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Summary
In this paper we discuss the multiblock algorithm for an implicit
black-oil model as implemented in the multiphase simulator
framework of IPARS (Integrated Parallel Accurate Reservoir
Simulator). The multiblock algorithm decomposes the simulation
domain into multiple nonoverlapping subdomains, or blocks, ac-
cording to the geometric, geological, and physical/chemical prop-
erties, and well distribution. Each block can have its own grid
system, and the grids of the neighboring blocks can be nonmatch-
ing on the interface, which allows for local grid refinement, or
discrete fault or fracture modeling. Adjacent blocks are coupled
across the interface by a set of conditions imposing a continuity of
both primary variables and component mass fluxes that is realized
through the use of special interface mortar variables. The resulting
system is solved by an interface Newton procedure. Regularization
techniques and preconditioners are proposed to improve the per-
formance of the solver. The multiblock technique is effective and
scalable, as shown by our numerical experiments. In addition, we
present how the multiblock black-oil model has been used in the
coupling of different physical models.

Introduction
The main thrust of this paper is to investigate accurate and efficient
numerical techniques for the simulation of flow and transport phe-
nomena in porous media, which are of major importance in the
environmental and petroleum industries. We propose to emphasize
a novel numerical methodology called the multiblock algorithm.
This algorithm decomposes the simulation domain into multiple
subdomains (blocks) according to their geological, geometric, and
physical/chemical properties. One then applies the most efficient
grid, numerical scheme, and physical model in each subdomain so
that the computational cost is reduced and accuracy is preserved.

Multiblock (also known as macro-hybrid) formulations1–8 pro-
vide numerical models consistent with the physical and engineer-
ing description of the underlying equations. That is, the equations
hold with their usual meaning on the subdomains, and physically
meaningful conditions are imposed on interfaces between the sub-
domains. In particular, it is possible both to couple different dis-
cretizations on nonmatching multiblock grids and to couple dif-
ferent physical models in different parts of the simulation domain.
These two features make the multiblock approach one of great
computational interest.

In many applications, the geometry and physical properties of
the domain or the behavior of the solution may require the use of
different grids in different parts of the domain that might not
possibly match on the interface. For example, the geology of the
subsurface may involve the modeling of faults, pinchouts, and
other internal boundaries. In such cases, the discontinuities of co-
efficients (e.g., mobilities) reduce the accuracy of traditional
single-block algorithm near-discontinuities. By splitting the do-
main into multiple subdomains along the boundaries of disconti-
nuities, solutions in each subdomain may have smooth properties,
and local convergence rates are regained. Furthermore, locally
refined grids may be needed for the accurate approximation of
local phenomena such as high gradients around wells.

More generally, multiblock decomposition can be induced by
differences in the physical processes and mathematical models or
by differences in the numerical discretization models applied to
different parts of the simulation domain.9–11 The overall compu-
tational cost can be reduced by selecting the most appropriate
model in a given part of the reservoir. For example, only a single-
or two-phase model is needed for the aquifer part of the reservoir,
whereas a black-oil or compositional model is necessary if the gas
phase is present in a subdomain.

In this paper, we discuss the formulation and implementation of
a multiblock algorithm for an implicit black-oil model. This
work represents a nontrivial extension of the multiblock algorithm
for a two-phase oil-water model1 as, in particular, it needs to ad-
dress numerical regularization issues arising at phase transitions.
Next, we briefly describe how the multiblock black-oil model is
used in the multiphysics coupling with the two-phase oil-water
model. We also address the issues that arise during implementation
in the IPARS framework. In particular, we discuss the parallelism
between the multimodel problem with the MPI multicommunica-
tor and model-based load balancing strategies. In the end, we
present numerical experiments that demonstrate the scalability of
our approach.

Multiblock Black-Oil Model

The 3D reservoir domain � is divided into a series of nbl non-
overlapping subdomains (blocks) �k, k�1, …, nbl, owing to geo-
logical faults,12 geometry irregularities, variations of rock proper-
ties, and physical/chemical properties of flow, well types, their
distribution, etc. Each block has a smooth rectangular grid. The
grids are constructed locally and may be nonmatching on the in-
terfaces between neighboring blocks. Fig. 1 illustrates a typical ge-
ometry for a 2D domain decomposition. Note that the interfaces
between blocks are filled with “mortars.” These are elements of a
finite element space called mortar space, which is constructed on
the 2D interface.

Each block or subdomain �k has an associated local physical
model/solver that could be a single-phase model, a two-phase oil/
water model, a black-oil model, a compositional model, etc. These
models can be implicit, semi-implicit or explicit in time, and they
can use different linear and nonlinear solvers. In this paper we
focus on the use of an implicit black-oil model as a subdomain
solver. See Ref. 9 for a discussion related to various oil/water
models coupled in the multiblock formulation.

Black-Oil Subdomain Formulation. The black-oil model is a
three-phase (water, oil, and gas) model describing the flow in a
petroleum reservoir.13,14 It is assumed that no mass transfer occurs
between the water phase and the other two phases. In the hydro-
carbon (oil/gas) system, only two components are considered. The
oil component (stock-tank oil) is the residual liquid at atmospheric
pressure left after differential vaporization, leaving the gas com-
ponent as the remaining fluid.

