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Chapter 1
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Abstract

In this paper we consider non-standard models of multi-component ad-

sorption with applications to gas adsorption processes in coalbeds. In

particular we follow thermodynamically consistent approaches, both at

macroscale, via the Ideal Adsorbate Solution (IAS) theory, as well as

at the pore-scale (built with statistical mechanics and specifically with

mean-field equilibrium approach). The models we consider do not have a

simple algebraic form, and therefore their analyses and numerical simu-

lation have challenges. We present several mathematical analysis results

and numerical solutions to illustrate the issues.
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1. Introduction

In this paper we consider non-standard models of multi-component adsorp-

tion with applications to gas adsorption processes in coalbeds.

Coalbeds have the form of coal seams surrounded by sandstone, gravel,

mudstone or shales. The coal seams have a multiscale structure of microporous

coal matrix interspersed with cleats i.e. fractures or macropores; see Figure 1.

Coalbed methane is a form of natural gas extracted from coal beds, and coal and

methane are an important energy resource exported from US. In the Enhanced

Coalbed Methane (ECBM) technology, carbon dioxide and/or nitrogen or other

gases are injected into unmineable coal seams to promote displacement and

extraction of methane. Simultaneously, ECBM provides a possibility to store

carbon dioxide, thus ECBM is a potential carbon sequestration technique; see,

e.g. [76, 22, 81, 40, 73, 20, 19].

The modeling challenges include accounting for competitive or preferen-

tial adsorption [11, 12, 9, 68, 27, 25, 38]. Further, one should model the

experimentally observed phenomena such as adsorption-desorption hysteresis

[13, 66, 57] and coal matrix swelling [46, 12, 68, 83, 38, 74]. Attempts to

fit the data to empirical relationships for these phenomena were described in

[13, 8, 47, 39, 70, 14], and single-component hysteresis was modeled and ana-

lyzed in [50, 53].

In this paper we discuss hybrid models of multicomponent transport with

adsorption involving the porescale in a thermodynamically consistent way.

Even though we do not address hysteresis or coal matrix swelling here, these

models can account for these complex phenomena in a natural way. In addition,

they bridge the porescale and the continuum scale, and their extensions can be

used in multiscale modeling frameworks that are emerging. More broadly, they

can be used to explore adsorption with new types of adsorbates and adsorbents.

We also provide analysis of these nonstandard models.

Transport with Adsorption

The fundamental process in ECBM is the transport of multiple gas compo-

nents in the coal cleats, accompanied by diffusion and adsorption into the coal

matrix. Adsorption is a well known process during which the (adsorbent) gas

particles adhere to a surface (of adsorbate). Adsorption is present in many nat-

ural systems and is widely used in biotechnology, pharmaceutical and chemical
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Figure 1. Top: a cartoon of coal cleat structure. Middle: coal sample held

by one of the authors (MP). Bottom: porescale image of coal sample at the

resolution: 30µm. The greyscale image shown is of two crosssections of coal,

each of resolution967×953, layers 200, 300, 400, and 500. White spots indicate

mineral content. Coal sample courtesy of Ceglarska–Stefańska and Katarzyna

Czerw [83, 16]; the imaging courtesy of A. Trykozko and M. Dohnalik.

engineering industry. The mathematical models of adsorption relate the amount

adsorbed a(x, t) to the amount u(x, t) present in the fluid which transports the

adsorbent. Here x denotes the position, and t denotes the time. The equilibrium

models a = a(u) called isotherms relate the bulk amounts u(·) to a(·), but do

not include any considerations of local variations at pore-scale of the surface of
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the adsorbate or amounts adsorbed. A well known Langmuir adsorption model

a(u) = VL
bu

1 + bu

uses the parameters b, VL found by fitting experimental data. (We will also use

BL ≡ b to be consistent with literature.) Other nonlinear parametric algebraic

relationships are formulated for various adsorbents and adsorbates.

In this paper we consider complex statistical mechanics algorithms origi-

nally proposed in [30] and followed by refined approaches in [78]; see detailed

literature survey. These take into account the surface energy and the bonding

energy of the particles; we reformulate them to deliver relationships a(u) from

statistically averaged ensembles calculated for a particular porescale geometry,

or their multiple realizations.

Our focus is on the equilibrium adsorption processes coupled to the trans-

port, thus on the hyperbolic part of the overall process. The non-equilibrium

models will not be considered here; see [51, 41] for our treatement of mem-

ory terms associated with the (subscale) diffusion and the multiscale nature of

porosity of coal. When the diffusion is ignored, a(u) is known, and the transport

velocity of gas is fixed, the nondimensional transport adsorption model is

ut + at + ux = 0, a = a(u). (1)

Its analysis and numerical approximation follow the well-established theory for

a scalar conservation law

wt + f(w)x = 0 (2)

via a change of variables; we review these in Section 3. However, previous

mathematical and numerical analysis of the advection transport with adsorp-

tion has been confined only to the adsorption isotherms in the form of simple

algebraic expressions. In this paper we provide analyses of the hybrid models.

Multiple Components

When adsorption involves multiple components, then u = (u1, u2, . . .uI)

and a = (a1, a2, . . .aI) are vectors, where I is the number of components such

as methane CH4, carbon dioxide CO2, and/or nitrogen N. To obtain aj(u), it is

common to extend the single-component algebraic relationships based on var-

ious assumptions and further parameter fitting. Some of the explicit algebraic
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relationships aj(u) are not thermodynamically consistent and, in particular, do

not satisfy Gibbs adsorption equation [18]. The thermodynamically consistent

approaches can be formulated but are not given by explicit algebraic relation-

ships.

The mathematical and computational treatment of the transport system for

I > 1 with multicomponent adsorption is challenging due to its coupled nonlin-

ear hyperbolic system structure. Analysis is further complicated if a(·) are not

given by explicit algebraic relationships.

In this paper we discuss two thermodynamically consistent approaches.

First we recall the Ideal Adsorbate Solution (IAS) theory, which allows to com-

bine any single-component isotherms to deliver correct aj(u). Next we con-

sider the pore-scale statistical mechanics-based models for single-component

isotherms following [78]. We combine next the single-component adsorption

isotherms produced by statistical mechanics within IAS approach. The hybrid

adsorption models which result from this do not have a closed algebraic form,

and we develop new analyses and numerical simulation results for these.

The outline of the paper is as follows. In Section 2, we first develop the over-

all background for multi-component adsorption and flow processes; here we pay

attention to the physical principles underlying the adsorption in subsurface ac-

companying the flow in subsurface, and we review the different assumptions,

models, and the units used in the literature. Second, in Section 3 we review

the mathematical theory for the single-component adsorption models assuming

equilibrium and non-equilibrium; we also define the basic computational mod-

els for single-component adsorption, and recall the principles of their analysis.

Next we move to multi-component adsorption. As a first application of the the-

ory we discuss the IAS model and provide examples. In Section 4 we introduce

the porescale models based on statistical mechanics and provide their analyses.

We close in Section 5.

2. Processes and Continuum Models

The majority of transport in coalbeds occurs in the cleats, accompanying

the flow of gas and possibly of water, while the majority of storage occurs in

the matrix where gases undergo diffusion and adsorption, close to supercritical

conditions. For ECBM, the distribution of phases and components is shown

in Figure 2; the components are C = M,D,N, (W ) methane, carbon dioxide,

nitrogen, and (for wet gas models) water. The phases in which these components
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Figure 2. Phase-component distribution in ECBM.

can remain are p = g, a, l: gas, adsorbed gas, and liquid phase (for wet gas).

In this paper we will ignore the presence of water and consider a dry-gas

model, with two components M,D, and phases g, a. Here g is the flowing

(mobile) phase, and a is the adsorbed phase. Below we develop the model,

paying attention to the units and different notation used in the literature. We

refer to the literature listed in Table 1 for more general models.

When gases such as carbon dioxide are injected into coal seams, they make

their way through the cleats into the micropore structure of the coal matrix; see

Figure 1. Here they preferentially adsorb, displacing methane from adsorption

sites; subsequently, this methane is transported through cleats and is available

for extraction. The predominant transport mechanism in cleats (macropores)

is that of advection while the transport into and out of the coal matrix occurs

through diffusion into mesopores and micropores, where the gases undergo ad-

sorption and desorption at the surface of the grains. The micropore and meso-

pore diffusion have been included in the classical bidisperse model [59, 31]

extended to include adsorption in micropores in [13] and to realistic gas trans-
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Table 1. Adsorption models relevant for ECBM. The symbol − means that

the model did not have all the details. EL is the Extended Langmuir.

