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TUNING THE BAND STRUCTURE OF CARBON NANOTUBES 

 

Ethan Davis Minot, Ph. D. 

Cornell University 2004 

 

The experiments presented in this thesis show that carbon nanotube (NT) 

electronic structure can be tuned by mechanical stretching and by magnetic fields. 

These fascinating electromechanical and magnetic effects are quantified using 

electrical transport techniques. 

Nanotubes are thin, hollow cylinders made entirely from carbon atoms. The 

electron wavestates of a NT are quantized into one-dimensional (1-D) subbands, with 

each subband corresponding to a different wrapping mode. The 1-D subbands in a NT 

come in degenerate pairs due to the clockwise/counterclockwise (CW/CCW) 

symmetry of the wrapping modes. Electron transport though a NT occurs in the pair of 

subbands with electron states nearest the Fermi level. This pair of subbands can be 

metallic or semiconducting depending on NT diameter and chirality.  

To investigate the electromechanical properties of NTs, electrical transport 

measurements are combined with in-situ atomic force microscopy (AFM) 

manipulation. Nanotubes suspended over trenches are stretched by pushing with an 

AFM tip. Electrical measurements taken during stretching reveal dramatic changes in 

electronic structure near the Fermi level. It is shown that stretching can open a 

bandgap in metallic subbands and modify the bandgap of semiconducting subbands. 

These measurements are consistent with theoretical work which predicts that bandgap 

changes can range between ±100 meV per 1% strain, depending on NT chirality, and 

that stretching does not break the degeneracy between subband pairs.  



 

 

Significant changes in electronic structure are also found in magnetic field 

experiments. Because CW and CCW electron orbitals have opposite magnetic 

moments, a magnetic field is expected to break the degeneracy between NT subbands. 

Breaking of subband degeneracy is measured by detecting the charge carriers that are 

thermally activated across the NT bandgaps, and by measuring the energy shifts of 

individual electron states in a NT quantum dot. Both techniques show that electron 

states near the NT bandgaps have large magnetic moments along the NT axis. The 

measured magnitudes and directions of orbital magnetic moments are consistent with 

theoretical predictions and are an order of magnitude larger than the Bohr magneton. 
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CHAPTER 1  

INTRODUCTION AND BACKGROUND

1.1  Carbon nanotubes as nanoscale systems

Nanoscale structures are used to study a range of interesting effects that occur 

when electrons are confined to very small geometries. For example, the quantized 

electron wavestates in a nanostructure are reflected in measurements of electron 

transport through the structure. Electron transport experiments have been used to 

investigate many different nanostructures (Fig. 1.1), including small metal clusters 

(Ralph et al. 1995), two-dimensional “pancakes” in GaAs-based systems 

(Kouwenhoven & Marcus 1998), a variety of single molecules (Reed 1999) and 

carbon nanotubes (Dekker 1999; McEuen et al. 2002). Among these structures, carbon 

nanotubes (NTs) have some of the most fascinating relationships between nanoscale 

geometry and transport properties. 

Carbon nanotubes are thin, hollow cylinders made entirely of carbon. The walls 

of a NT are formed from graphene - a honey-comb lattice of carbon atoms. As shown 

in Fig. 1.2, different orientations between the honey-comb lattice and the cylinder axis 

of a NT are possible. Several unique properties result from the cylindrical shape and 

the carbon-carbon bonding geometry of NTs. The electronic structure of a NT is 

sensitive to the precise arrangement of carbon atoms; some NTs are moderate bandgap 

semiconductors while others are metallic (Odom et al. 1998; Wildoer et al. 1998). 