One should distinguish the difference between phase and com-
ponent.13,15 For water, these two concepts are the same in the
model because, by the above assumption, no mass transfer occurs
between the water phase and the others. As in the above definition,
oil and gas components refer to those hydrocarbon mixtures that
would be in liquid (usually heavy hydrocarbons) and gaseous (usu-
ally light hydrocarbons) states, respectively, after surface separa-
tion. The corresponding pressure and temperature are normally
called standard conditions, which are usually (but not always) 14.7
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psi and 60°F. The concept of phase would be meaningful only
under a specific pressure and temperature.

To avoid confusion, we use capital letter subscripts to denote
water, oil, and gas components (W, O, and G, respectively) and
lower-case letter subscripts to denote water, oil, and gas phases (w,
o, and g, respectively). Mass conservation for water, oil, and gas
components are given by

���NW�

�t
= −� � UW + qW, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

���NO�

�t
= −� � UO + qO, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

���NG�

�t
= −� � �UG + RoUO� + qG. . . . . . . . . . . . . . . . . . . . . . . . (3)

Note that the gas component flux consists of both the gas phase
(free gas) and the gas dissolved in the oil phase with a gas/oil ratio
denoted as Ro. At certain pressures (above bubblepoint) no free gas
can exist, and only two-phase (water/oil) conditions exist. In such
conditions, NG is proportional to NO through the gas/oil ratio for
the given pressure. On the other hand, if NG is bigger than RsoNO

at a given pressure, then three phase conditions exist.
Darcy’s law for multiphase flow is used to calculate the mass

velocity of component M in its corresponding phase m

UM = −
Kkrm

Bm�m
��Pm − �mg�D�. . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

Consistent with volume balance, the saturations must satisfy
the constraint

Sw + So + Sg = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)

Capillary pressures are defined as functions of saturation in the
following way:

Pcow = Po − Pw, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

Pcgo = Pg − Po. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

The above system of equations is discretized for a numerical
solution; the subdomain is covered by a tensor product grid, and
the equations are discretized using cell-centered differencing in
space and backward Euler differencing in time with Pw,, NO, and
NG chosen as primary unknowns.11 Upwinding is applied to cell
edge values for numerical stability.13,16 We recall that the cell-
centered differencing in space is equivalent to the expanded
mixed-finite element method of the lowest order Raviart Thomas
space (RT0) on a rectangular grid, provided certain quadrature
rules are applied. 3,4,17 The system of nonlinear algebraic equa-

tions is linearized by Newton’s method. A GMRES solver with
multilevel preconditioner18,19 or an LSOR solver is available to
solve the linear system at every Newtonian step.

Interface Conditions for Black-Oil Model. The above subdo-
main black-oil model equations hold in the interior of each of the
blocks. These equations need to be complemented by conditions
ensuring mass and momentum conservation across the interface.

In this paper, for simplicity, we assume that the rock type is the
same for all subdomains; therefore, the same capillary pressure
data is used. As a consequence, the pressure of each phase is
continuous. In the multiblock formulation, in order to impose the
continuity of pressure and to ensure the mass conservation, we
need to make the pressures and the mass fluxes corresponding to
two adjacent subdomains match on the interface. Specifically, on
each interface �kl, 1	k<l	nbl, we impose

Pm ���k
= Pm ���l

, m = w,o,g, . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

�UM � v�kl ≡ UM ���k
� vk + UM ���l

� vl = 0, M = W,O,G. . . . . . (9)

This approach is based on a domain decomposition algorithm
for single-phase flow developed originally for conforming grids,2

later generalized to nonmatching grids coupled with mortars,6,7

and used for two-phase oil/water models.1,9 Note that as a conse-
quence of Eq. 8 and the assumed homogeneity of rock type, if the
pressure of one phase is continuous, then the saturations and den-
sities of all phases are continuous. Thus, in order to express mo-
mentum conservation, instead of pressures, as in Eq. 8, we can
match a different set of variables, such as the values of the primary
unknowns in the black-oil model:

Pw ���k
= pw ���l

, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10)

NO ���k
= NO ���l

, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11)

NG ���k
= NG ���l

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12)

In fact, it is this set of conditions that is used in the discretization
of Eqs. 8 and 9. We note, however, that the assumptions of Eqs. 11
and 12 are only used for simplicity and that the general case of
different rock types is easily handled.

In discrete form, the conditions in Eq. 8 and 9 are imposed in
the weak (average) sense using the mortar spaces as follows: let

h denote the mortar space on the union of interfaces

� = ∪
1	k�l	nbl

�kl,

and let Mh�(Mh)3. The mortar space is constructed over a mortar
grid using piecewise polynomial finite element shape functions. It
was shown theoretically and numerically3,5,6 that, for matching
grids, we may use the same space on the interface as the normal
trace of the velocity space in subdomain; however, in the case of
nonmatching grids, in order to preserve optimal convergence (and,
in some cases, superconvergence), the mortar space must consist
of piecewise polynomials of one degree higher than the normal
trace of the velocity space in the subdomains. Because we use
cell-centered finite differences in space in each subdomain and the
normal trace of the velocity space is piecewise constant, we em-
ploy a piecewise linear space 
h on the interface.

