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Abstract

Accurate prediction of reservoir production in structurally weak geologic areas requires both mechanical deformation and

fluid flow modeling. Loose staggered-in-time coupling of two independent flow and mechanics simulators captures much of the

complex physics at a substantially reduced cost. Two 3-D finite element simulators—Integrated Parallel Accurate Reservoir

Simulator (IPARS) for flow and JAS3D for mechanics—together model multiphase fluid flow in reservoir rocks undergoing

deformation ranging from linear elasticity to large, nonlinear inelastic compaction. The loose coupling algorithm uses a high-

level driver to call the flow simulator for a set of time steps with fixed reservoir properties. Pore pressures from flow are used as

loads for the geomechanics code in the determination of stresses, strains, and displacements. The mechanics-derived strain is

used to calculate changes to the reservoir parameters (porosity and permeability) for the next set of flow time steps. Mass is

conserved in the coupled code despite dynamically changing reservoir parameters via a modification to the Newton system for

the flow equations, and an approximate rock compressibility becomes a useful preconditioner to help with convergence of the

modified flow equations. Two numerical experiments illustrate the accuracy of the coupled code. The first example is a quarter-

five-spot waterflood undergoing poroelastic deformation, which is validated against a fully coupled simulator. Vertical

displacements at the well locations match to within 10%. Moreover, experimentation shows that 13 mechanics time steps (taken

over the course of 5 years of simulation time) were sufficient to achieve this result (a substantial cost savings over full coupling

in which both the mechanics and flow equations must be solved at each time step). The second numerical example is based on

real data from the Belridge Field in California, which illustrates one of the complex plastic constitutive relationships available in

the coupled code. The results mimic behavior which was observed in the field. The coupled code serves as a prototype for

loosely coupling together any two preexisting simulators modeling diverse physics. This technique produces a coupled code

relatively quickly and inexpensively and has the advantage of accurately modeling complex nonlinear phenomena often
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observed in a real field but difficult to capture with a fully coupled simulator. Further, the code has produced promising results

when used for time-lapse studies of compactible reservoirs.

Crown Copyright D 2003 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction example, pore pressures might be sent from the flow
To understand the response of reservoirs located in

structurally weak geologic formations, engineers must

use coupled flow simulation and mechanical defor-

mation modeling. While the majority of reservoirs are

located in stable rock formations that do not undergo

deformation, there are many reasons to investigate

coupled flow and geomechanics. Even over-pressur-

ized reservoirs located in stable environments may

undergo ‘‘settling’’ at the start of production. Coupled

flow and mechanics are necessary for predicting well

failures and guiding well placement and production.

Modeling of offshore reservoirs near salt bodies can

also be modeled effectively in this way.

There are three basic algorithms for multiphysics

simulation: full coupling, loose coupling, and one-

way coupling. To define a fully coupled simulator, a

single set of equations (generally a large system of

nonlinear coupled partial differential equations) incor-

porating all of the relevant physics must be derived.

As an example, the traditional porous flow equations

for a rigid matrix would be modified to include terms

for mechanical deformation. Full coupling is often the

preferred method for simulating multiple types of

physics simultaneously since it should theoretically

produce the most realistic results. Unfortunately,

deriving a fully coupled multiphase flow simulator

that models nonlinear, inelastic mechanical deforma-

tion is extremely difficult. Thus with fully coupled

models, one generally simplifies to single-phase flow

and even more commonly, simplifies the mechanics to

linear elasticity (Lewis and Sukirman, 1993a,b; Lewis

and Ghafouri, 1997; Osorio et al., 1999).

At the other end of the spectrum is one-way

coupling in which two essentially separate sets of

equations are solved independently over the same

total time interval. Periodically, output from one

simulator is passed as input to the other; however,

information is passed in only one direction. For
code to load the mechanics calculation of stresses,

strains, and displacements. No information would be

passed back from mechanics to flow, however. In

most practical applications, the two simulators are in

fact run independently. One can often gain valuable

insight into the physical situation from one-way

coupling, and it is clearly preferable (in situations

where mechanics is important) to fluid flow alone. A

very successful one-way coupling experiment was

performed to predict well failures in the Belridge

Field, California. This work included a 200-well fluid

flow simulation intended to help with prediction of

well failure rates in other parts of the field (Fredrich et

al., 1996, 1998).

The present work describes a ‘‘loose coupling’’

algorithm situated somewhere between full and one-

way coupling. In loose coupling, there are two sets of

equations which are solved independently (as in one-

way coupling), but information is passed at desig-

nated time intervals in both directions between the

two simulators (fluid flow and geomechanics). Loose

coupling has the advantage of being relatively simple

to implement (like one-way coupling), but it holds

promise for capturing much more of the complex

nonlinear physics, and thus is closer to a fully

coupled approach. Loose coupling capitalizes on

decades of algorithm and code development in differ-

ent application domains while yielding a coupled

model in much less time than would be required to

create a fully coupled model. Two independently

developed simulators were coupled together: fluid

flow from the University of Texas at Austin (IPARS)

and mechanics from Sandia National Labs (JAS3D).

IPARS can map faults and contains multiple physical

flow models that can run in different parts of the

reservoir domain in a single simulation. JAS3D can

handle large, nonlinear inelastic deformation and

sliding contact surfaces (as well as numerous other

types of mechanics).
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The loose coupling algorithm is similar in spirit to

the methods described in the papers of Fung et al.

(1994), Settari and Mourits (1994), and Settari and

Walters (1999). One of the fundamental questions in

loose coupling is how to best handle large jumps in

flow simulation parameters coming from infrequent

calls to mechanics (relative to the total number of flow/

mechanics time steps used in a fully coupled ap-

proach). Modifications to the flow equations can be

made which allow dynamic changes to flow parame-

ters while still maintaining conservation of mass. The

paper begins with a description of the two simulators

and an explanation of how each simulator was modi-

fied to allow incorporation of parameter updates from

the other simulator. Two numerical experiments illus-

trate the accuracy and efficiency of the loose coupling

scheme. The first experiment is a waterflood validation

of the coupled code against a fully coupled poroelastic

simulator. The loosely coupled simulator is run multi-

ple times using a range of different mechanics time

steps and the results are compared to the fully coupled

simulator output. This experiment demonstrates that

loose coupling can capture much of the physics of full

coupling at considerably less cost. The second numer-

ical example is based on data from the Belridge Field
Fig. 1. Flow chart for loose
in California—a field that underwent considerable

nonrecoverable plastic deformation.
2. Loose coupling vs. other algorithms

The loose coupling algorithm is shown as a flow

chart in Fig. 1. A high-level interface loosely couples

these two simulators by invoking one simulator and

then the other repeatedly over the total simulation time.

