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Abstract. The ability to evaluate the effective permeability of proppant packs is useful in
predicting the efficiency of hydraulic fracture installations. In this paper we propose a com-
putational approach combining microimaging data from X-ray computed microtomography, the
simulations of flow at pore-scale, and an upscaling process which identifies the effective model
parameters at the core-scale. With this computational approach applied to proppant pack we
confirm the reduction in the fracture conductivity and subsequent reduction in the productivity
of a hydraulically fractured reservoir due to the high flow rates and to the migration of fine
particles resulting in pore throat bridging.
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1 Introduction

Computational modeling of flow at pore-scale is a powerful tool providing insight into the char-
acter of flow in complex pore-scale geometries composed of grains and voids. When combined
with upscaling, the pore-scale simulations can provide effective parameters characterizing the
flow at core-scale, which can be subsequently used in reservoir scale models. Pore-scale com-
putations are especially meaningful in realistic 3D geometries such as those obtained by X-ray
computed microtomography and other microimaging techniques [1, 2, 3], but they remain a
challenging computational task. Direct Numerical Simulations (DNS), i.e., direct numerical dis-
cretization of partial differential equations describing the flows at pore-scale are increasingly
popular [4, 1, 5, 6, 7, 8, 9] since they can be easily coupled to simulate processes other than just
the flow.

In this work we apply DNS at pore-scale and our method of upscaling developed and refined
in [10, 11, 12, 7, 13] to study the flow through a proppant pack. We describe the methodology
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Figure 1: The schematic workflow in our “virtual lab”. The arrows indicate different steps
described in this paper.

which starts with a realistic geometry obtained by microimaging and which helps to assess the
critical factors determining the efficiency of hydraulic fracturing such as the fracture and proppant
conductivities. The process is shown schematically in Figure 1.

Hydraulic fracturing of oil and gas wells creates highly conductive fractures that connect the
reservoir to a well and enables sustained production. This complex process [14, 15, 16]. starts by
injecting fluid into a formation under high pressure which induces fracturing. In order to keep
the walls of fractures open after injection stops, small solid particles called proppant are added to
the injected fluid. An optimal fluid system must be able not only to extend the fracture length,
but also to transport the proppant.

There is a big variety of materials used to prop the fractures open. These may be natural
(sand), or manufactured particles (ceramics, resin-coated silica, bauxite). The proppant material
is selected depending on several criteria, mostly related to the reservoir lithology. Critical factors
are closure stresses and fracture conductivity requirements.

Factors that negatively impact the fracture conductivity also negatively impact the well
productivity. The fracture conductivity depends on fracture width and on the conductivity of
the embedded proppant filled domain, which affects the overal fracture conductivity significantly
at a smaller scale. It is difficult to measure fracture conductivities in a lab due to the scales
involved as well as due to the difficulties in mimicking the realistic process conditions such as
high temperature and pressure and large flow rates. Frequently the values measured overpredict
the realistic conductivities by an order of magnitude [16].

In this paper we use pore-scale simulations to study various factors affecting proppant con-
ductivity and its reduction. In particular we are interested in conductivity reduction due to
non-Darcy effects at high flow rates. The influence of high flow rates on productivity of wells
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Figure 2: Ceramic proppant used in this paper. Grain size is within the range 600 µm–1180 µm
(mesh 16/30).

has been studied for a long time [17]; see also theoretical and computational models in [18, 19]
and references therein. We study this aspect of proppant conductivity following our prior work
on glass beads, sandstone, and synthetic geometries in [11, 7, 13, 12].

We also consider another factor causing a reduction in fracture conductivities due to the
migration of fine particles (fines). The propping fluid, if not cleaned up, causes cyclic stress
resulting in crushing, fines migration and intrusion as well as proppant scaling. Subsequently the
geometry of voids and grains in the proppant may be altered by several overlapping mechanisms
of particle deposition such as surface deposition, pore-throat bridging, internal cake formation,
or particle accumulation in low flow regions [14]. Here we consider a model of bridging throats
in the proppant and describe the associated reduction of conductivity.