The discrete equivalents of Eqs. 1 through 7, which are defined
on unions of all blocks with Eqs. 9 through 12, imposed on the
interface, are written as a nonlinear interface problem to be solved
by iteration for the values of interface primary unknowns � �
(P̄h,w ,N̄h,O ,N̄h,G)
 Mh. The nonlinear equations evaluate the jump
in fluxes Uh,M corresponding to � as

B(�,�) = �
1	k�l	nbl

�
�kl

{ �
M

W,O,G

[Uh,M(�) � v]kl�}d�. . . . . . . . . (13)

To achieve mass conservation (or flux continuity), we need to
determine � such that the jump in the fluxes is

B��,�� = 0, �� ∈ Mh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (14)

Fig. 1—2D multiblock domain decomposition.
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We can also write B(�,�)�(B(�),�), where the physical meaning
of B(�) is the square of the jump of the fluxes across all the
interfaces corresponding to the given value of �, which provides a
boundary condition for each phase/component. Note that a subdo-
main solver delivers the value of Uh=(Uh,W ,Uh,O ,,Uh,G ) at each
block k.

The solution to the interface problem in Eq. 14 is equivalent to
the solution on all subdomains with mass and momentum pre-
served (weakly) across the interface.

Interface Solver. The system of nonlinear equations on the inter-
face in Eq. 14 is, in our implementation in IPARS, solved by an
inexact Newton method.1,7,18 Each Newtonian step solution is
computed by a forward difference GMRES iteration. Each
GMRES iteration involves solving subdomain problems with the
Dirichlet boundary condition provided by the interface code. The
subdomain problems in turn deliver values of fluxes across each
interface. Additionally, two inexpensive projection steps are nec-
essary: the first one projects � from the interface mortar grid onto
the local subdomain grids so that it may be used as the Dirichlet
value, and the second one projects normal fluxes Uh computed by
the subdomain solver from the local grids onto the mortar grid.
Details of the algorithm can be found in Ref. 1, 5, 7, and 18.

The interface algorithm is an iterative procedure. It assumes an
initial guess for the values of primary variables � on the interface
to be used after projection as a Dirichlet boundary condition on
subdomains. The subdomain problems are then solved, and the
jump in the component fluxes B(�) is calculated on the interface.
If the jump is less than a given tolerance, the current timestep is
completed; otherwise, the interface unknowns � are updated and
the procedure is repeated until convergence.

To facilitate the above steps in implementation, additional
memory needs to be allocated for each block to store boundary
layer information such as the values of primary variables, trans-
missiblities, component mass fluxes, and so on. Analogous to the
interior cells, upwinding is applied to the boundary values for flux
calculations. One advantage of this approach is that the Dirichlet
boundary conditions can be included in both the Jacobian matrix
and the residuals of the block without modifying the subdo-
main code.11

Regularization of Gas-Phase Relative Permeability on Inter-
face. One major issue that arises in modeling on the interface of
the three-phase black-oil model is the treatment of the gas phase
when it reaches the interface. The gas component consists of both
free gas and gas dissolved in the oil phase. Either the gas phase can
be immobile, when gas saturation is less than the residual gas
saturation, or the gas phase can be mobile, when the gas saturation
is greater than the residual value.15,20 The former situation may
arise when the interface is near production wells. In this case, it is
assumed that no gas phase exists initially on or near the interface.
But the gas phase may be created later near the production wells
because of a pressure drop. The gas phase zone then expands as a
function of time, and eventually may reach the interface. Note that
the gas phase is created because of the pressure drop and not as a
result of transport.

Because of the nonzero residual gas saturation, when the front
of the gas phase zone first reaches the interface, the physical
problem becomes degenerate, and the Jacobian matrix on the in-
terface is no longer diagonally dominant. Consequently, the inter-
face solver may not converge to a physical solution, and the simu-
lation may fail.

Fig. 2 is a typical gas relative permeability curve, where Sgr is
the residual gas saturation. When the gas saturation Sg increases
gradually from zero to the residual gas saturation Sgr, the concen-
tration of the gas component increases on the interface, while the
gas component mass flux (and therefore the jump in this flux
across the interface) remains unchanged. Because neither the gas
component mass flux with free gas (or gas phase) nor that with the
dissolved gas changes (note that the amount of gas component
dissolved in oil phase is unchanged since the pressure is un-

changed), the change of the jump in the gas flux is zero on the
interface. In this case, we have

��UG � v�

�NG
= 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (15)

where [UG·�] denotes the mass flux jump of the gas component
across the interface. Numerically, this partial derivative is a diago-
nal term in the interface Jacobian matrix. The zero diagonal term
makes the matrix no longer diagonally dominant.