Model Transport Phases Components Adsorption Isotherms Hysteresis

[31] compress. 2 1 Eq. & Kinetic EL

[28] 1 2 Eq. EL Yes

[68] 2 2 Kinetic EL

[69] compress. 1 2 Kinetic & Multi EL

[82] - - 2 - EL,IAS

port models [69], with ECBM-related experimental work on the rates of kinetics

in [8]. See also [31, 59, 68, 13]. The models accounting for multiscale structure

of coal are, in essence, non-equilibrium models, and many are similar to the

double-porosity models [3, 26] which were developed for slightly compressible

flow in oil- and gas reservoirs with fractures and fissures. When advection is

the predomimant transport mechanism, practical implementation results were

reported for ECBM in [68, 82]. In [51, 52] we provided analysis and numerical

analysis most closely related to the challenges of ECBM system, and in [42]

we showed simulation results for multicomponent systems with memory. In

this paper our focus is on the hyperbolic part of ECBM models and we will not

include the memory terms in our models.

2.1. Comprehensive Model for Multiple Components

First we provide definitions of variables, and account carefully for different

conventions from literature. Next we state the mass conservation equations, and

discuss the isotherms a(·).

Below we only consider gas phase as the only mobile phase, thus we will

simplify and drop the subscript g whenever it does not lead to a confusion.

Definitions of Variables

For multiple components and every phase α = g, awe have that
∑

i

χαi = 1, (3)

where χαi are nonnegative nondimensional variables called mass fractions of

component i in phase α. We will denote χi := χgi. For the phase density



8 F. P. Medina and M. Peszynska

ρ = ρg we write

ρ =
∑

i

ρi =
∑

i

χiρ, ρi = χiρ,

where ρi are the component densities (mass per volume of mixture) with units

of density [kg/m3]. The phase (and component) densities depend on the tem-

perature, pressure, and composition of the fluid via an Equation of State (EOS)

to be discussed later.

One also uses the notion of the molar mas of a component Mi ([kg/mol]).

In a mixture we have its molar mass M =
∑

i yiMi where yi are the mole

fractions defined as yi = Mi

M
. The relationship between χi and yi is thus

yi := χi
M

Mi

so that, with a simple algebra, we confirm that
∑

k yk ≡ 1. Further, molar

volume is related to molar mass and to the density by V = M
ρ

and for a mixture

V =
P

i χiMi

ρ . We also define frequently used molar concentrations ([mol/m3])

Ci :=
ρi

Mi

(4)

Note that Ci inherits the qualitative behavior of the density ρi from EOS devel-

oped below.

Equation of State

For gases, typically

ρg :=
MgPg

RTZ(Pg, T )
:= ρg,o

Pg

Z(Pg, T )
(5)

where Z is the “compressibility factor” which depends on the pressure Pg and

temperature T . The Z-factor is mildly decreasing and then increasing with

pressure for pressure between 0 bar and 100 bar=6MPa. Here ρ0 =
Mg

RT
is

computed using the molecular mass of the gasMg, temperature T , and universal

gas constant R. Recall that for ideal gas Z = 1. Furthermore, in the range of

around T ≈ 300K the Z-factor for methane is not very far from 1, and can be

assumed constant. (See [[31], eqn.A-5]).
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In most ECBM models one assumes that T ≈ const. Also,R, ρo are always

constant. If we insert (5), and multiply by 1
ρo

RT
Mg

, the resulting formulation is

as in [[31], eqn.4], where an additional term due to the slippage effect was

included.

It is natural to extend (5) to mixtures so that

ρi :=
MiPi

ZRT
. (6)

Here we must define the partial pressures Pi, and see that Z must depend on P

and on the overall composition of the mixture (not only on Pi or yi but on all

yi, i = 1, . . .I).

Since we want ρ =
∑

i ρi, we must have

ρ =
MP

ZRT
=

(
∑

i yiMi)P

ZRT
. (7)

Thus the natural identification follows

Pi = yiP. (8)

We also have

Ci =
ρi

Mi

=
χiρ

Mi

=
yiρ

M
(9)

Ci =
MiPi

MiZRT
=

Pi

ZRT
=

yiP

ZRT
. (10)

Note that due to (3), the variables χi (or equivalentlyCi or yi) are not inde-

pendent.

Mass Conservation Equations

The point of departure for transport models is the system

∂

∂t
(φρi) + ∇ · (ρivg) + (1− φ)qai = qi, (11)

to be solved for ρi or χi. Here qai is the rate of adsorption of component i, and

vg is the gas velocity.

Equivalently, when each (11) is divided by the constant Mi, we have

∂

∂t
(φSgCi) + ∇ · (Civg) + (1− φ)q̃a,i = q̃i,
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which needs to be solved for Ci. Alternatively, upon multiplying by RT ,w ith

Z ≈ 1, and with (8), we get

∂

∂t
(φPi) + ∇ · (Pivg) + (1 − φ)q̄a,i = RT q̃i.

In these formulations the adsorption isotherm qa.i was rescaled to q̃a,i, q̄a,i, re-

spectively. See [[28], eqn.(2)] and [[68], eqn (1a)] for equivalent formulations.

Gas velocity

In general, gas velocity in porous medium varies with pressure and the grav-

itational potential according to the Darcy’s law

vg := −
k

µ
(∇Pg − ρgG∇D) (12)

Here k is the medium permeability, µ gas viscosity, which may depend on the

pressure and composition. With (12) and full EOS, the gas flow problem be-

comes a degenerate nonlinear parabolic system to be solved for Pg ; we will not

address this here. Instead, in what follows we assume

vg ≈ const, (13)

i.e., that the flow is steady, and the pressure distribution Pg(x, t) = Pg(x) is

also steady and known. This is as in [28] where it seems (see Section 4.1)

that in a numerical model the authors solve for Pg and vg, albeit infrequently,

compared to the time steps for adsorption. Solving for pressure means solving

an equation obtained from summing all the I mass conservation equations, plus

I − 1 adsorption equations.

Adsorption Relationships

To complete the model we need to determine qa,i or its rescaled variants

depending on χi, yi, or pi. The equilibrium adsorption assumption, postulates

qa.i :=
∂

∂t
ai(P1, . . .PI), (14)

and that the gas amounts in the mobile phase and those adsorbed on the surface

of adsorbent are in fixed proportion given by ai(P1, . . .PI).
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2.1.1.

With the assumption (13) we analyze and approximate the ECBM system

(11) with (14) as a nonlinear hyperbolic system.

2.2. Sorption Isotherms

Now we discuss the mass rate of adsorption qai or the appropriately scaled

quantities q̄a, q̃a. We ignore any such scaling below, since it can be absorbed in

the leading constants.

2.2.1. Single Component Isotherms

The widely used Langmuir monolayer isotherm is

a(Pg) = VL
bPg

1 + bPg
= VL

Pg

PL + Pg
. (15)

The coefficients VL are the Langmuir volume capacity and b Langmuir constant;

see, e.g., [[68], eqn.(4)]. Equivalently, PL is so called Langmuir pressure, and

we have b = 1
PL

; see [[31], eqn.(12)]. The constants VL, b are found exper-

imentally from the data of amount (volume) adsorbed a(Pg) as a function of

Pg. This is enabled simply by a linear regression fit of
Pg

a(Pg) to 1
VL

(Pg + PL).

In addition, VL provides the horizontal asymptote (maximum capacity) for the

isotherm, and bVL = VL

PL
provides the slope of the isotherm at 0. VL is typically

given in units of adsorbed amount per mass of adsorbent. In Table 2 we provide

VL, b data for the Langmuir isotherms for CH4 and CO2.

Other isotherms such as Henry’s, Freundlich, or BET are well known [18].

Since data for ECBM has mostly been fit to (15), we do not review these here.

2.2.2. Multiple Component Isotherms

For multiple components, various extensions are proposed. For example,

the authors in [28] propose an extension of the Langmuir single-component

isotherm (15) and define

ai(P1, . . .PI ) := VL,i
biPi

1 +
∑

k bkPk

. (16)

The extended Langmuir model (EL) (16) is a very simple algebraic model. It

only requires the parameters bi, VL,i, which are fit to experimental data.