The user designates a time step for switching from

flow to mechanics (Dt1, where Dt1 = t1� t0; a typical

value of Dt being anywhere from 1 month to 1 year).

The flow simulator runs for the designated time

interval Dt1 and will most likely break the Dt1 time

interval into multiple time steps. At the end of the time

interval Dt1, the pore pressure is passed to the mechan-

ics code, and the mechanics code then runs the

simulation for that same (prior) Dt1 time interval.

The geomechanics code may take only one time step

for this time interval (or at least different sub-time

steps relative to the flow simulator). The pore pres-

sures used as loads allow the mechanics code to

calculate strains and ultimately updates to porosity

and permeability for the flow simulator’s subsequent
coupling algorithm.
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time steps. (For details on the calculation of updated

flow parameters, refer to Sections 4 and 5.) Using the

updated values of flow parameters from mechanics

(time step Dt1), fluid flow is simulated for the next time

interval Dt2 = t2� t1. The two-way staggered-in-time

coupling algorithm proceeds until both simulators

reach the final time tend.

Between the flow and mechanics simulations in

Fig. 1, there is a column devoted to mapping output

and input quantities from one simulator to the other.

This column is necessary because the loose coupling

algorithm does not require the two simulators to use

the same computational grid. In fact, one of the

advantages of loose coupling is that mechanics and

flow need not have identical spatial grids. The flow

domain is typically a subset of the mechanics domain.

The flow simulator should only model the reservoir,

while the mechanics code may need to extend further

in the lateral directions than the reservoir, will surely

need to extend up to the earth’s surface (for over-

burden loading), and may cover an area below the

reservoir as well. Note that fully coupled simulators

typically assume a single computational domain, so

fluid flow is simulated outside of the reservoir (an

unnecessary calculation). The current algorithm does

not even require the two codes to have the same grid

spacing in the parts of the domain where there is

overlap (the reservoir). Physically, there may be a

sound reason why the spatial discretization on the

flow side will differ from that for mechanics (exam-

ples: multiple material layers in the reservoir or a need

for finer resolution to capture complex physics).

Many upscaling and downscaling (or ‘‘averaging’’)

tools are available for mapping quantities from one

grid to another. The loose coupling simulator uses a

software package from Sandia’s engineering suite,

Mapvar (Wellman, 1999). Mapvar provides a few

different methods for accomplishing this mapping,

and the coupled simulator invokes the most robust

method for capturing gradients in the solution: vari-

able values at element centers are scattered to the

nodes via a linear constrained least squares fitting

procedure. For a small sample of the upscaling liter-

ature, refer to Arbogast et al. (1998b), Hou and Wu

(1997), E (1992), Durlofsky (1991), Durlofsky et al.

(1994, 1996), Christie (1996), Christie et al. (1995),

King et al. (1993, 1995), and Espedal and Saevareid

(1994).
3. Description of simulators

3.1. Reservoir simulator

The fluid flow simulator, Integrated Parallel Accu-

rate Reservoir Simulator (IPARS) (Wang et al., 1997;

Parashar et al., 1997; Wheeler et al., 1999), devel-

oped at the University of Texas, is a three-dimen-

sional general subsurface simulator that can be run

serially or in parallel using MPI. It currently includes

multiple physical models: single phase, two-phase

oil–water and air–water, and a reactive transport,

compositional model as well as the black oil model

described below. IPARS contains several numerical

discretizations of these physical models including

mixed finite elements and discontinuous Galerkin

finite elements for two-phase flow. The mixed finite

element method gives a stencil equivalent to cell-

centered finite differences if lowest order Raviart–

Thomas spaces are used for approximation and the

computational domain is rectangular (Russell and

Wheeler, 1983; Arbogast et al., 1996, 1997). The

scheme allows for discontinuity and for degeneracy

of fluid–rock properties, and it has optimal conver-

gence properties (Arbogast et al. 1996, 1997, 1998a).

Additionally, different time discretizations have been

implemented in IPARS including implicit, semi-

implicit, and sequential.

The IPARS simulator was chosen for this work

because of its unusual capabilities which are well

suited to coupled flow and mechanics. One such

feature allows the user to break the physical domain

into subdomains corresponding to geologic blocks

and then to apply different gridding or even different

physical or numerical flow models to each block. As

an example, certain production scenarios might best

be understood via flow simulation which uses a

compositional model. However, a black oil model

might suffice for the parts of the reservoir domain far

from the production wells. A version of domain

decomposition mortar space-based methodology,

originally formulated for single-phase flow (Arbogast

et al., 1996; Yotov, 1998), was developed to ensure

convergence across interfaces between these different

subdomain blocks and models (Peszynska et al.,

1999, 2002; Wheeler et al., 2000; Lu et al., 2001).

IPARS’ unique capacity to follow geologic structure

(especially faults) via blocking makes it a good
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choice for a sophisticated flow and mechanics simu-

lator.

Although the IPARS framework makes it relatively

easy to port code changes between different flow

models, in this work the black oil model is used

exclusively. Black oil is the simplest model which

includes all three fluid phases (oil, gas, and water)

needed for seismic time-lapse studies (Minkoff et al.,

1999). In this black oil model, the reservoir is

assumed to be isothermal, the permeability tensor is

diagonal, and the viscosity of each phase is constant.

No chemical reactions, precipitation, or adsorption are

present, and the formation is slightly compressible.