Our solution to this problem is to regularize the gas relative
permeability curve.11 We enforce a small slope dkrg/dSg between
Sg�0 and Sg�Sgr, as shown in the right plot of Fig. 3, so that the
derivative in Eq. 12 will be greater than zero. As a result, the
interface Jacobian matrix will be better conditioned.

The admissible sizes of the slope are case-dependent. It is
necessary to choose a slope sufficiently large for stabilization but
not so large that the physics of the problem changes. Our experi-
ence indicates that the recommended range would be between 10−2

to 10−4. Fig. 4 shows the comparison of the water pressure distri-
bution of a 1D case when the problem is simulated with a single
block (no interface) and with the multiblock (two blocks connected
with an interface). Fig. 5 shows a comparison of gas saturation
distributions. The dimensionless length of the case was 1, with grid
size of 50×1×1. The initial gas saturation was set to zero, and the
gas relative permeability is shown in Fig. 2, with a residual gas
saturation Sgr�0.15. A production well was set at xd�0.05, an
injection well at xd�0.95, and the interface at xd�0.2. The results
were taken after 100 days of simulation. As we see, the slopes
ranging from 10−2 to 10−4 work well. But with slopes beyond this
range, the simulation crashed on the interface because of bad pri-
mary variable values.11

Fig. 2—A typical gas relative permeability curve.

Fig. 3—Gas relative permeability curve near residual gas satu-
ration. Left: initial curve. Right: regularized curve.
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Note that the regularization is only necessary on the interface.
In the subdomains, the original gas relative permeability is used.

Coupling Different Physical Models
In a given part of the reservoir, we may want to individually select
the most appropriate physical model to be coupled to other parts
and their assigned models through the multiblock algorithm. Each
model should be as simple as possible, yet it should include nec-
essary elements to describe the relevant physical and chemical
phenomena of the flow and transport in the associated subdomain.
This strategy may lead to a significant reduction in the overall
computation, especially for multimillion grid size cases, though
the accuracy of the simulation is still retained.10,11

For example, in the aquifer part of the reservoir—or in the part
with a water/oil two-phase system and no free gas created during
the whole operation—a two-phase code is appropriate. In the part
with gas cap, or with production wells around which free gas may
be created because of low bottomhole pressure, a black-oil or a
compositional code is necessary. Here we discuss the coupling of
the implicit black-oil model and an implicit two-phase oil/water
model. In this coupling it is essential that conservation quantities
be preserved across the interfaces. With the black-oil model dis-
cussed above, we briefly review the oil/water model.

Oil/Water Model. The immiscible two-phase oil/water model is,
in some sense, a subset of the black-oil model in which the gas
phase and component are absent. It is governed by the equations

���Nw�

�t
= −� � Uw + qw, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16)

���No�

�t
= −� � Uo + qo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17)

Note that here we use purposely the phase subscripts instead of
component subscripts for concentrations and fluxes. In the immis-
cible model, these two concepts are equivalent. This different no-
tation allows us to easily differentiate between the black-oil model
and the two-phase model.

Darcy’s law for multiphase flow is used to calculate the mass
velocity of phase m:

Um = −
Kkrm

�m
�m��Pm − �mg�D�. . . . . . . . . . . . . . . . . . . . . . . . . (18)

The saturations must satisfy the constraint

Sw + So = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19)

In this model, the phases are slightly compressible, so densities
are assumed to depend on the pressure exponentially. Finally, cap-
illary pressure is defined as function of saturation in the following
way:

Pcow = Po − Pw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20)

Oil-Phase Partitioning Across Interface. A natural question
arises from the coupling of these two models: how should the gas
component on the interface be dealt with now that on one side of
the interface is a three-phase black-oil model and on the other side
is a two-phase oil/water model that assumes no gas phase? The natu-
ral strategy is as follows: select subdomains appropriately and parti-
tion the oil phase on the interface into oil and gas components.11

In the decomposition into subdomains, we assume that in the
time period being simulated no gas phase (free gas) appears on any
interface. This can be achieved by a careful decomposition of the
domain. In other words, the interfaces between black-oil models
and two-phase oil/water models are selected to be below the gas
cap and a sufficient distance away from the production wells in
which free gas may be created because of pressure drops. This
means that the reservoir pressure is above the bubblepoint pres-
sure15 on and near the interfaces. However, the gas component
dissolved in the oil phase is still allowed to exist on interfaces. The
selection of domains can of course be adaptively changed to meet
these two criteria.

The oil/water model describes the flow of water and oil phases,
but does not distinguish between the oil-phase and the oil compo-
nent, while the black-oil model takes the oil component and the gas
component in a liquid state as the oil-phase. Therefore, our second
strategy involves the splitting of the oil phase on the interfaces into
oil and gas components. This is achieved by constructing appro-
priate correlations relating component with phase. No difficulties
arise in the aqueous phase, because the water phase consists only
of the water component in both models.