Moreover, when the arrangement of carbon atoms is changed by mechanical 

stretching, a NT is expected to change from semiconducting to metallic or vice versa 

(Heyd et al. 1997; Rochefort et al. 1998; Yang et al. 1999; Yang & Han 2000). The 

cylindrical shape of NTs also leads to interesting magnetic properties. Significant 

1



3+Co

Figure 1.1 Examples of different types of nanostructures that have been studied 

using electron transport techniques (not drawn to scale). (a) A small metal 

particle (diameter ~ 5nm) very close to a pair of electrodes. A bias applied 

between the electrodes causes electrons to hop on and off the particle. (b) A

pancake-shaped GaAs-based structure coupled to electrodes. (c) The single-

molecule Co(tpy-(CH2)5-SH)2 studied by Park et al. (2003). (d) A carbon 

nanotube connected to a pair of electrodes. Depending on the fabrication

process the NT/electrode contacts can be tunnel barriers or ohmic contacts. 

(b)

(a)

(c)

(d)

e-

I
V
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(b)

(a)

(c)

Figure 1.2 Different NT geometries. (a) (b) Two examples of how 

carbon atoms can be arranged in a NT. There are many more possibilities, 

as discussed in Section 2.2. The NT shown in (a) is metallic, while the 

NT in (b) is semiconducting. (c) Scanning tunneling microscope image of 

a NT, taken from Wildoer et al. (1998). The scale bar is 1 nm. The bright 

spots in this image reveal the locations of carbon atoms.
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changes in NT electronic structure are expected in applied axial magnetic fields due to 

Aranov-Bohm-type interference around the NT circumference (Ajiki & Ando 1993; 

Lu 1995).

The experiments presented in this thesis focus on these beautiful examples of 

how geometry influences the electronic properties of a nanostructure. This Chapter 

introduces the concepts and experimental techniques that are used to investigate these 

electromechanical and magnetic effects in NTs. 

1.2 Ballistic transport in nanoscale systems 

Nanoscale structures are often smaller than electron scattering lengths. For 

example, GaAs-based nanostrutures and NTs can have a scattering length lscatter > 1 

m. Therefore, NTs and other nanostructures can be used as ballistic conductors, 

acting as waveguides for electrons. In this section we discuss the Landauer-Buttiker 

formalism for the ballistic transmission of electrons (reviewed by Datta 1995). The 

Landauer-Buttiker formalism leads us to the idea of conductance quantization, our 

starting point for understanding electron transport in NTs. 

Electron wavestates encircling a NT are quantized into “wrapping modes.” 

Within each wrapping mode there is a continuum of wavestates along the NT axis 

described by wave numbers k||. The k|| states associated with each wrapping mode form 

one-dimensional (1-D) conduction channels (also refered to as 1-D subbands). To 

calculate how much current can pass through a 1-D channel we must consider the 

balance of left-moving and right-moving electrons in the channel. In equilibrium, 

every 1-D subband will have equal number of left- and right-moving electrons. If a 

bias is applied, however, left- and right-moving states can be unequally populated. 

Figure 1.3 shows a 1-D subband connected to two electrodes. The chemical potential 

of the right electrode R is raised slightly above that of the left electrode. Electrons 

4



Figure 1.3 (a) A narrow channel connecting a pair of electrodes. The left and right 

electrodes are large electron reservoirs with chemical potential L and R. If L

R a net current I can flow between the electrodes. (b) The energy and occupancy 

of electron states in a 1-D mode of the narrow channel. Left- and right-moving 

states are equally occupied (net current I = 0) since L = R. (c) R > L. More 

left-moving electron states are occupied than right-moving states and I > 0. 

Filled
right-moving 

states

Filled
left-moving 

states

L= R

states
contributing
to net current 

L

R

E(b)

(a)

(c)

L R
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||k

||k
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entering the 1-D channel from the left populate right-moving states, while electrons 

entering from the right populate left-moving states. A net current, I, flows due to the 

imbalance of left and right moving electrons. When transport is ballistic (no scattering 

in the 1-D channel) and the coupling to the electrodes is transmissive (no electrons 

reflected at the contacts) the net current is given by 

dE
dk

dE
eEfEf

dE

dn
evnnI LRLR

||

1
))()(()(  (1.1) 

where nR and nL are the number of right and left moving electrons per unit length in 

the channel, v dE/dk||  is the velocity of these electrons, dn/dE is the density of 

states per unit length in the channel, fR and fL are the Fermi distributions in the left and 

right electrodes. Equation 1.1 is simplified by writing dn/dE = (dn/dk||) / (dE/dk||). For 

a 1-D system dn/dk|| is simply 1/  (including spin degeneracy), and we have 

dEEfEf
h

e
I LR )()(

2
 (1.2a) 

V
h

e22
 (1.2b) 

The last step follows from the difference in chemical potential, eV= R- L, between the 

two electrodes.  

