Nonlocal models of transport in multiscale porous media:
something old and something new, something borrowed ...
Outline

1. Introduction and motivation
 - Flow and transport in subsurface, nomenclature
 - Multiscale flow and transport in subsurface, experimental results

2. Something old: double porosity models
 - Literature review
 - Double porosity models, diffusion+advection

3. Something new: building a new model
 - Ideas and steps
 - Computational experiments
 - Construct affine approximations
 - Model calculations
 - Computational experiments with elements of upscaled model

NSF 0511190 “Model adaptivity in porous media”, DOE 98089 “Modeling, Analysis, and Simulation of Multiscale Preferential Flow”.
Also, see presentations at NSF-CMBS Nevada 5/20-25, DOE Multiscale workshop Tacoma, 5/25-30 (links from my webpage)
Flow coupled to transport $\mathcal{F}(\Theta) = 0$ with $\Theta = (u, p, c)$

Flow

$$u = -K \nabla p, \quad \nabla \cdot u = 0$$

Diffusive-dispersive transport

$$\phi \frac{\partial c}{\partial t} + \nabla \cdot (uc - D(u) \nabla c) = 0$$

Definitions

$$D(u) := \text{diffusion} + \text{dispersion}$$

$$:= d_{mol} I + |u| (d_{long} E(u) + d_{transv} (I - E(u)))$$

$$E(u) = \frac{1}{|u|^2} u_i u_j$$

$$D(u) \approx d_{mol} I + d_{long} |u| E(u)$$
Model $\mathcal{F}(\Theta) = 0$ with $\Theta = (\rho, \mathbf{u}, c)$

$$\mathbf{u} = -K \nabla \rho, \quad \nabla \cdot \mathbf{u} = 0$$

$$\phi \frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{u} c - D(\mathbf{u}) \nabla c) = 0$$

K_{fast}, K_{slow} give \mathbf{u}_{fast}, \mathbf{u}_{slow} give D_{fast}, D_{slow}
Introduction and motivation
Something old: double porosity models
Something new: building a new model

Flow and transport in subsurface, nomenclature
Multiscale flow and transport in subsurface, experimental results

Advection+diffusion in multiscale media: tailing

Breakthrough curves = total concentration at outlet

MOVIE
Advection+diffusion in multiscale media: tailing

Breakthrough curves = total concentration at outlet

![Breakthrough curves graph]

- Pure advection
- Advection + diffusion

![Breakthrough curves graph with additional models]
Experimental visualization by Haggerty et al

Presentation at SIAM Annual 2004 by Haggerty

[BZH+04] Brendan Zinn, Lucy C. Meigs, Charles F. Harvey, Roy Haggerty, Williams J. Peplinski, and Claudius Freiherr von Schwerin,

Experimental breakthrough curves

Results from \[\text{ZMH}^+ 04]\]
Challenge in view of the experimental results

- Not-well separated scales:
 - *double porosity* diffusion model does not fit in low/intermediate contrast regime
 - $\epsilon_0 > 0$ is fixed (perhaps the homogenized model not good enough? need a corrector?)
 - $\frac{K_{fast}}{K_{slow}}$ small, moderate, intermediate, or large

- Evidence of advection-diffusion-dispersion in Ω_{slow} and advection-dispersion in Ω_{fast}

- Related project (Wood, Haggerty, Waymire, Thomann, Ramirez, OSU) on Taylor-Aris dispersion/skew diffusion models

- Other results on tailing \([HG95, HMM00, HFMM01]\)

Formidable challenge: find an upscaled model similar to double-porosity which can capture all of the above