We define the oil phase in the oil/water model as saturated oil
with a constant nonzero gas/oil ratio Ro that can be chosen to be
close to the solution gas/oil ratio Rso. Therefore, on the interface
between these two models, we need to partition the oil phase
concentration No of the oil/water model into the oil component
concentration NO and the gas component concentration NG in order
to match the values of the black-oil model, according to the mass
fractions of these two components in the oil phase. Without con-
sidering unit conversions at this point, we define

NW ��D
B = Nw ��D

H , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21)
Fig. 5—Effect of gas relative permeability regularization on gas
saturation distribution of a 1D case with two blocks.

Fig. 4—Effect of gas relative permeability regularization on wa-
ter pressure distribution of a 1D case with two blocks.
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NO ��D
B = No ��D

H
�OS

�OS + �GSRo
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22)

NG ��D
B = NO ��D

B Ro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (23)

Multimodel Interface Coupling. We may assume that the oil
phase in the oil/water model is saturated, with a gas/oil ratio Ro

that stays approximately constant during the simulation. Conse-
quently, we may assume Ro to be constant on the interface between
the oil/water model and the black-oil model. Therefore, the value
of NG on the interface can be calculated from NO of the black-
oil model as the gas/oil ratio Ro is assumed to be constant on
the interface.

The primary variables of the subdomain models—the implicit
oil/water model and the implicit black-oil model—as well as those
on the interface are summarized in Table 1. The primary variables
on the interface—water pressure Pw and oil-phase concentration
No—are chosen to be something between the two subdomain mod-
els. We only solve for two primary variables, because there are
only two phases existing on the interface and also because the gas
component is assumed to be in a constant proportion to the oil
component. Therefore, we only match the oil component and the
water component fluxes across the interface. The gas component
flux is matched automatically because the gas/oil ratio is constant
on the interface.

The interface formulation can be summarized as follows: solve
Eq. 14 where, for ��(P̄w,N̄o) ∈ Mh, the primary variables on the
interface, we define

B(�,�) = �
1	k��	nbl

�
�kl

{�
M

W,O

[Uh,M(�) � v]kl�}d�. . . . . . . . . . . (24)

The system of nonlinear equations on the interface is solved by
an inexact Newton method as explained previously.

Similar to the splitting of oil phase concentration on the inter-
face, we need to split the oil phase flux of the oil/water model into
the oil component flux and the gas component flux to match the
black-oil model, using the correlations analogous to Eqs. 21
through 23.

Implementation Issues
All implementation aspects and results presented in this paper are
built upon the framework of IPARS (Integrated Parallel Accurate
Reservoir Simulator), 1–8,21 which has been developed at the Cen-
ter for Subsurface Modeling at the U. of Texas at Austin. It is a
new generation framework for developing and running parallel
reservoir simulators, solving problems involving a million or more
grid elements, and supporting a variety of physical and numerical
models plus simplified well management. This framework pro-
vides an infrastructure that is common to most simulators, such as
parallel message passing, memory management, grid generation,
free-form keyword input, formatted output for visualization, user
units specification, general purpose 2D function utilities, table
lookup, and so on, so that the developer only needs to code the
physical model of interest.

The MPI portable message passing interface22 is currently used
to manage the message passing in parallel computations. The
framework is portable, running on platforms such as IBM and SGI

workstations, Cray T3E, IBM SP, single PC under Linux, Win-
dows and DOS, and PC clusters under Linux.

The framework can have multiple (fault) blocks (or subdo-
mains), each of which may have its own physical model associated
with it. The neighboring blocks are connected via an interface
using either the mortar spaces approach presented here or the dual
approach discussed in Ref. 8. Unit conversion between different
models may be necessary in the coupling of different models.

The linear solvers for different physical models can be either
different or the same. A parallel GMRES solver18,19 has been
extended for solving multiple models simultaneously. The basic
idea for the extension is to expand the workspace (e.g., the ba-
sis for the Krylov space used in solving a linear system18) from
a scalar to an array, so that each model has its own entry in
the workspace.

The parallelism is a delicate and interesting issue to tackle.
Unlike the traditional single model simulator, the multimodel
problem is actually an MIMD (multiple instruction multiple data)
problem. We use multiple MPI communicators in the implemen-
tation. 11,22 The processors are split into multiple groups (or com-
municators) so that each physical model has its own communica-
tor. Within a communicator, the adjacent processors can exchange
the boundary information that is necessary for parallel computa-
tion. Message passing between different communicators is
also allowed.

Load balancing is important for parallel efficiency. The tradi-
tional (single-model) load-balancing strategy divides the grid cells
evenly between processors. In multimodel cases, a processor may
be shared by more than one model. This may cause a loss of
parallel scalability because of a synchronization problem between
different models. Therefore, we suggest using two criteria to im-
prove load balancing (or model-based load balancing) in multimo-
del implementation.9–11

First, because of synchronization issues existent between dif-
ferent communicators, if possible, one processor should never
handle more than one model/code. Second, the number of proces-
sors assigned to each model should be weighted by the speed of the
simulation, provided that the first criterion is satisfied. Fig. 6 dem-
onstrates a comparison of the speedup with these two strategies for
a three-block case coupling the black-oil model and the oil/water
model. With model-based load balancing strategies, ideal, or even
superlinear speedup, can be obtained.