The paper is organized as follows. Section 2 describes the microimaging data obtained for
a proppant sample. In Section 3 we describe the computational pore-scale and upscaling ap-
proaches. In Section 4 we present the results of computational experiments. We demonstrate
the conductivity reduction due to (i) high flow rates, and to (ii) the bridging of throats simulated
with a stochastic model.

2 Microimaging and proppant pore-scale geometry

X-ray computed tomography is a non-destructive technique enabling 3D reconstructions of the
internal structure of various objects, and this technique has been used very successfully to obtain
images of pore-scale geometries [1, 2]. In this paper we are concerned with the simulations of
flow in a proppant pack sample obtained from X-ray computed microtomography.

A sample of ceramic proppant with the grains of diameters varying from 600 µm to 1180 µm
(mesh 16/30), Fig. 2 was imaged with the Benchtop CT-160X X-ray microtomograph [20, 21].
The measurements were performed under 130 kV energy of the X-ray source and the current
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Table 1: Classification of voids

Volume Class Volume Volume [µm3] Isolated Objects Class Volume
Class [voxel] Counts [voxel]

I 1–9 5929 - 53367 0 0
II 10–99 5929× 101 – 5929× 102 1556 37249
III 100–999 5929× 102 – 5929× 103 48 9044
IV 1000–9999 5929× 103 – 5929× 104 1 1114
V 10000–99999 5929× 104 – 5929× 105 0 0
VI 100000–999999 5929× 105 – 5929× 106 0 0
VII >1000000 > 5929× 106 1 232458000

70 µA conditions. In order to perform a full scan the sample was rotated by 360◦ and 2203
projections were registered. The final projection was averaged from two frames, and for each
frame the 708 ms exposure time was applied. To avoid beam hardening artefact, a 0.4 mm copper
filter was used. The collected projections were reconstructed with the CT Pro software [22].
During this step the sequence of projections was transformed into a 3D description, consisting of
a set of two-dimensional grey-scale images, representing parallel equidistant cross sections along
the sample. Data was then segmented with AVIZO software [23] to lead finally to a binary
representation of a medium made of the voids and the solids.

As a result of the microimaging procedure a set of 600 cross sections was obtained, each
consisting of 1000 × 1000 voxels with the unit voxel resolution h = 18.1 × 10−6m. In this way
the geometry of a porous sample is described by a matrix of voxels:

nijk =

{
0 cell is available to fluid,
1 cell is occupied by rock.

(1)

Geometric properties of the pore structure image were further analysed with the use of MAVI
software [24]. The analysis confirmed the connectivity of voids in x, y, and z directions. The
classification of voids showed that the structure consists of one large connected system consti-
tuting almost 100% of the volume of voids. In addition, 1605 small isolated groups of voids
were detected. In Table 1 we provide detailed geometrical information about the sample; this
information is later complemented by the insight from the computational approaches described
below.

3 Computational modeling of flows at pore-scale and up-
scaling to core-scale

In this section we overview the simulations at pore-scale as well as our upscaling methodology
which are central to the workflow shown in Figure 1. We consider a core sample Ω ⊂ R3 of porous
medium, in which we recognize two subregions, the flow domain ΩF made of pores (also referred
to as voids), and the solid domain ΩS made of (proppant) grains. We have Ω = ΩF ∪ ΩS ∪ Γ,
where Γ = ∂ΩF ∩ ∂ΩS is the solid-fluid interface. See Figure 3 for illustration.

The pore-scale flow occurs in ΩF only and we assume it is governed by the steady-state
incompressible Navier–Stokes equations

ρv · ∇v − µ∇2v = −∇p, x ∈ ΩF , (2)

∇ · v = 0, x ∈ ΩF , (3)
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Figure 3: Illustration of pore-scale and core-scale geometries.

in which the pressures p [Pa] and the velocity v [m/s] are the unknowns. Here ρ [kg/m
3
] denotes

fluid density, and µ [kg/m · s] is kinematic viscosity of the fluid.
In complex geometries such as ΩF solving Navier–Stokes equations (2)-(3) is very challenging

but possible. Direct Numerical Simulations (DNS) of (2)-(3) on realistic pore-scale geometries
were reported in the last decade [25, 4, 5, 26, 27, 8, 7, 9, 6] and they seem to gain popularity over
the alternatives such as Pore-network method [28, 29]. The latter uses a reduced representation
of ΩF and thus can be inaccurate, especially when the pore and the grain sizes are similar.