Introduction and motivation

Something old: double porosity models

Something new: building a new model

Literature review

Double porosity models, diffusion+advection

\[\Omega = \bigcup_i \hat{\Omega}_i, \quad \Omega_{\text{slow}} = \bigcup_{i=1} \Omega_i, \]
\[\partial \Omega_{\text{slow}} \cap \partial \Omega_{\text{fast}} \equiv \bigcup_i \Gamma_i \]
\[\Omega = \Omega_{\text{slow}} \cup \Omega_{\text{fast}} \cup \bigcup_i \Gamma_i \]
\[|\hat{\Omega}_i| \approx \varepsilon_0 \]
Averaged (single porosity) model

Exact model at microscale

\[D = D_{\text{slow}}, D_{\text{fast}} \]

replaced by homogenized model

Compute homogenized coefficients \(\tilde{D} \)

\[
\tilde{D}_{jk} = \frac{1}{|\Omega_0|} \int_{\Omega_0} D_{jk}(y)(\delta_{jk} + \partial_k \omega_j(y))dA
\]

\[
\begin{cases}
- \nabla \cdot D \nabla \omega_j(y) = \nabla \cdot (D e_j), & y \in \Omega_0 \\
\omega_j & \Omega_0 - \text{periodic}
\end{cases}
\]
Averaged (single porosity) model

Exact model at microscale

\[
\mathbf{D} = \mathbf{D}_\text{slow}, \mathbf{D}_\text{fast}
\]

replaced by homogenized model

Compute homogenized coefficients \(\mathbf{\tilde{D}} \)

\[
\tilde{D}_{jk} = \frac{1}{|\Omega_0|} \int_{\Omega_0} D_{jk}(\mathbf{y})(\delta_{jk} + \partial_k \omega_j(\mathbf{y})) dA
\]

\[
\begin{cases}
- \nabla \cdot \mathbf{D} \nabla \omega_j(\mathbf{y}) = \nabla \cdot (\mathbf{D} e_j), & \mathbf{y} \in \Omega_0 \\
\omega_j & \Omega_0 \text{ - periodic}
\end{cases}
\]

But this doesn’t work very well for time-dependent problems with large contrast \(D_{\text{fast}}/D_{\text{slow}} \)
Double porosity model: main idea I

Exact model at microscale

\[D = D_{\text{slow}}, D_{\text{fast}} \]

replaced by homogenized model with two sheets

\[\tilde{D} \]

with \(\tilde{D} \) plus cell model

Compute homogenized coefficients \(\tilde{D} \)

\[
\begin{align*}
\tilde{D}_{jk} &= \frac{1}{|\Omega_0|} \int_{\Omega_0} D_{jk}(y)(\delta_{jk} + \partial_k \omega_j(y))dA \\
- \nabla \cdot D \nabla \omega_j(y) &= \nabla \cdot (D e_j), \quad y \in \Omega_{0,\text{fas}} \\
\omega_j &\Omega_0 - \text{periodic}
\end{align*}
\]
Double porosity model: main idea I

Exact model at microscale

\[D = D_{slow}, D_{fast} \]

replaced by homogenized model with two sheets

Compute homogenized coefficients \(\tilde{D} \)

\[
\tilde{D}_{jk} = \frac{1}{|\Omega_0|} \int_{\Omega_0} D_{jk}(y)(\delta_{jk} + \partial_k \omega_j(y))dA
\]

\[
\begin{cases}
- \nabla \cdot D \nabla \omega_j(y) = \nabla \cdot (D_{\text{ef}}), & y \in \Omega_0, \text{fas} \\
\omega_j & \Omega_0 \text{ periodic}
\end{cases}
\]

This formulation introduces nonlocal effects and works very well for time-dependent problems with large contrast \(D_{fast}/D_{slow} \)
Double porosity model: main idea II

Exact model at microscale

\[
D = D_{\text{slow}}, D_{\text{fast}}
\]

Global equation, \(x \in \Omega \)

\[
\tilde{\phi} \frac{\partial \tilde{c}}{\partial t} + \sum_i \chi_i q_i(t) - \nabla \cdot \tilde{D} \nabla \tilde{c} = 0
\]

\[
q_i(t) = \Pi_{0,i}^* (\Pi_{0,i}(\tilde{c}))
\]