Computational Examples
Example 1: The First Multiblock Black-Oil Case. Our first ex-
ample was the horizontal reservoir with geometry as shown in Fig.
7. One injection well and one production well were completed at
the two ends of the reservoir with piecewise linearly changed
bottomhole pressure with respect to the simulation time. The size

Fig. 6—Parallel multimodel speedup for coupling black-oil
model and oil/water model.

TABLE 1ÑPRIMARY VARIABLES FOR THE SUBDOMAIN

MODELS AND INTERFACE COUPLING IMPLICIT OIL/WATER

MODEL AND BLACK-OIL MODEL

Oil/Water Model Black-Oil Model Interface

PO

NO

Pw

NO

NG

Pw

NO
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of the reservoir was 1,600×500×15 ft, in two horizontal directions
and one vertical direction, respectively (we will follow the same
order in later discussions). The original water pressure was 2000
psi at the top of the reservoir. The permeability field was layered,
with 100 md and 50 md in the horizontal and vertical directions,
respectively, at the top and the bottom layers. The horizontal per-
meability was 50 md at the middle layer. The rock at the northeast
and southwest corners was impermeable. The reservoir was split
into three blocks according to geometry and well locations. At the
blocks (Blocks 1 and 3) containing wells, which were at southeast
and northwest corners, we applied a fine grid in each block, with
grid size 10×10×3. The size of each grid cell was 20×20×5 ft.
Block 2, the largest of the three blocks, contained no wells, and the
flow in this block was smooth; therefore, we used a coarse grid of
size 10×10×3. Here each grid cell was of size 160×50×5 ft.

Two interfaces were set between the neighboring blocks with
the grid size of the mortar space as 1×3 (horizontal direction and
vertical direction, respectively). A continuous piecewise linear ba-
sis was applied in the mortar space on the interface.

We ran this case with the multiblock black-oil code. It normally
took two Newtonian steps on the interface and 18 subdomain
evaluations, on average, per timestep. We observed that the jump in
fluxes across the interface decreased quadratically with the Newto-
nian interface iterations, which is optimal for Newton’s method.

For comparison purposes, we also ran this case using the single
block black-oil model (no interface) with fine grid (20×20×5 ft)
over the entire reservoir, with some of the elements keyed out at
the corners to match the original geometry. Figs. 8 and 9 show the

oil saturation contours obtained from these two approaches. Figs.
10 and 11 compare the gas saturation profiles between these two
approaches.

We observed that both the oil and gas fronts cross the interfaces
without any difficulties; gas relative permeability regularization is
necessary here. The contours from these two approaches look very
similar, though they are not exactly the same. The small difference
arises from two sources. First, there is a small local discrepancy
between the numerical results given by the interface algorithm and
those given for the single block. This is because the flux and
pressure continuity is imposed in a weak sense only and because
the interface Newtonian iteration stops when some nonzero toler-
ance criterion is satisfied. Second, the graphic tool (Tecplot23)
renders the contours separately for each block; therefore, even
continuous functions when shown on multiblock grid may appear
to have discontinuous contours.

Another way to compare the results of different simulations is
presented in Fig. 12, which shows the injection and production
flow rates obtained from the multiblock and single-block simula-
tors. The two simulators match each other perfectly.

Finally, we consider the computational efficiency of the multi-
block approach. As we can see in Table 2, the multiblock simu-
lation ran faster than the single-block black-oil model simulation

Fig. 7—The geometry and grid system of the reservoir used by
Example 1.

Fig. 8—Oil saturation contour for the horizontal reservoir at the
1,600th day given by multiblock black-oil model.

Fig. 9—Oil saturation contour for the horizontal reservoir at the
1,600th day given by single-block black-oil model.

Fig. 10—Gas saturation contour for the horizontal reservoir at
the 1,600th day given by multiblock black-oil model.

283September 2002 SPE Journal



by a factor of 1.43. Concluding this example, we note that by using
the multiblock algorithm to handle local grid refinement and coars-
ening, we reduced the computational time spent without sacrific-
ing accuracy.

Example 2: The Second Multiblock Black-Oil Case. This was a
dipping rectangular reservoir, the geometry and permeability dis-
tributions for which are shown in Fig. 13.

The size of the reservoir is 880×880×3 ft. It has a dip angle
��2.9° from a horizontal direction. It is characterized by a very
high permeability contrast; the permeability of most of the domain
was 2 md in all directions. There was, however, a high permeabil-
ity streak along the two sides of the reservoir with a permeability
of 500 md, except for a layer at the middle of the streak, which had
a permeability of 100 md. An injection well and a production well
were located at the two opposite corners of the high-permeability
streak. The initial water pressure and water saturation at the top of
the reservoir were 2,300 psi and 0.22, respectively.

For this case, it was desirable to apply a fine grid in the regions
with high permeability and wells and use a coarse grid in the
remaining part of the reservoir. Therefore, we split the reservoir
into three blocks with three interfaces set between neighboring
blocks as in Fig. 13. The size of a fine-grid cell was 20×20×5 ft,
and the size for a coarse-grid cell was 80×80×10 ft.