12 F. P. Medina and M. Peszynska

Table 2. Parameters of single-component isotherms from literature. (a)

Jincheng coal. (b) Luan coal.

Source VL b = BL or 1/b = PL

[31] CH4 VL=[18.6,34.3] scf/cu ft 1/b = PL=167.5 psia

[28] CH4 VL=811 SCF/ton b=0.000237 1/psia

CO2 VL=1760 SCF/ton b=0.000521 1/psia

[68] CH4 VL=25.57 cu m/cu m PL=2.07 MPa

CO2 VL=47.73 cu m/ cum PL=1.38 MPa

[67] CH4 VL=0.80 mol/l b = 0.23 1/MPa

CO2 VL=1.60 mol/l b= 0.464 1/1MPa

[6] CH4 VL ∈[0.5,1] mmol/g-coal PL ∈[690,3450] kPa

CO2 [0.5,2.5] mmol/g-coal [3450,6900] kPa

[82](a) CH4 VL = 1.183 mmol/g PL = 0.69 MPa

CO2 VL=1.392 mmol/g PL=0.33 MPa

[82](b) CH4 VL=1.017 mmol/g PL = 0.70 MPa

CO2 VL=0.949 mmol/g PL = 0.23 MPa

However, EL appears thermodynamically inconsistent unless VL,i are equal

to each other for each i [18], because Gibbs isotherm equation is not satisfied.

The extended Langmuir model is formulated ad-hoc from single-component

isotherms based on the assumption of equality of adsorption and desorption

rates, but it does not account for any interaction of the molecules of the adsor-

bate with each other and with the molecules of bulk phase.

Other choices are available. In particular, various authors in ECBM liter-

ature [6, 13, 82] use the IAS (Ideal Adsorbate Solution) theory which follows

directly from Gibbs isotherm equation and is also known as Myers-Prausnitz

theory.

2.2.3. IAS Model for Multicomponent Adsorption

The IAS model for multicomponent adsorption can be formulated for any

number I of components and for any collection of single-component isotherms,

possibly different for each component. Here we follow [18].
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The IAS model assumes only the knowledge of single-component isotherms

a0
i (Pi) ≡ ai(0, . . . , 0, Pi, 0, . . .0). (17)

where a0
i denotes the amount of i adsorbed in the absence of other components.

IAS derives a system of algebraic equations from the principle of equality of

chemical potentials in the bulk phase and in the adsorbed phase which is stated

in Gibbs adsorption isotherm equation. The derivation of IAS follows principles

similar to the vapor-liquid equilibria represented by Raoult’s law. As a result of

IAS, the values of ai(·) are defined implicitly rather than explicitly.

We first define

z :=

∫ P 0

i

0

a0
i (p)

p
dp. (18)

Next, we find the relationship P 0
i (z) by inverting z(P 0

i ). The analytical form

for P 0
i (z) is only available for special cases of a0

i such as Langmuir isotherm.

In that case, we have P 0
i (z) = 1

bi

[

exp( z
VL,i

) − 1
]

. In general, z(P 0
i ) or its

inverse have to be found by numerical integration.

Next, assume we are given P1, P2, . . .PI as independent variables. To find

z(P1, P2, . . . , PI) we solve

F (z) =
∑

i

Pi

P 0
i (z)

− 1 = 0 (19)

In general, this is done by a nonlinear numerical solver. The Jacobian for the

Newton-Raphson iteration of (19) requires, in particular, that we compute the

Jacobian

F ′(z) = −
∑

i

Pi
(P 0

i (z))′

(P 0
i (z))2

.

Once we know z, we have a definition

ai(P1, . . .PI) := Pi
∂z

∂Pi
. (20)

This calculation requires ∂z
∂Pi

. We find ∂z
∂Pi

= − 1
P 0

i

/F ′(z), which follows from

implicit differentiation of (19) with respect to Pi

1

P 0
i

+

[

−
∑

i

Pk

(P 0
k (z))′

((P o
k (z)))2

]

∂z

∂Pk
= 0.
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2.3. Model Summary and Illustration

The multicomponent transport model from Section 2.1.1, upon scaling and

nondimensionalization, in one spatial dimension, is

∂

∂t
(Pi + ai(P1, P2, . . .PI)) +

∂Pi

∂x
= 0, (21a)

The system needs initial conditions for each component

Pi(x, 0) = Pi,init(x), (21b)

and requires a definition of the isotherms

ai = ai(P1, P2, . . .PI ). (21c)

We do not explicitly address boundary conditions even though the spatial region

x ∈ Ω ∈ Rd in which transport takes place is, in all practical cases, bounded. To

avoid handling boundary conditions we assume that the initial data Pi,init has

compact support in R
d, and in simulations we adjust the “observation window”

accordingly.

The model (21) and its numerical approximation will be analyzed in Sec-

tion 3. In particular, we consider there the IAS isotherms ai. In Section 4 we

consider and analyze a hybrid model for ai based on statistical mechanics.

2.3.1. Simulation with EL

We provide now an illustration. We consider the dynamics similar to that

encountered in ECBM reported in [28], but with I = 2, and CH4 denoted by

i = 1 and CO2 denoted by i = 2. The isotherms a1, a2 are chosen as extended

Langmuir (16) with the coefficients which mimick those for CH4 and CO2 from

Table 2. We also set

P1,init(x) = H(x) =

{

1, x ≥ 0
0, x < 0

P2,init(x) = 1 −H(x),

where we used the Heaviside function H(x). This case illustrates the displace-

ment of methane CH4 by carbon dioxide CO2 in a reservoir initially filled with

CH4. The simulation proceeds for x ∈ [0, 1], t ∈ (0, T ], with T = 0.6. The

discretization parameters are ∆x = 0.01,∆t≈ 0.05.

In Sections 3 and 4 we consider and analyze the isotherms provided by IAS

and hybrid models.
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Figure 3. Isotherms and the corresponding transport solution for Extended

Langmuir model (16). The parameters of the isotherms and of the simulation

are as in Section 2.3.1. In particular, we use VL,1 = 0.8, b1 = 0.23, b2 =
0.464, VL,2 = 1.6, and these are similar to those used for CH4 and CO2, re-

spectively.

3. Analysis of Transport with Adsorption and IAS

In this section we provide mathematical details concerning the multicompo-

nent adsorption system (21) for the case I = 2 and one spatial variable.

We start by recalling well known theory of scalar conservation laws and

hyperbolic systems which we apply to a transformed version of (21) and discuss

the conditions upon which it is hyperbolic. Next we provide an explicit estimate

of the eigenvalues which are helpful in establishing the stability of the numerical
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schemes.

Next we specialize and consider the IAS system to which we apply the the-

ory. The difficulty here is that the IAS multicomponent isotherms are defined

implicitly, thus additional analysis has to be provided.

3.1. Analysis and Numerical Models for Conservation Laws

We consider first the well-known mathematical framework for the conser-

vation law in d = 1

wt + f(w)x = 0, w(x, 0) = w0(x) (22)

with an increasing and convex flux function f(·). It is well known [34] that its

solutions develop singularities in finite time from smooth initial data. In particu-

lar, a solution with w0(x) = exp(−x2) develops a forward facing discontinuity

(shock) with a backward facing smooth wave (rarefaction). For this reason, one

defines the weak solutions to (22) to include the physically meaningful singular,

i.e., non-classical solutions. Out of these, only the entropy solutions are defined

to exclude, e.g., unphysical backward facing shocks. We refer to [21] or to [35]

for comprehensive treatment of conservation laws and systems.

A discontinuity in (22) travels with the speed σ determined from the

Rankine-Hugoniot condition

σ =
[f ]

[w]
=
f(wR) − f(wL)

wR −wL
, (23)

where [f ], [w] denote the jump fo the flux function and of the primary unknown

across the discontinuity, respectively, and wL, wR are the left and right states.

An appropriate numerical method for (22) needs to be conservative and sta-

ble. The numerical discretization, via the popular first order Godunov method

is

wn
j = wn−1

j − λ
[

f(wn−1
j ) − f(wn−1

j−1 )
]

, (24)

where λ = ∆t
∆x , ∆t is the time step, and ∆x is the spatial discretization param-

eter. The discretization is defined at the discrete spatial and temporal points

xj = j∆x, tn = n∆t and delivers approximations wn
j ≈ w(xj, t

n). The

scheme starts with the values w0
j = winit(xj). This Godunov scheme is sta-

ble provided that for any w,

0 ≤ λf ′(w) ≤ 1. (25)
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For a general nonlinear flux function and a smooth enough solution, the Go-

dunov method is (at most) first order accurate.