Cell problem, \(x \in \Omega_i \)

\[
\phi_{\text{slow}} \frac{\partial c_i}{\partial t} - \nabla \cdot D_{\text{slow}} \nabla c_i = 0
\]

\[
c_i|_{\Gamma_i} = \Pi_{0,i}(\tilde{c})
\]

This formulation works well for single & multi-phase multicomponent problems and has been implemented in commercial reservoir simulators.
Recall double porosity models for diffusion

Exact ϵ_0 model $\mathcal{F}_{\epsilon_0}(\Theta_{\epsilon_0}) = 0$

\[
\phi_\alpha \frac{\partial c_\alpha}{\partial t} - \nabla \cdot D_\alpha \nabla c_\alpha = 0, \quad x \in \Omega_\alpha, \quad \alpha = \text{fast, slow}
\]

plus interface conditions on $\partial \Omega_{\text{slow}} \cap \partial \Omega_{\text{fast}}$:

\[
c_{\text{fast}} = c_{\text{slow}}, \quad D_{\text{fast}} \nabla c_{\text{fast}} \cdot \nu = D_{\text{slow}} \nabla c_{\text{slow}} \cdot \nu
\]

Approximate microstructure model

[Arb89a, Arb97] $\tilde{\mathcal{F}}_{\epsilon_0}(\tilde{\Theta}_{\epsilon_0}) = 0$

\[
\phi \frac{\partial \tilde{c}}{\partial t} + \sum_{i} \chi_i q_i(t) - \nabla \cdot \tilde{D} \nabla \tilde{c} = 0
\]

\[
q_i(t) = \Pi_{0,i}^* (\Pi_{0,i}(\tilde{c}))
\]

- also for multiphase problems [DA90]

Homogenized model

[ADH90, HS90, Pes92] $\mathcal{F}_\epsilon(\epsilon_0) \rightarrow \mathcal{F}_0(\Theta_0) = 0$

\[
\phi \frac{\partial \tilde{c}}{\partial t} + \tau * \frac{\partial \tilde{c}}{\partial t} - \nabla \cdot \tilde{D} \nabla \tilde{c} = 0,
\]

- analysis and convergence
- computational approach [Pes95, Pes96, DPS97]

Małgorzata S. Peszyńska, Ralph E. Showalter
Local (cell) problem and averages Π_0, Π^*_0

Local averages $\Pi_{0,i}, \Pi^*_{0,i}$

\[
\Pi_{0,i} \xi := \frac{1}{|\hat{\Omega}_i|} \int_{\hat{\Omega}_i} \xi(x) dA
\]

\[
\Pi^*_{0,i} \gamma := \frac{1}{|\hat{\Omega}_i|} \int_{\Gamma_i} \mathbf{D}_{\text{slow}} \nabla c_i(\gamma)(x, t) \cdot \nu ds = \Pi_{0,i}(\phi_{\text{slow}} \frac{\partial c_i(\gamma)}{\partial t})
\]

where $c_i = c_i(\gamma)$ solves the local (cell) problem

\[
\phi_{\text{slow}} \frac{\partial c_i}{\partial t} - \nabla \cdot \mathbf{D}_{\text{slow}} \nabla c_i = 0, \quad x \in \Omega_i,
\]

\[
c_i = \gamma(x, t), \quad x \in \partial \Omega_i
\]
Double porosity models for diffusion-advection

Exact ϵ_0 model $F_{\epsilon_0}(\Theta_{\epsilon_0}) = 0$

\[
\phi \frac{\partial c_\alpha}{\partial t} - \nabla \cdot (D_\alpha \nabla c_\alpha - u_\alpha c_\alpha) = 0, \quad x \in \Omega_\alpha, \; \alpha = \text{fast, slow}
\]

plus interface conditions on $\partial \Omega_{\text{slow}} \cap \partial \Omega_{\text{fast}}$