The mortar grids between Blocks 1 and 2, and between Blocks
1 and 3, were 3×1 (horizontal direction and vertical direction,
respectively). The grid size of the mortar space between Blocks 2
and 3 was 1×1. The basis for the mortar spaces was taken to be
continuous piecewise linear. The oil saturation profiles at the
1,000th day are shown in Fig. 14.

Again, we simulated the same problem with the single-block
black-oil model for comparison. We had to use a fine grid all over
the reservoir. As a result, the multiblock approach was almost
twice as fast as the single-block approach, as shown in Table 3,
while the well flow rates showed excellent matching as shown in
Fig. 15.

Example 3: Multimodel Case. This is a reservoir with a geometry
suitable for splitting into three blocks with two interfaces between

neighboring blocks. The domain decomposition, gridding, perme-
ability distribution, well locations, and assignment of physical
models are shown in Fig. 16. The two interfaces were between
Blocks 1 and 2 and between Blocks 1 and 3, respectively. The fault
between Blocks 2 and 3 was impermeable. The size of Block 1 was
800×800×48 ft (two horizontal directions and one vertical direc-
tion, respectively); the size of Block 2 was 9,600×6,400×48 ft and
6,400×9,600×48 ft for Block 3. Grid sizes of the three blocks were
20×20×8, 18×13×4, and 13×19×4, respectively. The grid cell size
in Block 1 was chosen as relatively small (40×40×8 ft per cell),
because this block represented the production zone containing
seven wells. In contrast, a coarse grid (160×160×16 ft per cell) was
used in most of Blocks 2 and 3, except around four injection wells
(80×80×16 ft per cell). The total number of grid cells was 5,124.

There were 11 wells in all: two oil-rate specified production
wells, five bottomhole pressure-specified production wells, and
four bottomhole pressure-specified water injection wells used to
maintain the pressure. The permeability was layered as shown in
Fig. 16 with light color denoting high permeabilities (200 md) and
dark color marking low permeabilities (20 or 50 md). Block 1 had
high initial oil saturations, ranging from 0.5 to 0.8, with a gas cap
dominating the top 8 ft, while, for the most part, Blocks 2 and 3
were aquifers. The initial oil pressure at the top of the reservoir
was 2,000 psi.

According to the geological and geometric characteristics of
the reservoir and the well types and locations, we assigned the

TABLE 2ÑCOMPARISON OF CPU TIME FOR THE CASE

USED IN EXAMPLE 1 FOR SIMULATION TIME OF 1,600 DAYS

Multiblock

Black-Oil

Single-Block

Black-Oil

Total CPU time (seconds) 2,438 3,486

Fig. 11—Gas saturation contour for the horizontal reservoir at
the 1,600th day given by single-block black-oil model.

Fig. 12—Comparison of injection and production flow rates for
Example 1 given by multiblock and single-block black-oil model.

Fig. 13—Geometry, permeability distribution, wells location,
multiblock decomposition, and gridding of the dipping reser-
voir used by Example 2.
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black-oil model in Block 1 and the oil/water model in Blocks 2
and 3.

We assumed that the oil phase in the oil/water model and on the
interface was saturated with a constant gas/oil ratio, which was
about 90% of the solution gas/oil ratio under the average pressure
on interface.

We used the minimum mortar grid, which is 1×1. It usually
took two Newtonian iterations on the interface to converge to the
given tolerance. The jump in fluxes decreased quadratically. The
optimal convergence rate for Newton’s method when a good
enough initial guess is given is quadratic as well. The initial
timestep was 0.5 day, and it quickly increased to 20 days.

The oil component concentration profiles at the 500th day ob-
tained from the multimodel are shown in Fig. 17. The effects of
production and waterflooding are obvious in that the water front
has passed through the interfaces, and the gas cap shrank back to
the far corner of Block 1, away from the other two blocks.

For comparison purposes, we simulated the case of the single-
block black-oil model with a uniform fine grid (40×40×8 ft for
each cell) in the entire reservoir. The total number of grid cells was
41,600 in this case. The well flow rates are compared in Fig. 18.
The total oil production rate and total gas production rate got
excellent agreements between the multimodel and the single-block
black-oil model. However, the total water production rate and total
water injection rate had about 5% difference between the two
approaches, which was expected, because the sizes of the grid cells
around the injection wells were different between these two simu-
lations. The fact that the injection wells were handled by the oil/
water model in the multimodel approach, and that they were
handled by the black-oil model in the single-block black-oil model
approach, may have contributed to part of the differences.

As shown in Table 4, the multimodel simulation achieved a
dramatic reduction in computational time by a factor of 7.07 com-
pared to the single-block black-oil model. This is clearly an effect
of using the faster model (oil/water model) in two larger blocks
combined with grid coarsening there. Without the latter, the cost
reduction could be less dramatic.

Conclusions
1. The multiblock algorithm is a promising method to couple ap-

propriate grids and physical models based on decomposing the
simulation domain into multiple subdomains (blocks) according

to the geological, geometric, and physical/chemical properties.
The flux continuity across the interface between adjacent blocks
is achieved accurately. Through a comparison study between the
multiblock/multimodel and the traditional single-block/single-
model, it has been demonstrated that the computational cost is
reduced and accuracy is preserved when multiblock couplings
are used.