The external boundary conditions are no-flow Neu-

mann conditions. Numerically, the black oil model

code is fully implicit, 3-D, and uses an expanded

mixed finite element method to maintain local con-

servation of mass (Lu, 2000; Lu et al., 2001).

3.1.1. Black oil formulation

Assume that two or three phases and three compo-

nents are present. The uppercase subscripts W, O, and

G are used for the fluid components: water, heavy

hydrocarbon or oil, and light hydrocarbon or gas,

respectively. Lowercase subscripts w, o, and g are

used for the fluid phases: aqueous, oleic, and gaseous

phase, respectively. The model is partially miscible. In

particular, the water component exists only in the

water phase and it is the only component in that

phase. The gas phase contains only the gas component

and may be absent if the pressure is high enough, and

the oil phase may contain both the oil and gas

components. The oil component is the residual liquid

at atmospheric pressure after differential vaporization,

while the gas component is the remaining fluid

(Peaceman, 1977; Lake, 1989).

Given that NI is the stock tank volume of compo-

nent I (I=O,G,W) per unit pore volume, / is porosity,

Ro is the stock tank volume of gas dissolved in a stock

tank volume of oil, and qI is the total stock tank rate of

injection of component I, the mass balance equations

are

B

Bt
ð/NGÞ ¼ �r � ðUg þ RoUoÞ þ qG

B

Bt
ð/NI Þ ¼ �r � Ui þ qI I ¼ oil; water ð1Þ
Darcy’s Law gives the mass velocity U of phase i

(here i= oil, gas, or water):

Ui ¼ � Kkri

Bili

� ðrPi � qigrDÞ ð2Þ

Here, K is the absolute permeability tensor, and kri
is the relative permeability of phase i. Bi is the

formation volume factor for phase i. Pi is pressure,

li is viscosity, and qi is density. Gravity has magni-

tude g, and D is depth. Finally, the saturations must

satisfy the constraint:

Sg þ So þ Sw ¼ 1

and capillary pressures are defined by

PcowðSwÞ ¼ Po � Pw

PcgoðSgÞ ¼ Pg � Po

The gas component is soluble in the oil phase. The

maximum concentration of gas that can be dissolved in

the oil phase at a given pressure is given by Rs. The

subscript s stands for ‘‘saturated’’ conditions, and Rs is

an increasing function of pressure. If the amount of gas

contained in some element of volume is less than this

maximum (Ro <Rs), then all the gas dissolves into the

oil phase, so that Sg = 0. If the amount of gas in the

element exceeds this maximum, then Ro =Rs, and a free

gas phase exists, so that Sg>0. Reducing the pressure of

a volume of gas-saturated oil causes gas to come out of

solution and form a free gas phase. Thus two-phase and

three-phase conditions may prevail simultaneously in

different regions of the same reservoir.

The state equations complete the formulation.

Denote the stock tank density of component I by qIS.

Then, the water density is given by qw = qWS/Bw and

the density of the gas phase (if it exists) is given by

qg = qGS/Bg. Both the equations Sw = BwNW and

Sw = 1� So� Sg define the water phase saturation.

The oil phase density and saturation are related by

So =BoNO and qo=(qOS +RoqGS)/Bo. Finally, gas satu-

ration in three-phase conditions is Sg =Bg(NG�RsNO).

3.2. Geomechanical deformation modeling

The geomechanics code from Sandia National

Laboratories, JAS3D, is a three-dimensional, quasi-
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static finite element code. Like IPARS for fluid flow,

JAS3D is a mechanical deformation code with sev-

eral unique capabilities. Specifically, JAS3D can

accurately model large deformations, sliding contact

surfaces, and both elastic and inelastic material

responses from a wide array of constitutive models

(Arguello et al., 1998). The advanced finite element

technology which is used in JAS3D is based on

iterative quasistatic solvers which allow problems

with large numbers of unknowns to be efficiently

solved.

3.2.1. Traditional vs. explicit finite element approach

Consider the following field equation governing

the deformation of a body occupying a volume, V,

Brij=Bxj þ qf i ¼ 0 on V : ð3Þ

Eq. (3) is the quasi-static equation of motion,

where rij is the Cauchy stress tensor, xj is the position

vector, q is the mass per unit volume, and fi is a
specific body force vector. The solution to Eq. (3)
is sought subject to the kinematic and traction
boundary conditions

hiðx; tÞ ¼ Hiðx; tÞ on VU ð4Þ

rijnj ¼ siðx; tÞ on VT ð5Þ

where VU represents the portion of the boundary
on which kinematic quantities are specified (i.e.,
displacements, hi), nj is a unit normal vector, and
VT represents the portion of the boundary on
which tractions are specified. The boundary of the
body is given by the union of VU and VT.

For the displacement-based finite element method,

the equations described in the foregoing paragraph

can be discretized and rewritten in one of two ways:

X
N

Z
ve

BsdV

( )
¼ fFg ð6Þ

and

½KðhÞ�fhg ¼ fFg; ð7Þ

where the term on the left-hand side of Eqs. (6) and

(7) is the internal force vector, and {F} is the external

force vector. In Eq. (6), B is the strain-displacement
transformation matrix, N is the number of elements in

the finite element method (FEM) discretization, s is

an ordered vector of stress components in each

element at a Gauss point, and ve is the volume of

each element. In Eq. (7), [K(h)] represents the global

stiffness matrix and {h} represents the global vector

of unknown nodal displacements. Both Eqs. (6) and

(7) are included to highlight the difference in

approach between the traditional FEM approach and

the local-iterative approach used in this work.

The traditional FEM approach involves the direct

solution of Eq. (7). Namely, an element stiffness and

external force vector are formed for each element in

the overall structure. The contributions from each of

these element stiffness matrices and force vectors are

then assembled into a global stiffness matrix and force

vector describing the overall system. For the inelastic

and/or geometrically nonlinear case (the stiffness

matrix varies with the unknowns), the load is typically

applied incrementally. The resulting nonlinear equa-

tions are then solved at each load increment with some

variant of the Newton–Raphson method. The direct

factorization of this sparse global stiffness matrix can

result in (1) extremely large storage requirements and

(2) a very large number of arithmetic operations,

especially for three-dimensional problems. Commer-

cially available software is generally limited and will

typically only handle models on the order of tens of

thousands of elements in size. When attempting to

solve large problems of interest to the oil and gas

industry, models on the order of hundreds of thou-

sands to millions of elements may be needed. For

problems of this size, the traditional direct solution

approach becomes prohibitive due to memory and

computational time requirements.