Approximate microstructure model

[Arb89b] $\tilde{F}_{\epsilon_0}(\tilde{\Theta}_{\epsilon_0}) = 0$

\[
\tilde{\phi} \frac{\partial \tilde{c}}{\partial t} + \sum_i \chi_i q_i - \nabla \cdot (\tilde{D} \nabla \tilde{c} - \tilde{u} \tilde{c}) = 0,
\]

\[q_i(t) = \Pi_{1,i}^*, (\Pi_{1,i}(\tilde{c}))\]

$\Pi_1 =$ local L_2 projections onto linears, Π_1^* its dual.

Numerical model only.

Limit $\epsilon \to 0$ model [DS01] $F_0(\Theta_0) = 0$

\[
\tilde{\phi} \frac{\partial \tilde{c}}{\partial t} + \phi_{\text{slow}} \frac{\partial \tilde{c}}{\partial t} - \nabla \cdot (\tilde{D} \nabla \tilde{c} - \tilde{u} \tilde{c}) = 0
\]

\[\phi_{\text{slow}} \frac{\partial \tilde{c}}{\partial t} \approx \Pi_0^*, (\Pi_{1,i}(\tilde{c}))\]

$\Pi_1 =$ local Taylor. Cell problem:

$u_{\text{slow}} \approx 0$, symmetry exploited.
Why these are not enough ... and other related results

Approximate microstructure model

\[\mathcal{F}_{\epsilon_0}(\tilde{\Theta}_{\epsilon_0}) = 0 \]

Numerical model only.

Limit \(\epsilon \to 0 \) model

\[\mathcal{F}_0(\Theta_0) = 0 \]

Cell problem: \(u_{\text{slow}} \approx 0 \). Use \(\Pi_0^* \) for flux.

Want to have \(\tilde{\mathcal{F}}_{\epsilon_0}(\tilde{\Theta}_{\epsilon_0}) = 0 \)

constructed with “global” (upscaled) flavor (akin diffusion model

\[\phi \frac{\partial \tilde{c}}{\partial t} + \tau \ast \frac{\partial \tilde{c}}{\partial t} - \nabla \cdot (\tilde{D} \nabla \tilde{c} - \tilde{u} \tilde{c}) = 0, \]

or secondary diffusion as in [CS95]

- account for (lack of) separation of scales \(\epsilon_0 > 0 \) and advection-dispersion
- track transition between different regimes of phenomena

Other models known in hydrology/applied math and geosciences

- Gerke van Genuchten 1993 (for Richards’ equation)
- nonlocal models of dispersion (Cushman et al)
- stochastic models, method of moments

[Arb89b] [DS01] [CS95] [XC04] [GR87]
Why these are not enough ... and other related results

Approximate microstructure model

\[\mathcal{F}_{\epsilon_0}(\tilde{\Theta}_{\epsilon_0}) = 0 \]

Numerical model only.

Limit \(\epsilon \to 0 \) model

\[\mathcal{F}_0(\Theta_0) = 0 \]

Cell problem: \(\mathbf{u}_{\text{slow}} \approx 0 \). Use \(\Pi^* \) for flux.

Want to have \(\tilde{\mathcal{F}}_{\epsilon_0}(\tilde{\Theta}_{\epsilon_0}) = 0 \)

constructed with “global” (upscaled) flavor (akin diffusion model

\[\phi \frac{\partial \tilde{c}}{\partial t} + \tau * \frac{\partial \tilde{c}}{\partial t} - \nabla \cdot (\tilde{D} \nabla \tilde{c} - \tilde{u} \tilde{c}) = 0, \]

or secondary diffusion as in

\[\text{[CS95]} \]

- account for (lack of) separation of scales \(\epsilon_0 > 0 \) and advection-dispersion
- track transition between different regimes of phenomena

Other models known in hydrology/ applied math and geosciences

- Gerke van Genuchten 1993 (for Richards’ equation)
- nonlocal models of dispersion (Cushman et al)
Building the upscaled model $\tilde{F}_{\epsilon_0}(\tilde{\Theta}_{\epsilon_0}) = 0$

Want to have $\tilde{F}_{\epsilon_0}(\tilde{\Theta}_{\epsilon_0}) = 0$
constructed with “global” flavor.