2. In the multiblock black-oil model, the regularization of the gas
relative permeability is applied on the interface to avoid the
degeneration of the physical problem that may occur when the
gas phase saturation on the interface is greater than zero but less
than the residual value.

3. In the coupling of the implicit black-oil model and the implicit
oil-water model, proper domain decomposition is needed to en-
sure that the gas phase never reaches the interface in the time
period being simulated. Oil phase partitioning is applied to
match the oil component and gas component, respectively,
across the interface between the two models.

4. The MPI multicommunicators have been used in parallel imple-
mentation of the multimodel problem. The processors are di-

TABLE 3ÑCOMPARISON OF CPU TIME FOR THE CASE

USED IN EXAMPLE 2 FOR SIMULATION TIME OF 1,000 DAYS

Multiblock

Black-Oil

Single-Block

Black-Oil

Total CPU time (seconds) 2,773 5,467

Fig. 14—Oil saturation profile at the 1,000th day given by multi-
block black-oil model.

Fig. 15—Comparison of injection and production flow rates
given by multiblock and single-block black-oil model for the
case used by Example 2.

Fig. 16—Geometry, domain decomposition, gridding, perme-
ability distribution, wells locations, and assignment of models
of the reservoir used by Example 3.

285September 2002 SPE Journal



vided into multiple groups, or communicators, so that different
groups can run different models simultaneously. This imple-
mentation allows an arbitrary number and combination of mod-
els, and it is independent of the interface code. Model-based
load-balancing strategies have been applied to achieve ideal
speedup; in some cases, even superlinear speedup can be ob-
tained.

Nomenclature
Bm � formation volume factor of phase m, bbl/STB

B(�,�)� the jump in fluxes across the interface, L/t, ft/sec
d� � differential of surface area, L2, ft2

D � depth, L, ft
g � gravity magnitude, L/t2, psi-ft2/lb

krm � relative permeability of phase m

K � absolute permeability, L2, md
Mh � discrete space of mortar scalar functions on all

interfaces
nbl � number of subdomains
nc � number of components

Nm � concentration of phase m, m/L3, lb/ft3

NM � concentration of component M, or stock tank volume
of component M per unit pore volume, m/L3, stb/bbl

N̄ � interface (mortar space) component concentration,
STB/bbl

Pcgo � capillary pressure between gas and oil phases, m/Lt2,
psi

Pcow � capillary pressure between oil and water phases,
m/Lt2, psi

Pm � pressure of phase m, m/Lt2, psi
P̄ � interface (martor space) pressure, m/Lt2, psi

qM � mass rate of component M as source term, L3/t,
ft3/sec

Ro � gas/oil ratio, mscf/scf
Rso � solution gas/oil ratio, mscf/scf
Sm � saturation of phase

t � time, t, sec
Um � flux of phase m, m/t, lb/sec
UM � flux of component M, L/t, ft/sec

� � angle, degree
�kl � the interface between the kth and the lth blocks

� � discrete mortar space test function
�m � viscosity of phase m, m/Lt, cp

� � outer unit normal vector
� l � outer unit normal vector on face of lth block
�m � density of phase m, m/L3, lb/ft3

�GS � gas phase density at standard condition, m/L3, lb/ft3

�OS � oil phase density at standard condition, m/L3, lb/ft3

� � porosity
� � primary unknowns on the interface
� � the reservoir domain

�k � the kth block or subdomain
�D � Dirichlet boundary of subdomain
�� � boundary of �
[·]kl � jump (difference in values on two sides of an

interface between the kth block and the lth block)

Subscripts

g � gas phase
G � gas component
h � approximated quantity
m � phase subscript (w, o, or g)
M � component subscript (W, O, or G)
o � oil phase
O � oil component
S � standard condition
w � water phase
W � water component

Superscripts

B � properties of black-oil model
H � properties of oil/water model

TABLE 4ÑCOMPARISON OF CPU TIME BETWEEN

MULTIMODEL AND SINGLE-BLOCK BLACK-OIL MODEL

FOR SIMULATION TIME OF 500 DAYS IN EXAMPLE 3

Multimodel

Single-Block

Black-Oil

Total CPU time (seconds) 4,053 28,639

Fig. 17—Oil component concentration profile of the reservoir
with three blocks at t = 500 days given by multimodel.

Fig. 18—Comparison of total well flow rates of the reservoir in
Example 3 given by multimodel and single-block black-oil
model.
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SI Metric Conversion Factors
bbl × 1.589873 E–01 � m3

cp × 1.0* E–03 � Pa·s
°F (°F–32)/1.8 � °C
ft × 3.048* E–01 � m

ft2 × 9.290304* E–01 � m2

ft3 × 2.831685 E–02 � m3

lbm × 4.435924 E–01 � kg
md × 9.869233 E–04 � �m2

psi × 6.894757 E+00 � kPa

*Conversion factor is exact.
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