The iterative technology that is used in JAS3D

never requires the formation of a global stiffness

matrix. Instead, the divergence of the stress is found

at the element level. Contributions to each node in the

overall structure are summed (i.e., the vector described

by the left side of Eq. (6)). A residual force vector

made from the internal minus the external forces,

fRg ¼
X
N

Z
ve

BsdV

( )
� fFg; ð8Þ

is computed, and the solution procedure is then one of

reducing the residual to zero using an iterative techni-
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que. Because the quantities being manipulated are

vectors, there is no need to store or factor a global

stiffness matrix. Consequently, the storage require-

ments are small when compared to the traditional

FEM approach. Two iterative techniques are currently

used in JAS3D—a preconditioned conjugate gradient

technique (Biffle, 1993) and an adaptive dynamic

relaxation technique (Stone, 1997). These two iterative

techniques are both able to handle the nonlinearities

associated with inelastic material response and sliding

contact surfaces. Comparing performance of a com-

mercially available FEM program against JAS3D on

an inelastic problem with 250,000 elements, the tradi-

tional FEM code took 30 times more CPU time than

was required to solve the same problem using JAS3D.
4. Modifications to fluid flow

Traditional flow simulators initialize porosity and

permeability at the start of the computation and then

these quantities remain fixed throughout the simula-

tion. For coupled flow and mechanics, these quantities

must be updated each time the code completes a

JAS3D step.

4.1. Porosity updates

In traditional flow simulators, small changes to

reservoir rock properties (porosity /) are accounted

for by the following linear expression:

/ ¼ /*ð1þ crðP � P*ÞÞ ð9Þ

where /* is the initial porosity at initial pressure P*,

and rock compressibility cr is a constant (typically on

the order of 10� 7–10� 10 Pa� 1). The code uses water

pressure, Pw, in place of pore pressure since water is

the phase wetting the rock and thus a reasonable

choice. A saturation-weighted average of the three

fluid phase pressures also could be used. In reality,

conventional black oil simulators assume that the

reservoir geology (porosity and permeability) is

changing very little (if at all) during flow simulation.

In the coupled simulations, Eq. (9) is not used to

determine porosity (although it is used for precondi-

tioning the solver, as described below). Porosity

values at the beginning of each set of simulation time
steps are input to the flow simulator from the mechan-

ics portion of the code, as depicted in Fig. 1.

The nonlinear system resulting from the finite

element discretization of Eqs. (1) and (2) is solved

via Newton’s method. Writing this system in matrix

form gives Jx =�R, with J the Jacobian matrix of

partial derivatives with respect to the primary varia-

bles x=[Pw,NO,NG], and R the residual. The solution

vector x actually contains incremental changes in the

primary variables.

Recalling a representative equation from the mass

balance system for component a, the residual is

Ra ¼ /ðNnþ1
a � Nn

a Þ þ dtðr � Unþ1
a � qnþ1

a Þ ð10Þ

with the backward Euler method used for the time

discretization. For coupled geomechanics and reser-

voir simulation, porosity updates at time step n + 1 are

introduced through the residual modification

Ra ¼ ð/NaÞnþ1 � ð/NaÞn þ dtðr � Unþ1
a � qnþ1

a Þ:
ð11Þ

In other words, the porosity values at time step

n+ 1 are provided by the mechanics code and directly

incorporated into the Newton system to be solved. In

the above formulation, mass is conserved, and the

Newton update accounts for a decrease in pore space

(for example) by increasing the well rates and pres-

sures at the next time step.

4.2. Permeability updates

Dynamic updates of absolute permeability during

flow simulation impact large portions of the code. The

grid block transmissibilities in the discretized equa-

tions and parts of the well model must be continu-

ously updated.

Rewriting Eq. (11) slightly, the water phase equa-

tion becomes:

ð/NWÞnþ1 � ð/NWÞn

Dtnþ1
þr � Unþ1

w ¼ qnþ1
w ð12Þ

The oil and gas phase equations are similar. In the

equation above, Dt n + 1 = t n + 1� t n. The correspond-
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ing nonlinear residual equation used in Newton’s

method is

RK
w;ijk ¼ Vijkfð/NWÞKijk � ð/NWÞnijk þ Dtnþ1

� ½r � Uw � qw�Kijkg: ð13Þ

The subscript ijk refers to the grid cell indexed by i

in the x direction, j in the y direction, and k in the z

direction. The superscript K refers to the Kth approx-

imation to the superscripted quantity at time level

n + 1. The volume of grid cell ijk is denoted Vijk.

From Darcy’s Law (Eq. (2)), the component mass

velocities in the residual equation above are discre-

tized using cell-centered differencing in space,

Dtnþ1Vijkðj � UwÞKijk ¼ �kKw;iþ1=2; jk

h
PK
w;iþ1; jk � PK

w;ijk

� qK
w;iþ1=2; jkgðDiþ1; jk � DijkÞ

i
þ kKw;i�1=2; jk

h
PK
w;ijk � PK

w;i�1;jk

� qK
w;i�1=2; jkgðDijk � Di�1; jkÞ

i
þ similar terms for the y and

z directions:

If Kxx, Kyy, and Kzz are harmonically averaged

values of the absolute permeability tensor between

adjacent grid cells, and Dxi, Dyj, and Dzk are the edge

lengths of a rectangular grid cell ijk, then the trans-

missibility constants that appear in the upstream-

weighted mobility computation for k are:

kKw;iþ1=2; jk ¼ Dtnþ12DyjDzk
Dxi

Kxx;ijk
þ Dxiþ1

Kxx;iþ1; jk

� ��1

� krw

Bwlw

� �K

sjk

where s = i if Pw,ijk
K zPw,i + 1, jk

K , and s = i+ 1 if Pw,ijk
K <

Pw,i + 1, jk
K . Upstream weighting is used similarly in the

y and z directions.