Let ~f : R
p → R

p, x ∈ R, t > 0. If the solutions are smooth enough, the

system

wt +~f(w)x = 0 (26)

can be written as

wt + A(w)wx = 0, (27)

where A(w) = D~f(w). We denote by (λk(w))pk=1 the eigenvalues for A(w).

Definition 3.1. The system (26) is strictly hyperbolic if for any w ∈ Ω, the

Jacobian matrix

A(w) =

(

∂fi
∂wj

(w)

)

1≤i,j≤p

has p distinct eigenvalues λ1(w) < λ2(w) < · · ·< λp(w).

In general, the solution profiles for (26) are complicated, especially if the

eigenvalues of the Jacobian have different signs. A numerical solver such as

Godunov method must use a local Riemann solver to resolve the wave inter-

actions at every cell resulting from the left and right states. However, if the

eigenvalues of the Jacobian have the same sign, one can consider a straight-

forward extension of the scalar Godunov scheme (24) to the multicomponent

case.

3.2. Analysis and Numerics for Transport with Adsorption, I = 1

From now on we assume that the unknowns in our model are the (partial)

pressures Pi. The scalar version of the model (21) is

∂

∂t
(P + a(P )) + Px = 0. (28)

If the solutions are smooth, via a change of variable w = P + a(P ), and setting

f ′(w) =
1

1 + a′(P )
and requiring f(0) = 0, we obtain (22).

It is easy to show that if a(·) is increasing concave, then f(·) is increasing

convex, and the character of solutions is similar to that discussed in Section 3.1.
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In particular, for the Langmuir model we quickly check that a(·) given by (15)

is smooth, strictly increasing, concave, and Lipschitz, via

a′(P ) =
bVL

(1 + bP )2
,

and 0 < a′(P ) ≤ bVL. Also, 0 < f ′(w) =
1

1 + a′(P )
≤ 1.

For discontinuous solutions we consider weak solutions, and determine di-

rectly the speed σ of propagation of discontinuity deriving

σ =
[P ]

[P + a(P )]
=

[f ]

[w]
, (29)

which is formally consistent with the usual Rankine-Hugoniot condition (23).

See [42] for details.

3.2.1. Numerical Scheme for Transport with Adsorption

In spite of formal equivalence of (28) to (22), it is better solve it in the

original form (28). For this, we propose the scheme

Pn+1
j + a(Pn+1

j ) = Pn
j + a(Pn

j ) − λ
(

Pn
j − Pn

j−1

)

. (30)

In the scheme we actually calculate explicitly the left hand side

Wn+1
j = Pn+1

j + a(Pn+1
j ), (31)

and this is done for every j. Since our primary unknown is Pn+1
j , we must

solve (31), given Wn+1
j for Pn+1

j . For some isotherms a(·) this can be done

algebraically, and for the general case we implement a local Newton solver.

Usually only a few iterations suffice, since I + a(·) is a smooth bijective func-

tion. A good initial guess for this local solver is provided by the zero of a linear

model of a(·) at 0.

Based on the discussion above and 0 < f ′ ≤ 1, we see that the stability

restriction for the numerical schemes is simply λ ≤ 1 or

∆t ≤ ∆x(1 + a′(Pn
j )) for all Pn

j . (32)
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3.3. Analysis for Multicomponent Transport with Adsorption,

I = 2

Now we consider (21) with I = 2. We get to the form (26) by the

change of variables wi = Pi + ai(P), for i = 1, 2. where P = (P1, P2).

We define w = (w1, w2), ~a(P) :=

(

a1(P)

a2(P)

)

and P = ~f(w), where

~f(w) = (I +~a)−1
w = P. Notice that I + ~a : R

2 → R
2 is nonlinear and

its components are continuously differentiable in the domain of interest.

With this change of variables, the adsorption (21) is in the form (26). The

change of variables is formally only valid, as we nentioned in Section 3.1, if the

solutions are smooth enough; see also the discussion of shock speed calculation

in (29). To check if the system is hyperbolic, we inspect the Jacobian

A(w) = B
−1(w), (33)

where B is given by, with Bij = ∂ai

∂Pj
, as

B(P) =

(

1 + B11 B12

B21 1 +B22

)

.

Lemma 3.1. The system (27) is strictly hyperbolic if

B12B21 =

(

∂a1

∂P2

)(

∂a2

∂P1

)

> 0 (34)

In addition, if

d∗ = B11B22 −B12B21 ≥ 0. (35)

holds, then

λ−(B; P) ≥ 1. (36)

Proof. The characteristic polynomial for B is given by

λ2 − λ(2 +B11 + B22) + (1 + B11)(1 +B22) −B12B21.

and its eigenvalues are

λ±(B; P) =
1

2

[

2 +B11 + B22 ±

√

(B11 −B22)
2

+ 4B12B21

]

= 1 +
B11 + B22

2
±

√

(

B11 + B22

2

)2

− (B11B22 −B12B21). (37)



20 F. P. Medina and M. Peszynska

In order for the eigenvalues to be real and distinct, and system to be hyperbolic,

we need (B11 − B22)
2 > −4B12B21. This is guaranteed if B12B21 > 0.

In addition, if (35) holds, we have

λ−(B; P) = 1 +
B11 +B22

2
−

√

(

B11 + B22

2

)2

− (B11B22 − B12B21), (38)

Clearly, by (35) the second term under the square root is nonpositive, and the

conclusion follows.

For most adsorption systems the conditions (34)–(35) hold. In particular,

for the Extended Langmuir system and other known algebraic expressions for

isotherms, one can calculate the partial derivatives ∂ai

∂Pj
and check (34) and (35)

directly.

For general adsorption isotherms, the conditions (34) and (35) make phys-

ical sense, since the amount adsorbed of a component should increase with its

partial pressure. In turn, in competitive adsorption, the amount adsorbed of

component i should decrease with the increase of partial pressure of other com-

ponents, and there should be a symmetry in the signs of B12 and B21.

However, in a particular model without an explicit algebraic expression one

should verify if the desired qualitative properties hold. In what follows we will

discuss the isotherms ai(P1, P2) derived from IAS as well as those from statis-

tical mechanics to see if (34) and (35) hold.

3.3.1. Numerics for the Adsorption System

Knowing the eigenvalues λ(B; P) of B, we can calculate their algebraic

inverses, i.e., the eigenvalues λ(A; w) for A(w). For many adsorption systems,

as mentioned above, it is easy to show that these are positive.
If so, the construction of the Godunov scheme takes the simple upwind form

P n+1
1,j + a1

(

P n+1
1,j , P n+1

2,j

)

= P n
1,j + a1

(

P n
1,j, P

n
2,j

)

−
∆t

∆x

(

P n
1,j − P n

1,j−1

)

, (39)

P n+1
2,j + a2

(

P n+1
1,j , P n+1

2,j

)

= P n
2,j + a2

(

P n
1,j, P

n
2,j

)

−
∆t

∆x

(

P n
2,j − P n

2,j−1

)

, (40)

where Pn
k,j ≈ Pk(xj, tn) for k = 1, 2. As before, we have to implement a local

2 × 2 nonlinear solver to get both Pn
k,j , k = 1, 2 from the left hand side(s) of

(39)-(40).
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The stability condition for a numerical scheme for the system is [21]

λmax
k=±

∣

∣

∣

∣

∣

1

λk(B; Pn
j )

∣

∣

∣

∣

∣

≤
1

2
at each P

n
j .

This gives the following condition for the time step

∆t ≤
∆x

2
min
k=±

∣

∣λk(B; Pn
j )

∣

∣ at each P
n
j . (41)

Since the eigenvalues of a nonlinear system in general depend on the un-

known solution, it is useful to know if one can derive a CFL condition which

does not depend on (P1, P2). Such a condition is possible, e.g., if (35) holds

and Lemma 3.1 applies. In addition, if (36) holds, we have

∆t

∆x
≤

1

2
. (42)

We will confirm that this is indeed works for the IAS system and for the MFEQ

system.