In our approach [10, 11, 12, 7, 13] we use DNS followed by upscaling to determine the core-
scale parameters, and the main ingredients of our virtual laboratory are as follows. First (i) we
obtain a computational mesh over ΩF from the voxel-based pore-scale geometry (1), typically
given by X-ray computed microtomography. Second, (ii) we use fluid dynamics software; in this
paper we use the Finite Volume based ANSYS/Fluent model [30]. Third, we follow with (iii)
upscaling and identification of the core-scale model parameters. Details are provided below.

Computational meshes In general, dealing with realistic 3D geometries at pore-scale re-
quires a compromise between a resolution at which the medium is represented and the size of a
computational discretized problem.

Realistic 3D geometries of pore-scale flow domain ΩF require a complex computational mesh
with many grid cells. For voxel geometries the most natural grid type is an unstructured collection
of regular hexahedral cells; see [4, 5, 26, 27, 8]. Another option of a body-fitted mesh as in [6] is
possible but does not significantly affect the solutions as shown in [7, 9].

For large samples Ω the number of void voxels nijk can be easily of the order of more than
O(108), which makes solving (2)-(3) very difficult. Two approaches help to reduce the size of
the computational problem. The first approach is the reduction or coarsening which consists of
replacing a set of adjacent 2 × 2 × 2 = 8 voxels forming a box with one (larger) voxel defined
as a solid if the majority of the original voxels are of solid type, and as void otherwise. Such
coarsening or averaging can be performed several times, reducing the size of data but also the
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resolution by about an order of magnitude. The second way to reduce the computational problem
to a manageable size is to consider only a subdomain of the original image data ΩF . This
approach gives satisfactory results provided the sample is representative, in agreement with
the Representative Elementary Volume (REV) concepts [31, 5]. The two approaches of data
reduction can be applied simultaneously to yield a reduced ΩF .

The actual computational mesh over ΩF requires one more step to avoid having only one
mesh cell in some narrow pore throats. For this, we require at least one level of grid refinement.

Setting up flow simulations The Navier-Stokes model (2)-(3) must be complemented with
boundary conditions. In our computational experiments we prescribe (a) the Dirichlet value vin
of velocity on the boundary ∂ΩF of ΩF with one external side of the region Ω chosen as the inflow
side. Next we identify the opposite side of Ω as the outflow side, and there we impose (b) the
pressure outflow condition. We also impose (c) the no-slip boundary condition (wall boundary
condition) on all remaining external sides of the sample and on all fluid-solid interfaces Γ within
the sample.

Upscaling to core-scale The simulations at pore-scale provide detailed information about
the pointwise values of pressures p(x) and velocities v(x) for every point x in the flow domain
ΩF . However, our main interest is to obtain core-scale parameters. The core-scale parameters
we obtain computationally can be used in the reservoir models instead of experimental values,
and recently we showed in [32] that there is a good agreement between the computations and
experiment.

At the macro-scale the variables describing the flow are the macroscopic pressure P and
velocity V defined on Ω, in contrast to the pore-scale variables p and v which are defined in ΩF .
The variables P and V are commonly defined as local averages of p and v [31].