The values of transmissibility are generally as-

sumed fixed in uncoupled flow simulators. Here, they

must be updated after each mechanics step to account

for the permeability changes induced by strain. In the

coupled code, permeability also must change dynam-

ically in the well model. IPARS currently allows for

two types of wells: bottom-hole pressure specified and
rate specified (Peaceman, 1983; Lu, 2000). The volu-

metric rate of flow of fluid phase i (i=w,o,g) from the

well bore to a grid cell can be expressed as

Qi ¼
GLKkri

li

ðPwb � PiÞ ð14Þ

where Pwb is the well-bore pressure (hydrostatic

pressure), Pi is the pressure of phase i in the grid cell,

K is the absolute permeability of the grid cell, L is the

length of the open well bore penetrating the grid cell,

and G is a dimensionless geometric factor related to

the well-bore radius and given by the Peaceman

(1983) correction.
5. Modifications to mechanics

5.1. Porosity updates

The mechanics code is capable of calculating

pointwise changes in pore volume in the reservoir,

coming (for example) from field production, pressure

decrease, and then compaction. To calculate these

field property changes in the coupled code, the

reservoir simulator sends the pore pressure field to

the geomechanics part of the code where it is used in

the calculation of total stress:

rT
ij ¼ rij þ pdij:

Here p is the pore fluid pressure, dij is the Kro-

necker delta function, and rij is the ‘‘effective’’ stress
which is used in the constitutive model. The total

stress is used in the determination of the equilibrium

state for the reservoir subject to the overburden loads,

kinematic boundary conditions, and changing pore

pressure field. On output, the geomechanics code

provides an updated porosity, /, at the current time

step via the following expression:

/ ¼ 1� ð1� /0Þ
eev

where /0 is the initial porosity, and ev is the total

volume strain (the sum of the elastic and inelastic

components of strain). JAS3D uses a description for

the motion of the continuum that is valid for the large

deformation response of the reservoir rock.



S.E. Minkoff et al. / Journal of Petroleum Science and Engineering 38 (2003) 37–56 45
5.2. Permeability updates

Using available permeability-differential stress

data for several different rock types, a correlation

can be established between permeability and total

volume strain. The volume strain captures the pre-

failure permeability decline as well as the large post-

failure permeability reduction. After experimenting

with several different functional forms relating per-

meability to volume strain, an exponential model that

gave the best data fit was chosen:

K ¼ AeBev :

Here A and B are material constants and ev is again

the total volume strain. Because additional experimen-

tal data to define an anisotropic permeability tensor is

not available, the change in the permeability expres-

sion is assumed to be isotropic. Given the requisite

measured data, however, any other functional form for

permeability could be substituted into the code.
6. Convergence issues—a Newton’s method

preconditioner for the coupled code

Although loose coupling enables modeling of

realistic physics much more cheaply than full cou-

pling (fewer mechanics time steps must be taken), this

time savings is not for free. When the reservoir

parameters change dynamically with time, the flow

equations become more difficult to solve. After each

JAS3D step, IPARS receives new values of perme-

ability and porosity which are used for the next set of

flow time steps. If mechanical deformation is linear

elastic and the rock compressibility relationship relat-

ing porosity to pressure described by Eq. (9) holds,

then the flow solver will have little difficulty search-

ing for the next solution to the Newton system. By

differentiating Eq. (9) with respect to pressure,

changes in pore volume are estimated. This expres-

sion guides the flow solver towards a solution for the

next time step. In the coupled code, mechanical

deformation is not restricted to be linear elastic.

JAS3D has a range of over 50 constitutive relation-

ships for modeling deformation (Appendix A). This

flexibility in material modeling, however, requires

IPARS to grapple with incorporating a set of numbers
(representing updated reservoir parameters) without

any information about the way in which the flow

problem has changed. This lack of information can

cause the IPARS solver to have difficulty converging.

To improve the convergence of the flow solver in the

coupled code, the rock compressibility expression is

reintroduced solely for the purpose of preconditioning

the flow equations in IPARS. In other words, the user

provides an approximate value for compressibility

which is used to determine the derivative of Eq. (9)

with respect to pressure. This derivative is used in

forming the Jacobian for the Newton system. The

actual values of reservoir porosity used in the flow

equations still come entirely from the JAS3D compu-

tations, however. This strategy greatly improves

IPARS’ chances of converging after JAS3D time steps

in which the reservoir properties change substantially

with time.
7. Numerical examples

7.1. Validation experiment

The first numerical example in this paper is a

validation experiment in which output from IPARS/

JAS3D is compared to the solution from a fully

coupled ARCO simulator, ACRES (Dean et al.,

2003). ACRES uses finite differences to discretize

the multiphase flow problem and finite elements for

the mechanics calculation (displacements). The

poroelastic equations are formulated in terms of total

stresses, bulk strains, and fluid pressures. The non-

linear flow equations and linear poroelastic equations

are fully coupled and solved iteratively using a New-

ton–Raphson technique. The Newton–Raphson me-

thod linearizes the equations which are then passed to

a linear solver. The resulting matrix system is solved

for block pressures, well pressures, and displace-

ments.

The validation experiment is based on a waterflood

with the domain containing one production well and

one injection well—each of which is located in an

opposite corner of the grid (a ‘‘quarter-five-spot

pattern’’). The waterflood simulation covers 25 years

with a specified water injection rate of 79.5 m3/day

and production rate for liquids of 119 m3/day. The

production well is also assigned a limit of 3.45 MPa
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(below which the bottom-hole pressure cannot fall).

The average reservoir pressure will decline during

simulation (producing compaction in the field) as the

production rate is greater than the injection rate.