- Computational experiments on microscale
- Building the model
 - use the model \textit{á la} [Arb89b] but with different Π_1, Π_1^*,
 - construct convolution approximations of all terms \textit{á la} [Pes92] with a family of kernels
- simulate the upscaled nonlocal model for a continuum of regimes of phenomena
 - kernels reflect the regimes
Introduction and motivation

Something old: double porosity models

Something new: building a new model

Ideas and steps

Computational experiments
Construct affine approximations
Model calculations
Computational experiments with elements of upscaled model

Computational experiments at microscale

GOAL: reproduce qualitatively experimental results, understand significance of different regimes of flow and transport

Row-20-3-5 breakthrough curves

MOVIES
Choice of fine approximations Π_1

Recall $\Pi_0 f := \frac{1}{|\Omega_0|} \int_{\Omega_0} f(\mathbf{x}) dA$, assume here $|\Omega_0| = 1$.

Denote \mathbf{x}^C - center of mass of Ω_0.

General affine approximation $f(\mathbf{x}) \approx \Pi_1 f := m + n \cdot \mathbf{x}$, $\mathbf{x} \in \Omega_0$

Choice of m, n

- **Taylor** ($f \in C^1(\Omega_0)$) about midpoint $f(\mathbf{x}) \approx f(\mathbf{x}^C) + \nabla f(\mathbf{x}^C)(\mathbf{x} - \mathbf{x}^C)$

- **$L_2(\Omega_0)$**-projection onto affines that is: $(f, \nu)_{\Omega_0} = (m + n \cdot \mathbf{x}, \nu)_{\Omega_0}$, \forall affine ν

- **$H^1(\Omega_0)$** projection: $f(\mathbf{x}) \approx \Pi_1 f := \Pi_0 f + \Pi_0 \nabla f \cdot (\mathbf{x} - \mathbf{x}^C)$

Basis functions not necessarily orthogonal.
Dual affine approximations Π_i^* to Π_1

- $L_2(\Omega_0)$-projection onto affines, use an orthonormal basis (ϕ_0, ϕ_1, ϕ_2)

$$\Pi_1 f(x) = \sum_k f_k \phi_k(x)$$

Flux calculations

$$\Pi_i^* q = \sum_k q_k \phi_k(x), \quad q_k = \Pi_0(q\phi_k)$$

- $H^1(\Omega_0)$ projection:

$$f(x) \approx \Pi_0 f + \Pi_0 \nabla f \cdot (x - x^C)$$

Note $(1, (x - x^C)_1, (x - x^C)_2)$ are not necessarily orthogonal!

$$\Pi_i^* q = q_0 \xi_0(x) + q_1 \xi_1(x) + q_2 \xi_2(x)$$

We use $H^1(\Omega_i)$-projection denoted $\Pi_{1,i} \equiv \Pi_i$ and $P_i^* \equiv \Pi_i^*$
Calculate Π_i and Π_i^*

Recall $\Pi_i: H^1(\Omega) \mapsto H^1(\hat{\Omega}_i)$

$$
\Pi_i(w)(x) \equiv \frac{1}{|\hat{\Omega}_i|} \left(\int_{\hat{\Omega}_i} w(y) \, dA + \sum_{k=1}^2 \left[\int_{\hat{\Omega}_i} \partial_k w(y) \, dA \right] (x_k - (\hat{x}_i^C)_k) \right)
$$