The mass conservation at macroscale is similar to (3),

∇ ·V = 0, x ∈ Ω. (4)

The momentum conservation relates P and V for slow flow rates via well-known Darcy’s law

V = −K∇P = −k

µ
∇P, x ∈ Ω, (5)

where K = k
µ [m2/Pa · s] is the Darcy conductivity, and k [m2] the absolute (intrinsic) perme-

ability. K and k are symmetric positive definite tensors.
The fine scale information about the geometry of ΩF is not lost in (5) because it is “encoded”

in the values of the conductivity K. The aim of upscaling is to provide the connection between
ΩF and K; see the theoretical derivations in [31, 33] and more recent work in [34, 35]. We
realize this process computationally following the ideas of [36] which we refined for the needs of
pore-to-core upscaling in [10, 11, 7, 13] as explained below.

After Equations (2)-(3) are solved computationally for the pore-scale pressure p and velocity
v, they are averaged over particularly chosen subregions of Ω; this step gives the core-scale
counterparts P and V of p and v; the gradient ∇P is approximated by a difference quotient
over adjacent volumes. The regions over which we average are chosen to satisfy several criteria
described below.

First, to reduce external boundary effects we average velocities over a box-shaped subset
Ωr ⊂ Ω whose sides are shorter than those of Ω by the factor 1− r on each side, 0 < r < 1/2.

Second, the difference quotient approximation of each component of ∇P is computed from
the averages of pressures p over two adjacent box-shaped subsets of Ωr, each on an opposite
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a) b)

Figure 4: Computational domains, space available for fluid is colored in blue. a) PROP red1
was obtained with one reduction of original data, number of voxels 150× 150× 150, h = 36.2×
10−6m, b) PROP red2 was obtained with two reductions, number of voxels 150 × 150 × 150,
h = 72.4× 10−6m.

side of a plane bisecting Ωr. Since there are three such planes, one can approximate three
components of ∇P . However, if the flow is mostly aligned with the normals to two of the planes,
the two components of ∇P aligned with these planes are small but nonzero. For example, if
the flow is from left to right, the largest differential of average pressures is from left to right. In
our simulations we assign the inflow boundary condition on the left, top, and back sides of the
porous region Ω and obtain results for the flow in three independent directions. This yields nine
calculated components of velocity and pressure gradients, which can be next used to get the nine
components of K from (5) written for every direction of the flow.

Large flow rates It is well known [31] that the effective conductivity K in Darcy’s law (5) is
constant only for slow flow rates for which the Reynolds number Re is less than Recrit. Here

Re = |v|δρ
µ , where δ denotes the characteristic length scale for the flow. For pore-scale flow

Recrit is typically taken between 1 and 10 and δ is the average solid grain size equal to the ratio
of volume of solid |Ωs| to the surface area |Γ| of the solid–void interface [31].

For the flow rates with Re higher than Recrit, the effective conductivity K in (5) depends
nonlinearly on the flow rate V , and the model (5) must be extended. The Forchheimer extension
of (5) given in [31] that we used in [7] includes the original Darcy term KD∇P and the inertia
term β |V|V in the form

(1 + β |V|)V = −KD∇P, x ∈ Ω. (6)

The presence of β |V|V makes the model (6) nonlinear and it reflects the fact that the effective
conductivity K decreases with |V| as in (K(V))−1 = KD

−1(1 + β |V|).
The core-scale parameters of (6) can be found by upscaling. In particular, KD can be found

from a computational experiment at some low flow rate, and the new model parameter β can be
found from additional experiments at high flow rates. More generally, we set up simulations for

several inlet velocities v
(j)
in , j = 0, . . . ,MAX to get KD and β, and to confirm that the model

(6) is valid. More details and discussion of various extensions of (6) and in particular those
accounting for anisotropy of β can be found in [7].