3.4. Analysis of the Extended Langmuir System

For the extended Lagmuir system (16) we calculate

∂a1

∂P1
=

b1VL,1(1 + b2P2)

(1 + b1P1 + b2P2)
2 ,

∂a1

∂P2
=

−b1b2VL,1P1

(1 + b1P1 + b2P2)
2 ,

and the expressions for
∂a2

∂Pi

, i = 1, 2, follow analogously. From these calcu-

lations we see that Lemma 3.1 applies. Thus the extended Langmuir system is

strictly hyperbolic, and the eigenvalues λ−(B; P) for any P are bounded below

by 1.

3.5. Analysis of IAS Adsorption System

We consider the transport system

∂

∂t
(P1 + aIAS

1 (P)) +
∂P1

∂x
= 0, (43)

∂

∂t
(P2 + aIAS

2 (P)) +
∂P2

∂x
= 0, (44)
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with aIAS
i given by the IAS algorithm from Section 2.2.3.

To check its hyperbolicity and to calculate its eigenvalues, we wish to apply

Lemma 3.1. However, since the isotherms are defined implicitly, some work is

required.

Proposition 3.1. The system (43)–(44) is strictly hyperbolic in the region

P1 > 0, P2 > 0. (45)

In addition, in this region, if

a◦1 > 0, a◦2 > 0, (a◦1)
′(·) > 0, (a◦2)

′(·) > 0 (46)

are nonnegative functions, then the lower bound (36) holds.

Proof. To apply Lemma 3.1, and prove the first part, we need either (34) or (35)

to hold.
(

∂aIAS
1

∂P2

)(

∂aIAS
2

∂P1

)

> 0.

We calculate easily from (20)

(

∂aIAS
1

∂P2

)(

∂aIAS
2

∂P1

)

= P1P2

(

∂2z

∂P1∂P2

)2

> 0. (47)

Thus the first part of the proposition holds if (45) holds.

To prove the second part, we proceed as in Lemma 3.1, but the calculations

are extensive. We calculate Bij =
∂aIAS

i

∂Pj
. From (18) we have

∂z

∂P ◦
i

=
a◦i (P

◦
i )

P ◦
i

, for i = 1, 2.

Now from (19) for I = 2 and z = z(P1, P2), by implicit differentiation we get

∂z

∂P1
=
a◦1a

◦
2P

◦
2

D
,

∂z

∂P2
=
a◦1a

◦
2P

◦
1

D
. (48)

where D = a◦1P2P
◦
1 + a◦2P1P

◦
2 . (Here and below we apply a slight abuse of

notation and drop the unknowns in a◦i = a◦i (P
◦
i ).) Thus

∂z

∂Pi
≥ 0 for i = 1, 2.

Further, from (20) we calculate

∂aIAS
1

∂P1
=

∂z

∂P1
+ P1

∂2z

∂P 2
1

,
∂aIAS

1

∂P2
= P1

∂2z

∂P2∂P1
. (49)
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with the other derivatives given analogously. Next we need the derivatives
∂2z

∂Pi

and
∂2z

∂Pi∂Pj
in terms of a◦1, a

◦
2, P

◦
1 , P

◦
2 , P1 and P2. To compute

∂2z

∂P 2
1

, by (48)

we have

D
∂z

∂P1
= a◦1a

◦
2P

◦
2 .

Differentiating both sides we get

D
∂2z

∂P 2
1

=
∂(a◦1a

◦
2P

◦
2 )

∂P1
−
∂D

∂P1

∂z

∂P1
. (50)

On the other hand, we have

∂(a◦1a
◦
2P

◦
2 )

∂P1
=

∂z

∂P1

[

da◦1
dP ◦

1

P ◦
1

a◦1
a◦2 +

da◦2
dP ◦

2

P ◦
2

a◦2
a◦1 + a◦1

]

P ◦
2 , (51)

Also,

∂D

∂P1
= P ◦

1P2
∂z

∂P1

(

da◦1
dP ◦

1

P ◦
1

a◦1
+ 1

)

+ P ◦
2P1

∂z

∂P1

(

da◦2
dP ◦

1

P ◦
2

a◦2
+ 1

)

+ a◦2P
◦
2 . (52)

Finally, substituting (51) and (52) in (50) and doing some algebraic manipula-
tions we obtain

∂2z

∂P 2

1

=
1

D3

h

SP◦

1 (P◦

2 )3 + (a◦

1)3a◦

2P◦

1 (P◦

2 )2P2 − 2(a◦

1)2(a◦

2)
2
P◦

1 (P◦

2 )2P2 − a◦

1(a◦

2)
3(P◦

2 )3P1

i

,

(53)

where

S =
da◦1
dP ◦

1

(a◦2)
3P1 +

da◦2
dP ◦

2

(a◦1)
3P2.

To compute
∂2z

∂P2∂P1
, we note that

D
∂2z

∂P2∂P1
=

∂(a◦1a
◦
2P

◦
2 )

∂P2
−
∂D

∂P2

∂z

∂P1
. (54)

∂(a◦1a
◦
2P

◦
2 )

∂P2
=

∂z

∂P2

[

da◦1
dP ◦

1

P ◦
1

a◦1
a◦2 +

da◦2
dP ◦

2

P ◦
2

a◦2
a◦1 + a◦1

]

P ◦
2 , (55)
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and

∂D

∂P2
= P ◦

1 P2
∂z

∂P2

(

da◦1
∂P ◦

1

P ◦
1

a◦1
+ 1

)

+ P ◦
2 P1

∂z

∂P2

(

da◦2
dP ◦

2

P ◦
2

a◦2
+ 1

)

+ a◦1P
◦
2 . (56)

Substituting (55) and (56) in (54) we get

∂2z

∂P2∂P1
=

(P ◦
1 )2(P ◦

2 )2

D3

(

S − (a◦1)
2(a◦2)

2
)2
. (57)

Putting it all together have the following expressions for
∂aIAS

i

∂Pi
:

∂aIAS
1

∂P1
=

P ◦
1 P

◦
2

D3
(S(P ◦

2 )
2
P1 + (a◦1)

3
a◦2P

◦
1P

◦
2 P2),

∂aIAS
2

∂P2
=

P ◦
1 P

◦
2

D3
(S(P ◦

1 )
2
P2 + (a◦2)

3
a◦1P

◦
1P

◦
2 P1),

∂aIAS
1

∂P2
=

P1(P
◦
1 )

2
(P ◦

2 )
2

D3
(S − (a◦1)

2
(a◦2)

2
),

∂aIAS
2

∂P1
=

P2(P
◦
1 )

2
(P ◦

2 )
2

D3
(S − (a◦1)

2
(a◦2)

2
).

Setting d = (B11 − B22)
2 + 4B12B21 we rewrite

d = B2
11 − 2B11B22 + B2

22 + 4B12B21

= B2
11 − 2B11B22 + 2B11B22 − 2B11B22 + B2

22 + 4B12B21

= (B11 + B22)
2 − 4d∗.

We can now show that (35) holds under certain assumptions. We expand

d∗ =
(P◦

1
)2(P◦

2
)2

D6
(S(P◦

2
)2P1 + (a◦

1
)3(a◦

2
)P◦

1
P◦

2
P2)(S(P◦

1
)2P2 + (a◦

2
)3(a◦

1
)P◦

1
P◦

2
P1)

−
P1P2(P◦

1
)4(P◦

2
)4

D6
(S − (a◦

1
)2(a◦

2
)2)

2

=
(P◦

1
)2(P◦

2
)2

D6

“

S(P◦

1
)2(P◦

2
)2P1P2 + S(P◦

2
)3(a◦

2
)3(a◦

1
)P 2

1
+ S(P◦

1
)3(a◦

2
)(a◦

1
)3P 2

2

+(a◦

1)4(a◦

2)
4(P◦

1 )2(P◦

2 )2P1P2 − P1P2(P◦

1 )2(P◦

2 )2(S − (a◦

1)2(a◦

2)
2)

2
”

=
(P◦

1
)2(P◦

2
)2

D3

“

S(P◦

1 )2(P◦

2 )2P1P2 + S(P◦

2 )3(a◦

2)
3(a◦

1)P 2

1 + S(P◦

1 )3(a◦

2)(a◦

1)3P 2

2

+(a◦

1)4(a◦

2)4(P◦

1 )2(P◦

2 )2P1P2 − S(P◦

1 )2(P◦

2 )2P1P2 + 2S(a◦

1)
2(a◦

2)2(P◦

1 )2(P◦

2 )2P1P2

−(a◦

1)4(a◦

2)
4(P◦

1 )2(P◦

2 )2P1P2

”

=
(P◦

1
)2(P◦

2
)2

D3

“

S(P◦

2
)3(a◦

2
)3(a◦

1
)P 2

1
+ S(P◦

1
)3(a◦

2
)(a◦

1
)3P 2

2

+2S(a◦

1)2(a◦

2)
2(P◦

1 )2(P◦

2 )2P1P2

”

.
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We can finally see that under the assumptions of the Proposition, the second

part of its conclusion holds.