Dual $\Pi_i^*: (H^1(\hat{\Omega}_i))^* \mapsto (H^1(\Omega))^*$ affine approximation of flux $q \in H^{-1/2}(\Gamma_i)$

$$
\langle \Pi^*_i(q), w \rangle = \langle q, \Pi_i(w) \rangle, \forall w \in C_0^\infty(\Omega)
$$

with $\langle q, v \rangle := \sum_i \int_{\Gamma_i} q(s)v(s)ds$ uses moments M^0_i, M^1_i

$$
\langle q, \Pi_i(w) \rangle = \frac{1}{|\hat{\Omega}_i|} \int_{\Gamma_i} q(s) \left[\int_{\hat{\Omega}_i} wdA + (s - x_i^C) \int_{\hat{\Omega}_i} \nabla wds \right]
$$

$$
= \int_{\Omega} \bar{\chi}_i(x) \frac{1}{|\hat{\Omega}_i|} \int_{\Gamma_i} q(s)ds w(x) dA + \int_{\Omega} \bar{\chi}_i(x) \frac{1}{|\hat{\Omega}_i|} \int_{\Gamma_i} q(s)(s - x_i^C)ds \cdot \nabla w(x) dA
$$

$$
= \int_{\Omega} \bar{\chi}_i(x) M^0_i(q) w(x) dA - \int_{\Omega} \nabla \cdot (\bar{\chi}_i(x) M^1_i(q)) w(x) dA = \langle \Pi^*_i(q), w \rangle
$$
Calculations Π_i and Π_i^* summary

Affine approximation $\Pi_i : H^1(\Omega) \hookrightarrow H^1(\hat{\Omega}_i)$

$$\Pi_i(w)(x) \equiv \Pi_0 w + \Pi_0(\nabla w) \cdot (x - x^C)$$

Its dual $\Pi_i^* : H^1(\hat{\Omega}_i)^* \hookrightarrow H^1(\Omega)^*$ pointwise

$$\Pi_i^*(q)(x) = \tilde{\chi}_i(x) M^0_i(q) - \nabla \cdot \tilde{\chi}_i(x) M^1_i(q)$$

Note the last term is a scaled line source!
Application of Green’s theorem to moments

For any smooth region D, smooth $\mathbf{v} = (v_1, v_2)$ and $\hat{\mathbf{x}}^C \in D$,

$$
\int_D (\nabla \cdot \mathbf{v})(x_k - (\hat{\mathbf{x}}^C)_k) dA = \int_{\partial D} \mathbf{v} \cdot \nu (x_k - (\hat{\mathbf{x}}^C)_k) ds - \int_D v_k dA
$$

hence for the flux from the cell $q(s) = (D_i \nabla c_i(s) - \mathbf{v}_i c_i(s)) \cdot \nu$

$$
M^1_i(q) = \int_{\Omega_i} \left(\nabla \cdot (D_i \nabla c_i(y, t) - \mathbf{v}_i c_i(y, t)) (y - \hat{\mathbf{x}}^C_i) + D_i \nabla c_i(y, t) - \mathbf{v}_i c_i(y, t) \right) dA.
$$

$$
= - \sum_i \bar{\chi}_i(x) \int_{\Omega_i} \left(\phi_i \frac{\partial c_i}{\partial t}(y, t)(y - \hat{\mathbf{x}}^C_i) + D_i \nabla c_i(y, t) - \mathbf{v}_i c_i(y, t) \right) dA
$$
Cell problem: elementary solutions

Cell problem solved for $u^j_i, j = 0, 1, 2$

$$\phi_{\text{slow}} \frac{\partial u^j_i}{\partial t} - \nabla \cdot (D_{\text{slow}} \nabla u^j_i - u_{\text{slow}} u^j_i) = 0, \mathbf{x} \in \Omega_i,$$

$$u^j_i(\mathbf{x}, 0) = 0, \mathbf{x} \in \Omega_i$$

$$\begin{cases}
u^0_i|_{\Gamma_i} = 1, \\
u^1_i|_{\Gamma_i} = (\mathbf{x} - \mathbf{x}_i^C)_1, \\
u^2_i|_{\Gamma_i} = (\mathbf{x} - \mathbf{x}_i^C)_2
\end{cases}$$

