time

Fig. 3. Sensitivity to density matching. Left: density of oil (exact and approximated
using (3)). Right: corresponding well rates
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