In this example, mechanical deformation is

restricted to be elastic with reservoir compressibility

of 1.1603� 10� 8 Pa� 1. (The pore compressibility is

about the same magnitude as the total fluid compres-

sibility in this case.) Poisson’s ratio is set at 0.3, and

Biot’s constants a and M� 1 have values of 1 and 0,

respectively. The reservoir’s top surface is at a depth

of 1414 m, and the computational domain extends

402 m in the x direction, 402 m in the y direction,

and 61 m in z (depth). The domain is discretized into

20� 20� 10 cells. Boundary conditions for the

external grid edges are no-flow and zero displace-

ment. The initial porosity is set at 30% throughout

the reservoir. The horizontal permeability varies from

5 to 100 md in depth. Initial fluid saturations for the

reservoir are 20% water and 80% oil, with no free

gas. The average reservoir pressure is 21.03 MPa

initially with bubble point pressure for the fluid set at

20.79 MPa.
Fig. 2. Contour plot of gas saturation (dimensionless) from IPARS/JAS3D a

Experiment 1). The front corner of the domain contains the production

simulation, the reservoir contains no free gas. Production causes a drop i
ACRES uses an incomplete LU preconditioner

(Strang, 1986) with generalized conjugate residual

iteration to solve the linear equations for pressure

and a direct solver for displacements. ACRES time

steps varied from 0.01 to 5 days. IPARS linearizes the

coupled set of flow equations via Newton’s method

and then solves the resulting linear system using a

GMRES solver (Axelsson, 1994) with multi-level

preconditioner (Edwards, 1998). The GMRES solver

had a tolerance of 1�10� 4, the Newton solver a

tolerance of 1�10� 6. Time steps in IPARS ranged in

duration from 1 to 10 days.

As expected, the reservoir pressure drops through-

out the field because the rate of production exceeds

that of injection. The rate of decrease is not uniform,

however. A gradient is produced between the two

wells. The greatest pressure decrease (and hence

porosity decrease and displacements) occurs at the

production well, and the least change occurs at the

injection well. In this experiment, permeability is held

fixed at the initial values throughout the simulation in

order to facilitate comparison to ACRES. Fig. 2 shows

gas saturation contours from the IPARS/JAS3D simu-
t the end of the 25-year waterflood validation simulation (Numerical

well. The back corner contains the injection well. At the start of

n pressure and the formation of gas in the reservoir.
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lation at 25 years. Initially there is no gas in the field,

but as the pore pressure drops below the bubble point

pressure during production, gas comes out of solution

changing the problem from two- to three-phase flow.

At the end of the simulation, the field contains 27% gas

near the production well. In a similar fashion, oil

pressure contours depicted in Fig. 3 show an overall

pressure drop in the field (from initial pressures of

20.68 MPa) with the largest decrease at the production

well (where the final pressures are around 4.69 MPa).

At the injection well the final pressures are about twice

this value 8.96 MPa. Finally, Fig. 4 shows the change

in porosity at 25 years. The initial reservoir porosity

was homogeneous at 30%. The final porosities show a

decrease of almost 13% over the initial simulation

porosities (giving values near the production well of

less than 26%).

In order to test the sensitivity of the results to the

frequency of mechanics steps, a suite of six IPARS/

JAS3D simulations was run. The first two experi-

ments took 15- and 30-day mechanics time steps,

respectively. As the output was essentially identical

between these two simulations, additional runs were

performed with 90-day, 1-year, 2-year, and 5-year

mechanics time steps. The ‘‘critical time step’’ for
Fig. 3. Contour plot of oil pressure (MPa) from IPARS/JAS3D at the end o

of the domain contains the production well. The back corner contains the in

of simulation.
mechanics for this experiment seems to be 2 years. In

other words, the simulations with mechanics time

steps ranging from 15 days all the way up to 2 years

produced the same IPARS/JAS3D displacement his-

tories at the wells. When the mechanics time steps

were lengthened to 5 years, however, a noticeable

change appeared in the loosely coupled solution.

Fig. 5 compares vertical displacement at the two

well locations (producer and injector) for ACRES vs.

IPARS/JAS3D. The three black curves correspond to

vertical displacement histories at the production well.

The three red curves correspond to vertical displace-

ments at the injection well. The dashed red and black

curves are the ACRES displacements. The solid red

and black curves are the IPARS/JAS3D simulation

results for five of the six simulations (JAS3D time

steps of 15 days, 30 days, 90 days, 1 year, and 2 years).

Finally, the red and black dashed curves with super-

imposed geometric shapes correspond to the vertical

displacement histories resulting from the IPARS/

JAS3D simulation with 5-year JAS3D time steps.

The dashed (ACRES) and solid (IPARS/JAS3D) lines

are qualitatively similar with a quantitative discrep-

ancy of approximately 10% which is most likely due to

remaining differences in the ACRES and IPARS flow
f the 25-year validation simulation (Experiment 1). The front corner

jection well. The average reservoir pressure is 21.03 MPa at the start



Fig. 4. Contour plot of porosity (dimensionless) from IPARS/JAS3D at the end of the 25-year validation simulation (Experiment 1). The front

corner of the domain contains the production well. The back corner contains the injection well. Porosity is uniform at 30% throughout the

reservoir at the start of simulation.
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solutions. This figure shows that for this 25-year

simulation, no difference exists between taking 13

mechanics time steps and taking 600 (every 2 years

or every 15 days). This example illustrates the benefits

of loose coupling. The simulation captures the funda-

mental physics at a tiny fraction of the cost of running

a fully coupled simulation. When the mechanics time

steps are lengthened to every 5 years, however, the

loosely coupled simulation results diverge substan-

tially from the fully coupled result. At 10 years (the

second mechanics time step), IPARS/JAS3D is able to

recover back to the smaller IPARS/JAS3D time step

solution (and hence to the fully coupled ACRES

solution). More complicated models for mechanics

(plastic) might not be so easy to match with such long

mechanics time steps in the loosely coupled model and

would require further investigation.