Represent the solution to the cell problem

$$\phi_{\text{slow}} \frac{\partial c_i}{\partial t} - \nabla \cdot (D_{\text{slow}} \nabla c_i - u_{\text{slow}} c_i) = 0, \mathbf{x} \in \Omega_i,$$

$$c_i(\mathbf{x}, 0) = 0, \mathbf{x} \in \Omega_i$$

$$c_i|_{\Gamma_i} = \Pi_{1,i}(c_*)(\mathbf{x}, t)$$

$$\equiv A^0_i(t) + (A^1_i, A^2_i) \cdot (\mathbf{x} - \mathbf{x}_i^C),$$

By linearity $c_i(\mathbf{x}, t) = \int_0^t \sum_{j=0}^2 \frac{\partial u^j_i}{\partial t}(\mathbf{x}, t - s) A^j_i(s) ds = \sum_{j=0}^2 \frac{\partial u^j_i(\mathbf{x}, \cdot)}{\partial t} \ast A^j_i$
Putting it together

Solution to the cell problem $c_i(x, t) = \sum_{j=0}^{2} \frac{\partial u_j^i(x, \cdot)}{\partial t} \ast A^j_i$

$$\phi_{\text{slow}} \frac{\partial c_i}{\partial t} - \nabla \cdot (D_{\text{slow}} \nabla c_i - u_{\text{slow}} c_i) = 0, \ x \in \Omega_i,$$

$$c_i(x, 0) = 0, \ x \in \Omega_i$$

$$c_i|_{\Gamma_i} = \Pi_{1, i}(c_*)(x, t) \equiv A^0_i(t) + (A^1_i, A^2_i) \cdot (x - \hat{x}^C_i), \ x \in \Gamma_i$$

Use u^i_j and A_j so that $\Pi_{1, i}(c_*)(x, t) \equiv A^0_i(t) + (A^1_i, A^2_i) \cdot (x - \hat{x}^C_i)$

Compute the normal flux

$$q(s) \equiv (D_{\text{slow}} \nabla c_i - u_{\text{slow}} c_i) \cdot \eta, \ s \in \Gamma_i$$

... and its affine approximations $\Pi^*_1, i q$ using A_j, u^i_j

... and the moments $M^0_i(q), M^1_i(q)$.

Małgorzata S. Peszyńska, Ralph E. Showalter
Write the moments $M_i^0(q), M_i^1(q)$ in terms of A_k and u_i^j

Define the kernels for each i and each function $u_i^j, j = 0, 1, 2$ by

$$S_i^{j0}(t) \equiv \int_{\Omega_i} \phi_i \frac{\partial u_i^j}{\partial t}(x, t) \, dA, \quad 0 \leq j \leq 2.$$

$$S_i^{jk}(t) \equiv \int_{\Omega_i} \phi_i \frac{\partial u_i^j}{\partial t}(x, t)(x_k - (\hat{x}_i^C)_k) \, dA, \quad 1 \leq k \leq 2.$$

$$T_i^j(t) \equiv (T_i^{j1}, T_i^{j2}) \equiv \int_{\Omega_i} (D_i \nabla - \mathbf{v}_i) \frac{\partial u_i^j}{\partial t}(x, t) \, dA.$$

Together we have 15 scalar kernels, some of which will be zero due to symmetry/lack of thereof.
Introduction and motivation
Something old: double porosity models
Something new: building a new model

Computational experiments

Model summary (suppress i, $\bar{\chi}_i$ etc.)

$$\frac{\partial}{\partial t} \left\{ \phi \ast c + S^{00} \ast c + (S^{01}, S^{02}) \ast \nabla c - \nabla \cdot (S^{10} \ast c + (S^{11}, S^{12}) \ast \nabla c) \right\}$$
$$- \nabla \cdot \left\{ D \ast \nabla c - v \ast c + T^0 \ast c + (T^1, T^2) \ast \nabla c \right\} = 0$$