7



Table 2: Computational grids

dataset voxels h #voids #solids φ #cells δ
×106m ×104

PROP red1 150× 150× 150 36.2 1370490 2004510 0.406 10963920 1.07

PROP red2 150× 150× 150 72.4 1466702 1908298 0.435 11733616 1.10

4 Numerical experiments

With the proppant geometries obtained from imaging described in Section 2 we conducted nu-
merical simulations of the pore-scale flow followed by upscaling as outlined in Section 3. The
original voxel grid covering Ω is a grid of 1000×1000×600 voxels, each of side h = 18.1×10−6m
long, and this corresponds roughly to 2·108 voxels in ΩF . To keep the mesh size manageable, we
reduce the original geometry in one of two ways described in Section 3. The geometry denoted by
PROP red1 is obtained in one coarsening step which reduces the voxel grid to 500×500×300, and
is followed by cropping the sample to a centrally located rectangular volume of size 150×150×150
voxels with h = 36.2× 10−6 m. The geometry denoted by PROP red2 is obtained with two re-
duction steps down to the grid of 250× 250× 150 voxels, with h = 72.4× 10−6 m, and taking a
centrally located rectangular volume of size 150×150×150. We note that the physical dimensions
of PROP red2 are twice as big as those of PROP red1, but at a price of a poorer resolution.
Next, computational mesh is generated for each geometry, with one level of mesh refinement.
See Fig. 4 and Table 2 for illustrations and details. Here φ denotes porosity of a sample, i.e., the

volume fraction |ΩF |
|Ω| of voids in Ω.

Simulation results and conductivity reduction due to high flow rates Next we simulate
water flow in the proppant geometries, and set ρ = 1000 [kg/m

3
] and µ = 1.003× 10−3 [kg/m ·

s]. A sequence of simulations is performed for a range of increasing inlet velocities v
(j)
in , j =

0, . . . ,MAX. The detailed information on the flow behavior in Fig. 6 shows an evident difference
in the flow behavior between small and large flow rates.

Next, for each velocity we compute the averages V and ∇P and find the effective conductivity
K from Eq. (5). The results are summarized in Table 3 and Fig. 5 where we report the values of
diagonal components of computed effective conductivity tensors; the off-diagonal values are very
small for this medium and are not reported.

As we see in Table 3, the proppant medium is essentially isotropic, with the tensor components
K11, K22 and K33 very close to one another. In addition, the “baseline” effective conductivity
called KD in (6) is constant when Re < 1. For Re starting around 1, a small decrease in
conductivity is observed, to become more pronounced as Re increases to around 100, beyond
which the numerical solver has difficulty converging. The decrease of effective conductivity at
high flow rates is one of the critical factors reducing the productivity of hydraulically fractured
wells.

Furthermore, we can discuss the impact of geometry coarsening and REV size by comparing
the results for PROP red1 and PROP red2. Consistently, the conductivites computed with the
coarser mesh PROP red2 on a larger domain are larger than those computed with the finer mesh
but on a smaller domain PROP red1; this is correlated with the fact that the coarser voxel grid
has larger porosity.

To test the effect of REV size alone, we study the impact of the parameter r in the choice of
REV domain Ωr. We recall that with r = 0.1 the length of Ωr in each direction is 20% smaller
than the length of Ω, and r = 0.25 corresponds to the region of averaging two times smaller

8



Table 3: Computed conductivities of the proppant sample.

vin × 105 |V| × 105 Re K11 × 108 K22 × 108 K33 × 108

PROP red1 REV=0.05

1 1.015 0.0011 75.85 73.46 78.17
1000 1014 1.065 74.03 70.98 76.06
1e+04 1.002e+04 10.65 49.05 42.96 48.93
7e+04 6.924e+04 74.55 14.79 11.60 14.06

PROP red1 REV=0.15

1 0.9976 0.0011 79.63 70.25 75.53
1000 995.1 1.065 78.09 67.61 73.58
1e+04 9878 10.65 52.10 40.93 47.92
7e+04 6.889e+04 74.55 15.85 11.23 13.95

PROP red1 REV=0.25

1 0.9718 0.0011 76.38 71.71 71.39
1000 970.7 1.065 75.57 68.91 70.17
1e+04 9693 10.65 52.46 41.14 46.62
7e+04 6.78e+04 74.55 16.13 11.15 13.78

PROP red2 REV=0.05

1 1.035 0.00055 96.34 94.09 100.3
1000 1033 0.55 92.48 90.48 96.13
1e+04 1.021e+04 5.50 54.24 53.41 56.36
6e+04 6.079e+04 32.98 16.22 16.00 16.57