7.2. Single layer Belridge experiment

The second example is based on data from the

Belridge Field west of Bakersfield, CA. The field was
estimated to have more than 500 Mm3 of original oil-

in-place. The field contains two reservoirs: a smaller

reservoir located in the shallow Tulare sand, and a

slightly deeper reservoir located in diatomite and

extending nearly 305 m in depth. Despite the fact that

this large diatomite reservoir was discovered in the

early 1900s, by the mid-1990s, most of the production

was still focused on the Tulare reservoir (Fredrich et

al., 1996). The diatomite has unusual geologic proper-

ties which make production difficult. This reservoir

has very high porosities ranging from 45% to 70%,

but very low permeability (f 0.1 md). In the mid-

1970s, hydraulic fracturing allowed production in this

field for the first time. With increased production

came substantial subsidence, however (up to 6 m at

the earth’s surface in places), and hence well failures

which by the mid-1990s amounted to a well failure

rate of 2–5% annually (Fredrich et al., 1996).

Although the reservoir contains multiple sedimen-

tary layers, for simplicity, the synthetic experiment

models only one of these layers. This layer (J) is the

weakest of the diatomite layers, with an elastic mod-



Fig. 5. Comparison of displacement histories at the production and injection wells for the fully coupled ACRES simulator vs. the loosely

coupled IPARS/JAS3D simulator. Solid lines: IPARS/JAS3D solution with 15-day JAS3D time steps (same as result for JAS3D time steps up to

2 years). Dashed lines: ACRES solution. Dash-dotted lines with circles/squares: IPARS/JAS3D solution using 5-year JAS3D time steps.
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ulus that is 15� weaker than sandstone (Fossum and

Fredrich, 2000).

This example has four production wells in the

corners of the rectangular domain, and each well

extends to a different depth in the reservoir. The

experimental domain was broken into 21 grid blocks

in x and in y and 18 blocks in z. The grid spacing was

5 m in x and y, 2.4 m in z. So the reservoir extends a

total of 106 m in x and y and 44 m in z. The top of the

reservoir is located at a depth of 361 m in the earth
Fig. 6. Yield surfaces for implemented cap/plasticity constitutive

model.
with an initial pore pressure of 3.76 MPa. The initial

water saturation is 0.314 with no free gas. The

porosity is uniform throughout the domain at 50%.

The permeability is isotropic and homogeneous at 0.1

md. The calculation simulated 5 years of coupled flow

and mechanics. IPARS took time steps which ranged

from 0.2 to 10 days. The JAS3D time steps occurred

every 30 days.
Fig. 7. Schematic of modified Sandler –Rubin cap/plasticity

constitutive model.



Fig. 8. Water pressure contours (MPa) at the end of a 5-year flow simulation (with no mechanical deformation) for the Belridge Field example

(Experiment 2).
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The diatomite has a Young’s modulus of 413.68

MPa and a Poisson’s ratio of 0.2. A modified Sandler–

Rubin cap/plasticity constitutive model defines the

diatomite behavior. This constitute relation is des-

cribed in Appendix A and illustrated in Figs. 6 and

7. The material constants have values of A= 35,333

MPa, B = 2.211657� 10� 16 Pa� 1, and C = 35,333

MPa. The parameter K (ratio of yield stress in triaxial

extension to triaxial compression) has a value of

0.7953. The ratio of major to minor axes in the cap,

R, has value 1.599. Other material parameters include
Fig. 9. Water pressure contours (MPa) at the end of 5 years of coupled f

experiment (Experiment 2), both porosity and permeability change dynam

alone (Fig. 8).
the maximum plastic volumetric compaction the

material can experience under hydrostatic loading,

W = 2335.3, as well as material constants D1 =

1.284887� 10� 16 Pa� 1 and D2 = 0.0 Pa� 2. Finally,

the initial cap position X0 is � 1.117 MPa. The rock

compressibility was estimated for the preconditioner

at 4.3512� 10� 9 Pa� 1.

Contrasting the results of flow simulation (IPARS)

alone on this data with coupled flow simulation and

mechanical deformation (IPARS/JAS3D), it is clear

that by the end of the 5-year flow simulation, the
low and mechanical deformation modeling. For this Belridge Field

ically with time. Pressures should be compared to those from flow



Fig. 10. Equivalent total strain (dimensionless) at the end of the 5-year coupled flow and mechanics simulation of the synthetic Belridge Field

data.
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pressures have decreased by 40% from their initial

values. At the end of the coupled flow and mechanics

simulation, the pressures had decreased by 50%. A

maximum difference in pressure between the two
Fig. 11. Vonmises stress (Pa) at the end of the 5-year coupled flow a
simulations occurs at the production wells (about

0.45 MPa). Refer to Fig. 8 for the pressures from flow

alone and Fig. 9 for the water pressures from coupled

flow and mechanics.
nd mechanics simulation of the synthetic Belridge Field data.



Fig. 12. Displacement (m) at the end of the 5-year coupled flow and mechanics simulation of the synthetic Belridge Field data.
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Fig. 10 shows equivalent total strain contours at the

end of the coupled flow and deformation run. Total

strain at the end of the run is 3%. Fig. 11 shows Von

Mises stress for the coupled simulation, and one can

see the 3-D variations in stress at the wells which is

due to different well schedules and different well

completion depths. At the end of 5 years of coupled

simulation, a maximum subsidence of 0.15 m has
Fig. 13. Permeability (md) at the end of the 5-year coupled flow and me

simulation, the permeabilities were 0.1 md uniformly throughout the rese
occurred at the wells (Fig. 12). During coupled

simulation, porosity decreases by 2%, but the perme-

abilities show the biggest change, decreasing from 0.1

to 0.001 md at the wells. Fig. 13 shows the final

permeability at the end of the coupled run.

Feedback occurs when the reservoir parameters

change dynamically during flow. Changes in porosity

and permeability coming from the mechanics code
chanics simulation of synthetic Belridge Field data. At the start of

rvoir.



S.E. Minkoff et al. / Journal of Petroleum Science and Engineering 38 (2003) 37–56 53
impact pressures coming out of flow simulator, which

in turn impact future parameter changes produced by

mechanics. Such nonlinear phenomena are difficult to

predict and are often not evident in uncoupled (or

simple coupled) models.
8. Conclusions

Defining a fully coupled model for complex multi-

phase flow and large nonlinear inelastic mechanical

deformation is costly and time-consuming. An alter-

native is to loosely couple two preexisting flow and

mechanics simulators. Staggered-in-time coupling and

two-way passage of information allow accurate mod-

eling of a range of reservoir conditions. The staggered-

in-time loose coupling scheme alternates between flow

and mechanics. The mechanics simulator produces

updated reservoir parameters which are used by the

flow simulator in the next set of time steps. This

technique has the advantage that the simulation

domains for flow and mechanics can be substantially

different (even within the reservoir). There is no need to

simulate flow in the non-reservoir rocks as often must

be done in full coupling.