We have therefore shown that as long as the single-component isotherms a0
i

are positive and strictly increasing, the IAS system is strictly hyperbolic in the

region P1P2 > 0, and the eigenvalues are positive. In addition, the minimum

eigenvalue is bounded below by 1, and the CFL constraint for the numerical

solution has the simple form (42).

3.6. Results: Simulations of Transport with IAS Isotherms

To illustrate the results above, we set up isotherm calculations followed by

the transport simulations. In Figure 4 we present the isotherms for the case

when a0
1(P ) are the Langmuir isotherms, with the coefficients and other data as

in Section 2.3.1. Of course, this time the isotherms a1, a2 are the IAS derived

aIAS
1 , aIAS

2 .

We notice the difference in the position of the shock for the CO2 component

and the shape of rarefaction wave for the CH4 component between the results

shown in Figure 3 and Figure 4.

4. Hybrid Porescale Models of Adsorption

The goal of the porescale models discussed here is to derive the relation-

ship(s) a(u) from first principles, and to follow up to get the multicomponent

isotherms aIAS,MFEQ
i . As we have seen, the relationships such as (15) apply to

Darcy scale models, and are not intended to recognize the local pore-scale ge-

ometry. When derived experimentally, they reflect average equilibrium behavior

of adsorbent interacting with the adsorbate.

In contrast, porescale models can account for detail configurations of ad-

sorbed fluid, and can be built from first principles. In the last two decades,

porescale models have been applied to study single and multi-phase dynamics

of flow and transport, and they range from traditional PDE models [54, 55],

through pore network models, [36, 37, 1, 5], to Lattice Boltzmann (LB) meth-

ods [77, 71, 65, 75]. The adsorption models at porescale we consider here fall

in the category of lattice gas models and specifically, equilibrium statistical me-

chanics based on first principles formulations of energy functionals. Other first-

principles methods include molecular dynamics (MD) and density functional
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Figure 4. Isotherms and the corresponding transport solution for IAS model.

The parameters of the single component Langmuir isotherms a0
i are VL,1 =

0.8, b1 = 0.23, b2 = 0.464, VL,2 = 1.6, and these are similar to those used for

CH4 and CO2, respectively. The remaining data for the simulation are as in

Section 2.3.1. Notice the difference between the results shown in Figure 3.

theory (DFT); see [2, 58, 24, 80, 33].

In the context of adsorption phenomena, a significant advantage of the

porescale adsorption models considered here is that they can accurately predict

hysteresis in adsorption. While we do not address hysteresis explicitly in this

paper, this ability is the primary motivation for the study of porescale models.

Hysteresis is a rate independent phenomenon in which the adsorption and

desorption proceed along different curves depending on whether the gas pres-
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sure P is increasing or decreasing, i.e., on the sign of ∂P
∂t . Hysteresis in multi-

component adsorption is considered significant [79, 23, 29, 61, 66] and in partic-

ular for CH4 and CO2 [13, 66, 57] , and there is experimental data published in

literature for the primary adsorption and desorption scanning curves. To model

hysteresis, one needs to account for reversal of dP
dt at any value of P . The sta-

tistical mechanics models can do this.

Statistical mechanics offers an approach in which “deterministic equations

describing (large systems of) particles are replaced by assumptions on their sta-

tistical behavior” [7]. The model we consider is discrete, i.e., based on an enu-

merable number of rectangular cells (“sites”) ωi that the solid or fluid particles

can occupy. The model is based on a so called bcc lattice [33] representation

of porescale ω = ωR ∪ ωF =
⋃N

i=1 ωi. This representation is compatible with

binary porescale images obtained from microtomography such as those shown

in Figure 1. To understand the connection between the gas reservoir Ω and the

porescale region ω, one can consider that at every point x, there is a correspond-

ing porescale geometry ω(x).

The single component porescale adsorption model described here was intro-

duced in [30] based on [48, 32], and it has been refined and better understood,

and compared to other statistical mechanics methods by Monson and his co–

authors [29, 78, 79, 64, 44, 60, 62, 60].

We first recall the model, then show how it can be related to the Langmuir

model, and then proceed to its analysis in the multicomponent case.

Porescale Geometry

In the model Each site i is occupied either by fluid, or by solid, according to

ti =

{

1, cell is open to fluid
0, cell is blocked by solid

(58)

ni =

{

1, cell is occupied by fluid

0, cell is not occupied by solid
(59)

The porescale geometry is therefore denoted by the variable t, the vector of all

ti, and the location of the gas particles is denoted by n, and their local densities

are ρi = tini. We have ωF :=
⋃

i:ti=1 ωi and we will denote |ωF | :=
∑

i ti

with the porosity given by φ = |ωF |
|ωF |+|ωR| = NF

N
.

In the model we form the averages over the possible (but stationary) real-

izations of n. This is in contrast to Lattice Boltzmann or pore network models
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where t is fixed but the fluid particles ni are transported. We focus on find-

ing equilibrium values of ρ; these depend on the temperature T , i.e., on β, and

on the number of particles of adsorbate in the solvent which depends with the

chemical potential µ. The variable P is correlated to µ, the chemical potential,

which plays the same role as magnetic field in the Ising model.

In the nomenclature of statistical mechanics t is usually called a (quenched)

disorder. Therefore, any simulations we perform should not depend on a par-

ticular realization of t, and thus one should average any results over the real-

izations of disorders t which share certain common characteristics for a given

medium. However, in this paper for simplicity we do not elaborate on this, and

consider a fixed geometry t.

(a) (b) (c) (d)

Figure 5. (a) Example of t from porescale data, courtesy of the authors of

[56, 15], with original resolution 725 × 725 × 356. White pixels denote rock

and blue denotes void space. (b-d) Cartoon of lattice gas configurations in free

space and in porous medium. Squares indicate locations taken by porous solid

and circles indicate locations occupied by gas. (b) Geometry without rock, (c)

Single gas component, (d) Multiple gas components.

4.1. Single Component MFEQ Adsorption Model

The interactions of particles with each other and with the porous medium

are expressed by a Hamiltonian i.e., an energy functional. Below we provide

details; we use traditional notation for β = 1
kBT

where T is the temperature,

and kB is the Boltzmann constant. The model accounts simultaneously for the

combined effects of disorder and confinement, represented by t, and fluid-solid

interactions (also known as wetting).

There are two parameters wff , wmf , denoting the strength of fluid–fluid

and matrix-fluid interactions, respectively. The chemical potential µ is related
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to the gas pressure, as usual, by

µ = µref + log

(

P

Pref

)

. (60)

Hamiltonian for Adsorption

We define now the Hamiltonian H which accounts for the fluid–fluid and
fluid–matrix interactions and for the contact with an external reservoir which
provides the source of gas at a given chemical potential µ. We have

H := −µ
∑

i

niti −wff

∑

(i,j)

nitinjtj −wmf

∑

(i,j)

[niti(1 − tj) + njtj(1 − ti)], (61)

where (i, j) denotes all the nearest neighbor pairs. Here we have followed

the notation in [78] which adopts the usual statistical mechanics conventions

from [80, 48]. See also similar models, with somewhat different notation in

[78, 79, 62, 64]. We refer also to [45, 7, 80] for excellent introduction to the

Ising model of magnetisation which is the basic model of statistical mechanics

with structure much simpler than that in (61).

In (61) the first term is responsible for the response of fluid cells to the

presence of chemical potential µ. With the product niti we only account for

those cells which are not rock-occupied. The second term in (61) favors the

aggregation of fluid-only cells, and the third favors the fluid cells in contact

with rock.

Realizations of n

Now (61) provides the energy for one realization of the random variable n

selected out of the possibleS = 2NF members of Π := {n(s)}S
s=1. The realiza-

tions are also called “states”. Of interest to us are some average (macroscopic)

quantities such as gas density, or its energy, that can be derived from n. How-

ever, we are only interested in those average quantities that correspond to the

equilibria, i.e., to those states n ∈ Π for which H(n) is at the minimum.