PROP red2 REV=0.15

1 1.055 0.00055 96.95 95.26 105.9
1000 1052 0.55 93.00 91.52 101.2
1e+04 1.033e+04 5.50 54.28 53.80 58.49
6e+04 6.135e+04 32.98 16.19 16.10 17.12

PROP red2 REV=0.25

1 1.042 0.00055 97.87 92.35 103.9
1000 1040 0.55 94.13 88.83 99.52
1e+04 1.03e+04 5.50 55.28 52.41 58.28
6e+04 6.144e+04 32.98 16.54 15.69 17.31
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Figure 5: Effects of flow rates on effective conductivity. We compare results obtained for meshes
PROP red2 (bars) and PROP red1, as well as differences due to different volumes of averaging.

than that of Ω. If the results with different r are very different, this suggests that the smallest
REV is not large enough. We see however little dependence on r. Furthermore, the physical size
of the region of averaging for PROP red2 with r = 0.25 is close to that for PROP red1 with
r = 0.05, but the conductivities obtained differ, clearly due to different h and due to the porosity
difference. The effect of grid size h alone is discussed next.

Convergence with h A natural question in pore-scale computations and upscaling to core-
scale is the influence of the grid size h upon the results. However, the large size of computational
mesh for a large enough REV frequently restricts the convergence studies to one level of refine-
ment or to relatively small grids or simple domains as we were able to pursue in [12, 13, 7].

In this paper we consider several levels of grid refinement starting with a subset of the original
voxel grid nijk of size 150×150×150. We consider flow in the Darcy regime with vin = 1·10−5m/s,
and compare the upscaled conductivities K corresponding to different grids, see Table 4 where
rafk denotes grid refinement by a factor k with respect to the original voxel grid. For example,
one original voxel is replaced with 2×2×2 = 8 grid cells in the grid raf2 and with 3×3×3 = 27
grid cells for grid raf3. The conductivities decrease with decreasing h and seem to settle to an
asymptotic value for the smallest h. The largest difference is for the first level of refinement, and
the convergence to the asymptotic value appears to be approximately of first order.

It is very important to compare the conductivity K that we computed with the available
experimental data. In fact, we first attempted this comparison in [12] but at that time we
only had synthetic 2D sand geometries. More recently Scheibe et al. showed in [26] that the
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a) b)

Figure 6: Mesh PROP red1, cross-section z = 0. Velocity field for: a) Re ≈ 0.001, b) Re ≈ 70.

Table 4: Convergence study

dataset h× 106 [m] #nodes #cells K11 × 108 K22 × 108 K33 × 108

raf1 18.1 1546736 1321687 72.23 58.66 61.58
raf2 9.05 11472341 10573496 66.86 54.23 56.74
raf3 6.03 37706686 35685549 65.55 52.93 55.45
raf4 4.53 88179893 84587968 64.81 52.53 54.87

experimental and computed conductivities for gravel are within an order of magnitude from each
other. In [32] we obtained similar agreement for glass-beads and biofilm filled pores. On the
other hand, the experimental values of proppant conductivity in [37] indicate that the values
of K for proppants of mesh 16/30 are 100 × 108, 108 × 108, and 85.1 × 108 [m2/Pa · s]. These
are very close to the K we present in Table 3 and 4, so the agreement is even closer than that
in [26, 32]. Still, we believe that more experiments and more computational studies need to be
conducted on well chosen samples.

Changes in pore geometries due to bridging of throats The intrusion of fines into
propped fractures severly deteriorates the conductive properties of the proppant material. The
pore-scale simulations can be applied to study the effects of the fines on the flow parameters at the
core-scale. We distinguish three main types of geometry modifications that may occur regardless
of the mechanisms underlying the transport of fines. These are (i) the appearance of “discrete
particles” within porespace, (ii) the “pore-lining” causing a relatively uniform narrowing of the
throats and pores, and (iii) the “bridging” resulting in the blockage of some throats.