- Convolution kernels for different regimes of diffusion vs advection
 - no advection
 - with advection
 - with significant advection

- Upscaled problem with nonlocal terms

- Comparison between exact model and upscaled model with nonlocal terms and computed kernels
Convolution kernels: regimes of $Pe = \frac{\text{advection}}{\text{diffusion}}$

Solution u^j and the associated kernels S^{j0}, S^{j1}, T^{j1}

$j = 0$

- No advection
- With advection
- Large advection

$j = 1$

- No advection, boundary condition = 1
- With advection, boundary condition = 1
- Large advection, boundary condition = 1
Upscaled model: numerical treatment

- Nonlocal diffusion (FE+time-stepping on c_t) \cite{Pes95} stable, convergence $O(\triangle t + h^2)$, singular kernels
- Nonlocal diffusion with secondary diffusion terms (as in viscoelasticity) \cite{Thomee,Lin,Ewing'91-'01} with nonsingular kernels
- Nonlocal advection (FD+time-stepping): stable, convergent $O(\triangle t + h)$ \cite{P06}, singular kernels
- Nonlocal advection+diffusion+secondary diffusion+secondary advection:
 - Issues of memory storage, need adaptive treatment
 - Relative importance of the terms ∇c_*, $\nabla^2 c_*$: adaptivity a must

pore-scale modeling (with K. Augustson)

unsaturated flow models

use experimental results by Wildenschild et al.
Introduction and motivation
Something old: double porosity models
Something new: building a new model

Ideas and steps
Computational experiments
Construct affine approximations
Model calculations
Computational experiments with elements of upscaled model
Connection to mortar upscaling

[PWY02, Pes05]
Introduction and motivation
Something old: double porosity models
Something new: building a new model

Ideas and steps
Computational experiments
Construct affine approximations
Model calculations
Computational experiments with elements of upscaled model

Małgorzata S. Peszyńska, Ralph E. Showalter
Nonlocal models of transport in multiscale porous media: something old and something new...
Summary: the upscaled model

\[
\begin{align*}
\frac{\partial}{\partial t} \left(\phi_* c_*(x, t) + \sum_{i=1}^{N} \chi_i(x) \int_0^t S_{i0}^0(t - \tau) \frac{1}{|\hat{\Omega}_i|} \int_{\hat{\Omega}_i} c_*(y, \tau) \, dA \, d\tau \right) \\
+ \sum_{i=1}^{N} \chi_i(x) \int_0^t \sum_{j=1}^2 S_{i0}^j(t - \tau) \frac{1}{|\hat{\Omega}_i|} \int_{\hat{\Omega}_i} \partial_j c_*(y, \tau) \, dA \, d\tau \\
- \nabla \cdot \sum_{i=1}^{N} \chi_i(x) \int_0^t \sum_{j=0}^2 (S_{i1}^j(t - \tau), S_{i2}^j(t - \tau)) \frac{1}{|\hat{\Omega}_i|} \int_{\hat{\Omega}_i} \partial_j c_*(y, \tau) \, dA \, d\tau \\
- \nabla \cdot (D_* \nabla c_*(x, t) - v_* c_*(x, t)) \\
+ \sum_{i=1}^{N} \chi_i(x) \int_0^t \sum_{j=0}^2 (T_{i1}^j(t - \tau), T_{i2}^j(t - \tau)) \frac{1}{|\hat{\Omega}_i|} \int_{\hat{\Omega}_i} \partial_j c_*(y, \tau) \, dA \, d\tau \\
= 0, \quad x \in \Omega, \quad t > 0.
\end{align*}
\]
Introduction and motivation
Something old: double porosity models
Something new: building a new model

Ideas and steps
Computational experiments
Construct affine approximations
Model calculations
Computational experiments with elements of upscaled model