The primary bottleneck to this technique is that

only relatively small jumps in porosity can be handled

due to the large volume of fluids which must move to

the wells to conserve mass when compaction occurs

in the field. An approximate rock compressibility

(used only as a Newton’s method preconditioner)

helps guide the flow solver toward a solution when

both porosity and permeability change substantially

with time.

A poroelastic waterflood experiment provides a

validation of the loose coupling scheme against a

fully coupled simulator from ARCO (ACRES). Good

agreement was achieved between ACRES and IPARS/

JAS3D at the wells. In fact, a time-step study revealed

little difference in the coupled solution when the

JAS3D mechanics time steps ranged from 15 days

to 2 years. It is considerably cheaper to do a mechan-

ics simulation once every 2 years than every time a

flow step is taken (as in full coupling). An adaptive

time-stepping strategy for measuring the degree of

nonlinearity in the problem and hence optimizing the

mechanics time step will maximize the cost-saving

benefits of loose coupling.
Nomenclature

Bi formation volume factor for fluid phase i

cr rock compressibility

D depth

fi body force vector

g gravitational acceleration constant

kri relative permeability of phase i

K absolute permeability

Ni stock tank volume of component i

Pi phase pressure

qi injection rate for phase i

Ro stock tank volume of gas dissolved in oil

Rso solution gas ratio

Si phase saturation

Ui fluid phase velocity

xj geomechanics position vector

dij Kronecker delta function

Dt time step

Dx spatial step in x direction

Dy step in y direction

Dz step in z direction

ev total volume strain

hi displacement

k mobility

li viscosity

q density

qis stock tank density of component i

rij Cauchy stress tensor

/ porosity

XU portion of mechanics boundary with kine-

matic constraints

XT portion of mechanics boundary with tractions
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Appendix A. Plastic-cap constitutive model for

geomechanics

JAS3D contains over 50 different constitutive

relationships which can be used to simulate deforma-

tion of a range of materials. The code has been used

extensively to simulate well failure in the Belridge

Field of California. In one of the two numerical

examples in this paper (see Section 7.2), a modified

Sandler–Rubin cap/plasticity constitutive relationship

developed specifically to model compaction of Bel-

ridge diatomite is used. The cap/plasticity model was

developed to allow a more realistic representation of

the mechanical behavior of porous soil or rock than

the basic Drucker–Prager model (one of many con-

stitutive models already in the code). The cap/plasti-

city model is a multi-surface model that generalizes

the Sandler–Rubin constitutive model (Sandler and

Rubin, 1979), incorporating Lode-angle dependence

of yield in the deviatoric plane and nonassociativity in

the meridional plane on the shear failure surface. The

yield surfaces for this model are depicted schemati-

cally in Fig. 6, where the abscissa is I1 = rkk and the

ordinate is
ffiffiffiffiffi
J2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsijsijÞ=2

p
, with sij being the stress

deviator. As seen in the figure, the loading function is

assumed to be isotropic and to consist of two parts: an

ultimate shear failure surface, which serves to limit

the maximum shear stresses attainable by the material,

and an elliptically shaped strain-hardening surface, or

‘‘cap’’, which produces plastic volume and shear

strains as it moves (say from H1 to H2 as depicted

in Fig. 6). The failure envelope portion of the loading

function is:

hðI1;
ffiffiffiffiffi
J2

p
;WÞ ¼ C

ffiffiffiffiffi
J2

p
� ½A� CexpðBI1Þ� ¼ 0

where A, B, and C are material constants and G is a

function of J3, the third invariant of the deviator

stress, which incorporates the Lode-angle dependence

of yield as

C ¼
n
½1þ sinð3WÞ� þ ½1� sinð3WÞ�=K*

o
=2:
K* is the ratio of the yield stress in triaxial

extension to triaxial compression. The Lode angle is

W ¼ 1

3
arcsin � 27

2

J3

ð3J2Þ3=2

 !

for � p/6VWV p/6. For triaxial extension, W =� p/6
and for triaxial compression, W = p/6. The strain-hard-
ening (cap surface) is of the form:

HðI1;
ffiffiffiffiffi
J2

p
;W; jÞ

¼ C
ffiffiffiffiffi
J2

p
� 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½X ðjÞ � LðjÞ�2 � ½I1 � LðjÞ�2

q
ðA:1Þ

where R denotes the ratio of the major to minor axes in

the elliptical cap. The cap is chosen so that the tangent

at its intersection with the failure envelope is horizon-

tal. The intersections of the elliptic cap with the I1 axis

and with the failure envelope are denoted by �X(j)
and � L(j), respectively. The hardening parameter j is

a function of plastic volume strain

j ¼ e
p
kk ¼ Wfexp½D1ðX ðjÞ � X0Þ

� D2ðX ðjÞ � X0Þ2� � 1g: ðA:2Þ

In Eq. (A.2), W, D1, and D2 are material parame-

ters, with W defining the maximum plastic volumetric

compaction that the material can experience under

hydrostatic loading. The variable X0 is the initial cap

position. Eqs. (A.1) and (A.2) indicate that the cap is

not fixed in principal stress space, but that it changes

as plastic deformation takes place. In the nonassocia-

tive case, the plastic potential takes the form of an

ellipse as illustrated in Fig. 7. The functional form of

this potential is given by

GðJ1;
ffiffiffiffiffi
J2

p
;W; jÞ ¼ C

ffiffiffiffiffi
J2

p
� ½LðjÞ � X ðjÞ�

R½X*� LðjÞ�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½X*� LðjÞ�2 � ½I1 � LðjÞ�2

q

with X* = ln(A/C)/B. Parameters in this model can be

found using a procedure described in Fossum et al.

(1995).
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