It is clearly impossible to find such minima analytically for an arbitraty t.

The complexity of a “brute force” approach in which we enumerate all the states

n ∈ Π is also prohibitively large. In statistical mechanics there are many av-

enues to overcome this complexity, and they derive from the fact that many of

the states in Π are not very likely to be close to an equilibrium. On the other
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hand, there may be multiple states corresponding to an equilibrium, at a given

T and µ.

For a given state n and its energy H(n), the equilibrium occupation proba-

bility is given by the Boltzmann probability distribution

p(n) =
1

Z
e−βH(n), (62)

where Z is the normalizing constant called partition function so that

Z =
∑

n∈Π

e−βH(n). (63)

Now for any quantity Q(n) we can calculate its expectation 〈Q〉

〈Q〉 =
∑

n∈Π

Q(n)p(n). (64)

In particular, one can calculate the average density 〈ρi〉 and

〈ρ〉 =
1

NF

∑

i

〈ρi〉. (65)

To find macroscopic relationships corresponding to the minimum (equilib-

rium) states, and overcome the complexity discussed below, in this paper we

follow the mean-field equilibrium (MFEQ) approximation approach. MFEQ

and the alternative, Monte-Carlo simulations, are summarized in [78]. Below

we briefly recall MFEQ, since its form will be needed in the analysis.

We refer to a broad discussion of MFEQ approaches for Ising model of mag-

netization to [80, 10, 72, 48], while Monte-Carlo simulations are well explained

in [45, 80].

Mean-Field Approximations

In the mean-field approximation, one modifies (64) to calculate averages

of ρ over only the equilibrium states n ∈ Π∗. Each state n ∈ Π∗ has the

corresponding collection of densities ρ∗ = (ρ∗i )1≤i≤NF
.

To find the states in Π∗, the authors in [78] first rewrite the model for H

in terms of (spin) variables si = 2ni − 1 which resemble the (site diluted)

Ising model application, with a random external field (rather than constant term



Hybrid Modeling and Analysis of Multicomponent Adsorption ... 31

related to µ). Then, after some algebraic transformations, they derive that every

state in Π∗ must be a critical point of a certain functional Ψ which combines the

Hamiltonian H along with the entropy function

βΨ := βH +
∑

i

ψ(ρi). (66)

Here ψ(ρ) := ρln(ρ) + (1− ρ)ln(1− ρ).
Each critical point of Ψ must be a zero of its derivatives. After transfor-

mation back to ni variables, and some algebra, [78] defined the equilibrium
densities as the solutions to

ρ∗i = Fi(β, µ; ρ∗) :=
ti

1 + exp(−βµ) exp(−β
∑

j∈i(wffρ∗j + wmf(1 − tj))
. (67)

Now (67) is of fixed point type.

Solving for Equilibria

To find the solutions to (67), we proceed by Picard’s iterations, i.e., by suc-

cessive substitutions, starting with some initial guess ρ
∗,(0)
i . It is well known

that such an iteration need not converge, and if it does, that the answer is unique.

However, in practice, only infrequently does the iteration fail to complete [32].

We actually should not expect existence of a unique solution due to the form

of Ψ which translates into non-contractiveness of Fi. This can be easily seen for

a fixed wff in the trivial case N = 1 = NF , where for high enough T there is

only one equilibrium while for low T there are two equilibria, similarly as in the

Ising model of phase transitions [48, 80]. For NR = N −NF >> 1, there are

several metastable equilibria [48, 17], and this leads to adsorption/desorption

hysteresis.

Literature on MFEQ for Adsorption

The implementations in [79, 78] with N = O(643), 10 ≤ M ≤ 50, pro-

vided scanning curves qualitatively agreeing with those from experiments and

from other computations. The authors considered the realizations of morphol-

ogy Φ generated from Gaussian random fields using the covariance information

from experimental data. This work was later favorably compared in [61, 63, 44]

to results of other discrete methods including Monte Carlo with Kawasaki and

Glauber dynamics, GCMC, and MD with different Lennard-Jones potentials.
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See also [29, 78] for discussion of absence of phase transition in macroscale,

[49, 18] for support of independent pore theory, [62] for discussion of ink-bottle

theories, and [43] for isolated slit pore calculations based on mean field theory.

Most successful are approaches which combine the two theories [4].

The mean-field theory in connection with Landau theory has been able to ex-

plain several theories of phase transitions and in particular van-der Waals equa-

tion of state [80]. In general, the mean field approximation is capable of pro-

ducing some good qualitative approximations to phase transitions and critical

phenomena. In particular, the equation analogous to (67) for average magneti-

zation m in the original Ising model leads via the Taylor expansions, to scaling

laws and further to the concepts of universality, and renormalization. The exact

solutions in d = 1, 2 by Onsager show discrepancies in the scaling, but these

decrease if more long-range interactions are included [80].

4.2. Analysis of the MFEQ Adsorption Isotherms

Now we sketch the analysis of the simplified version of (67). For notation

convenience we set J = wff and α =
wmf

wff
; we also drop the MFEQ superscript

∗. Recalling (67) we rewrite the vector equation

ρ = F (β, µ; ρ) =
t

1 + exp(−βµ)exp(−βJ
∑

(i,j) ρj + α(1− tj)
.

It is convenient also to recall (60) where we set µref = 0, Pref = 1. (The
results do not depend on this choice.) We rewrite

ρ = F (β, P ; ρ) =
t

1 + P−βG(ρ)
, G(ρ) = exp



−βJ
∑

(i,j)

ρj + α(1 − tj)



 . (68)

It is clear that the solution ρ to (67), if it exists, must be in [0, 1].
Furthermore, we define the single component isotherms

aMFEQ(P ) = Aρ(P ). (69)

where A is a scaling constant dependent on the units required in the transport

model. For example, it may reflect the maximum volume of adsorbate which

can cover the surface of adosrbent.

Now we check when (68) is guaranteed to have a unique solution. To do so,

we analyze ∇ρF (β, P ; ρ). We consider only the simplified case with NF = 1,
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and t = 1. We notice that G(ρ) > 0, G′(ρ) = −βJG(ρ), and we find that F is

increasing since

∂

∂ρ
F (β, P ; ρ) = tβJ

P−βG(ρ)

(1 + P−βG(ρ))2
> 0. (70)

Further, to guarantee existence and uniqueness, we check if F is a contraction.

To do so, we write the expression for the derivative as a product of two terms

tβJ
P−βG(ρ)

(1 + P−βG(ρ))2
=

(

P−βG(ρ)

1 + P−βG(ρ)

)(

tβJ
1

1 + P−βG′(ρ)

)

. (71)

Now the first term is always less than 1. The contractivity is thus guaranteed

if the second term is less than 1 as well. This in turn is true if, e.g., βJ is

sufficiently small, and in particular if the temperature is sufficiently large. For

temperature lower than a certain critical value, the solution may be nonunique.

A similar qualitative result is well known for the Ising model, where the

uniqueness of solutions breaks for small T (or large β). The hysteresis in [78]

reported for large β is one consequence of the nonuniqueness of solutions, and

it corresponds to multiple metastable minima of the energy functionals.

Behavior of ρ(P )

Next we want to verify that ρ is indeed increasing with P so that later we

can verify (46). Note however that ρ is defined implicitly as the solution to (67).

We differentiate both sides of (68) and solve for
dρ
dP

to obtain, after some algebra

dρ

dP

[

1− tβJ
P−βG(ρ)

(1 + P−βG(ρ))2

]

=
tβP−β−1G(ρ)

(1 + P−βG(ρ))2
.

To show positivity of dρ
dP

we notice the right hand side is positive, thus it re-

mains to consider if the factor on the left hand side is positive as well. This

however reduces to checking if the derivative given in (71) is less than 1 again.

Furthermore, if
dρ
dP

> 0, then by (69), so is d
dP
aMFEQ(P ) > 0.

In summary, while we have not proven it rigorously, we have reasons to

expect that the isotherms aMFEQ(P ) are increasing functions of P . Further,

their values depend on the assumed porescale geometry t, and the coefficients

J , and α. It is clear that these may be specific to the particular gas component

and type of adsorbent.
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4.2.1. Finding Single Component Isotherms a0,MFEQ
i

Finally, when considering the multicomponent extension of these models,

we can use the single component isotherms derived, e..g, for a particular set

of the coefifcients Ji, αi and record their values as a
0,MFEQ
i . Now since they

satisfy the sufficient conditions of Proposition 3.1, at least as long as β is small

enough, we can infer that the MFEQ–derived adsorption system is hyperbolic

and that the eigenvalue properties are the same as those discussed for the EL

system, so long as β is small enough.