In [13] we studied the effect of pore-lining and in [32] we studied the effect of biofilm and
biomass growth causing the pore-lining as well as the appearance of discrete particles. Here we
propose a stochastic model inspired by [29] of bridging occuring due to the fines intrusion. We
use PROP red1 (see Table 2) as the initial geometry. Our stochastic model of bridging consists
of replacing some of the void voxels with solids, restricting the choice of the voxels only to those
in the narrow throats. We control the number of of blocked throats with a parameter denoted
rand. The larger the parameter rand is, the more fines are kept in the throats. Fig. 7 shows
examples of randomly modified geometries, with the simulated fines marked with red; the details
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rand=0.5 rand=0.9

Figure 7: Initial geometry PROP red1 (grey) is modified by simulating bridging of throats, with
probability parameter rand. Accumulated particles are marked in red.

Table 5: Computational grids for throats bridging

dataset voxels h #voids #solids φ #cells δ
×106m ×104

PROP red1

rand 0.5 150× 150× 150 36.2 1304753 2070247 0.387 10438024 1.04

rand 0.7 150× 150× 150 36.2 1235995 2139005 0.366 9887960 1.17

rand 0.9 150× 150× 150 36.2 1173598 2201402 0.348 9388784 1.33

on the corresponding computational meshes are given in Table 5.
Next we discuss the effects of bridging at core-scale. The effects of throats bridging are

visualized in Fig. 9. Bridging causes a small reduction of porosity and a pronounced decrease
of the overall conductivity. In some cases of extensive bridging, there may be no percolation
through Ω; this is reported as screenout of a fracture.

The geometries corresponding to increasing parameter rand can be interpreted as ”snapshots”
of the time evolution of the bridging process associated with the fines transport. Thus the
conductivities in Table 6 can be seen as data for the deterioration in time of fracture conductivity.
Furthermore, our results also cover non-Darcy effects on conductivity.

5 Conclusions

Computer simulations based on real pore-scale images provide a powerful tool for the study of
the flow in proppant geometries and of proppant conductivity. In this paper we overviewed the
set-up of our virtual laboratory which offers, in spite of various limitations due to the size of
datasets, a valuable complement to the true experimental results.

In this work we considered two particular phenomena which can severly reduce proppant
conductivity. These are non-Darcy effects present at high velocities, and the effect of bridging
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Figure 8: Effective conductivities computed for a sequence of pore-scale geometries representing
different level of throats bridging.

Table 6: Conductivity reduction caused by throats bridging

vin × 105 |V| × 105 Re K11 × 108 K22 × 108 K33 × 108

PROP red1 rand=0.5 REV=0.05

1 1.073 0.001 60.54 56.98 61.16
1000 1072 1.04 58.53 54.24 58.84
1e+04 1.057e+04 10.42 33.86 27.81 32.58
7e+04 7.272e+04 72.92 8.234 6.251 7.639

PROP red1 rand=0.7 REV=0.05

1 1.134 0.001 51.23 48.78 52.59
1000 1133 1.16 48.93 45.78 50.06
1e+04 1.116e+04 11.64 25.15 20.96 24.90
7e+04 7.638e+04 81.47 5.515 4.237 5.259

PROP red1 rand=0.9 REV=0.05

1 1.19 0.001 46.53 42.67 47.05
1000 1188 1.33 44.02 39.99 44.37
1e+04 1.168e+04 13.27 21.04 16.11 20.42
7e+04 7.981e+04 92.92 4.385 3.096 4.093
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Figure 9: Velocity field at cross section z = 0 computed with vin = 10−5[m/s] on mesh
PROP red1 modified by simulating throats bridging with probability rand = 0.5 and rand = 0.9

of the pore throats due to the fines migration. In the latter project, our choice of voxel-based
computational grids is particularly well suited to modelling geometry modifications.

Modeling of conductivity decrease and of the associated pressure increase helps in the study
of flow in hydraulically fractured formations. With realistic geometries of proppant samples,
our virtual laboratory helps to develop more accurate models for flow processes following the
fracturing.
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