4.3. Results of MFEQ: Single Component Isotherms a
0,MFEQ
i

In this paper we consider the porescale geometry as given from tomography

images, or generated randomly, for a given porosity φ. We only consider two-

dimensional images. For tomography sample, we use a subimage of that in

Figure 1.

We consider three geometries: cleat, tuff, and synthetic (random); see Fig-

ure 6. We are unable to work with the original 3D porescale images of the cleats

or of the tuff, due to their high (and poor) resolution. The realistic cleat porosity

values are much smaller, around 0.1%; see images in Figure 1. However, it is

difficult to visualize or illustrate the model concepts at such a small porosity,

hence we choose a similar synthetic “cleat” geometry.

For illustration purposes, we scale all images to a 100×100 lattice, and

ignore the considerations of the effects of (finite) lattice size. We also create

a synthetic image of a cleat, due to the difficulties with the resolution of that

in Figure 1. In addition, we select a portion of the tuff data shown in Figure 6

of size 400×400 and subsequently upscale it by a factor 4 in each direction.

The porosity in our random “micropore” geometries varies, from 0.1 to 0.5.

While one could average over different tomography images, or different random

realizations of t, this will not be done here.

Our focus is on the qualitative properties of the isotherms, and we do not

make an attempt to correlate the MFEQ adsorption isotherms to the experi-

ments. In simulations below we keep parameter J = wff = 1 fixed, and

change only α =
wmf

wff
. We also vary β.
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Figure 6. Geometries used in porescale simulations with MFEQ methodology.

Top: the “tuff” geometry scaled to 100×100 lattice. Middle: the synthetic

“cleat” geometry. Bottom: the “micropore” geometry with φ = 0.1 and φ =

0.4.

4.3.1. Computational Results

In Figure 7 we show the adsorption isotherms derived for the three geome-

tries considered. The MFEQ isotherms derived with the data summarized in
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Table 3, and are plotted along with the Langmuir fit. For details of the fit and

dependence of the VL and b = BL on the coefficient α =
wmf

wff
, please see

Table 3.

Figure 7. Top: three examples of geometries with the film of adsorbate shown

for illustration. Below: the graphs of isotherms corresponding to each geometry

for β = 0.5 and different strength α of fluid/solid interaction. The rows corre-

spond to α = 1, α = 2, and α = 3. Each graphs displays the MFEQ isotherm

along with the fit to a Langmuir isotherm.

In Figure 8 we report on the effect of the temperature, or of β. It is clear

that as β increases, the Langmuir fit is not adequate, In fact, the slope of a(p)
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Figure 8. Effect of β on the isotherms for all three geometries. Top, middle, and

bottom show the results for β = 0.5, 1, 1.5, respectviely. All use α = 3.

close to 0 increases, and the shape of the isotherm changes.

The coefficient γ for each configuration is the ratio of the amount of density

of fluid in the adsorbate layer to the equilibrium density ρ. Of course, γ is

proportional to NA

NF
.

The next issue is how the strength wmf of matrix-fluid and wff of fluid-

fluid interactions affects the shape of the isotherms. We study this by changing

the ratio
wmf

wff
. One can see the qualitative difference in Figure 7 between the

isotherms corresponding to different α. In addition, in Figure 9 we track the
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Figure 9. Properties of MFEQ isotherms for the three geometries. Left: the

coefficient BL calculated from Langmuir fit for a given α. Right: ratio γ of

adsorbate density with respect to the fluid density for each equilibrium state.

dependence of the fit of BL from Langmuir model to α, for a fixed temperature
1
β

. We also collect selected numeric values in Table 3.

4.3.2. Multicomponent MFEQ Isotherms

One can postulate a multicomponent extension to the single-component the-

ory described in Section 4.1. However, some questions remain as concerns the

proper Mean Field Equilibrium formulation, and more research is underway.

Possible avenues include extensions similar to the Potts model in order to avoid

multiple fluiod occupancy, or a straightforward extension in whch the Hamilto-

nian penalizes the occupancy by multiple fluids.

Instead, we propose IAS as a proper method to combine multiple isotherms.

We fix J = 1, and calculate the isotherm a0,MFEQ
1 (P ) derived for a chosen
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Table 3. The ratio α =
wmf

wff
of interactions between matrix and fluid and

the corresponding BL in Langmuir fit to the MFEQ isotherms, at high

temperature (β = 0.5) and lower temperature (β = 1.0). The values of α

are selected so that the corresponding BL are approximately doubled,

mimicking the known ration between the BL values for CH4 and CO2.

Geometry β α BL α BL

Cleat 0.5 1.0 12.91 3 22.60

Cleat 1.0 1.0 2.66 1.6 5.28

Tuff 0.5 1.0 12.68 3 23.01

Tuff 1.0 1.0 4.81 1.6 11.22

Micropore 0.4 0.5 1 23.416 1.6 49.98

Micropore 0.4 1.0 1 23.7304 1.2 43.01

value of α1 with the MFEQ algorithm. Next we pick α2 and calculate the

isotherm a0,MFEQ
2 (P ).

We proceed next within the IAS framework to derive

aIAS,MFEQ
i (P1, P2), i = 1, 2. This step requires numerical integration

and the use of lookup tables. Furthermore, once aIAS,MFEQ
i , i = 1, 2 are

calculated, we proceed to simulate the transport solutions.

Case Studies

We set up two case studies, one dubbed “Data A”, and the other “Data B”.

Both use the “cleat” geometry.

Case DATA A. We use α1 = 1, and the Langmuir fit is VL = 1, BL =

11.91. For α2 = 3, the fit is VL = 1, and BL = 22.60.

Case DATA B. We use α1 = 1 and α2 = 1.6.

In the case DATA A we use β = 0.5 and the MFEQ isotherms a0,MFEQ
i ,

have a good Langmuir fit. In the case DATA B β = 1.5 and the fit is poor; recall

the evidence above.

As concerns transport simulations, we can compare these to the results

shown in Figure 3 and Figure 4. We notice the difference in the shock spped for

the CO2 component and the shape of rarefaction wave for the CH4 component.
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Figure 10. Isotherms and the corresponding transport solution for IAS model

which uses MFEQ derived single component isotherms a
0,MFEQ
i . These are

obtained with the simulation parameters for the case “DATA A”. The remaining

data for the simulation are as in Section 2.3.1, with the exception of dt=0.025.

The results are now put together; see Figures 10 and 11 corresponding

to the “Data A” and “Data B” cases. We show the multicomponent isotherms

aIAS,MFEQ
i obtained from the single component lookup-dataa0,MFEQ

i for each

case as well as the corresponding transport results.

These results demonstrate that our approach is viable. More importantly,

the comparison between the IAS isotherms for the case “DATA A” (Langmuir-

like) and “DATA B” (not Langmuir-like) shows that the hybrid methodology we

developed is indeed worth the effort, and not merely an exercise. The isotherms
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Figure 11. Isotherms and the corresponding transport solution for IAS model

which uses MFEQ derived single component isotherms a
0,MFEQ
i . These are

obtained with the simulation parameters for the case “DATA B”. The remaining

data for the simulation are as in Section 2.3.1, with the exception of dt=0.025.

for DATA B case have qualitative behavior distinct from DATA A or Langmuir

cases in that they switch from concave to locally convex. This requires further

studies, and in particular, over different geometries t.

5. Conclusion

In this paper we described a hybrid methodology which connects statistical

mechanics models, and in particular, the mean field MFEQ approach, to derive
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the multicomponent adsorption isotherms. We demonstrate that one can start

with a particular porescale geometry and derive single component isotherms

which can be next used, within IAS framework, to calculate the corresponding

multicomponent isotherms. The methodology works very well, as long as the

temperature is not too low, and the solutions to MFEQ problems can be found

by iteration. Furthermore, we embed the methodology in the framework of

conservation laws, and provide appropriate analysis of hyperbolicity condition

and of the appropriate CFL stability constraints.

Future work includes validation, verification, and testing, as well as con-

necting the MFEQ models to experimental data. More analysis of MFEQ and

extensions of the MFEQ model, as well as including local porescale transport

and diffusion, are underway.
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