Equation 1.2b assumes that transport through the channel is ballistic (no 

scattering). Scattering is accounted for by assuming that each electron has a 

probability |t|
2
 of being transmitted through the channel. Including the effect of 

scattering we have 
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From these results we see that the conductance of a perfectly contacted, ballistic 1-D 

channel depends only on fundamental constants. This remarkable prediction of the 

Landauer-Buttiker formalism is called conductance quantization. The effect was first 

experimentally verified using electrostatic constrictions in GaAs nanostructures (Van 

Wees et al. 1988; Wharam et al. 1988).  

In NTs the 1-D channels come in degenerate pairs, due to the clockwise/anti-

clockwise symmetry of the wrapping modes around a cylinder. A metallic NT has one 

pair of  channels with energies that overlap the Fermi level. At low bias, only this pair 

of channels can be unequally populated with left- and right-moving electrons; all other 

wrapping modes remain completely filled or completely empty. Therefore, a perfectly 

contacted metallic NT, with length smaller than lscatter, is expected to have a quantized 

conductance 2(2e
2
/h) (= 6.5 k ). Indeed, well contacted metallic NTs with length  ~ 

200 nm are found to have conductance of nearly 4e
2
/h (Kong et al. 2001; Liang et al. 

2001).

1.3 Semiconducting nanotubes  

In semiconducting NTs there is an energy range in which no electron states exist. 

Because of this energy gap interrupting the 1-D channels of a semiconducting NT, 

conductance can be turned on and off by an electric field (Tans et al. 1998). This field-

effect transistor (FET) behavior has possible technological applications. It is hoped 

that NTs can be used in densely packed integrated circuits or as tiny sensors. In the 

context of this thesis, FET behavior is extremely useful for measuring NT energy gaps 

and how these gaps change with mechanical stretching or applied magnetic field. 

7



A typical NT transistor geometry is shown in Fig. 1.4a. A conducting plane, also 

called a gate, lies underneath an electrically contacted NT. The NT and the gate form 

two sides of a capacitor – a voltage difference will cause opposite charge to 

accumulate on the NT and the gate. The number of electrons on a NT can be 

controlled in this way. Conductance is turned on when the number of electrons on the 

NT is such that a 1-D channel (either above or below the energy gap) is partially 

occupied. Conduction is turned off when the 1-D channels above (below) the energy 

gap are empty (filled). A semiconducting NT in the “on” state, like a metallic NT, is 

expected to have maximum conductance of 4e
2
/h. Semiconducting NTs with ohmic 

electrical contacts have been observed with on-state conductance ~ 4e
2
/h (Javey et al. 

2003; Yaish et al. 2004). 

Band diagrams (see Fig. 1.4c) are used to show how different parts of a NT are 

affected by an applied electric field. Figure 1.4c shows the combined chemical energy 

plus electrostatic energy of the highest-energy valence state and lowest-energy 

conduction state in a NT as a function of position along the tube. The energy gap 

separating these states in a typical semiconducting NT is Egap ~ 0.5 eV. The Fermi 

level in Fig. 1.4c is aligned below the valence band edge. This is known to happen 

when semiconducting NTs are contacted to certain metals (for example Pt (Javey et al. 

2003) or Au with a Cr adhesion layer (Park & McEuen 2001)). When Vg = 0 there are 

unoccupied valence states, and current can pass through the NT. Because conductance 

is via unoccupied valence states, the NT is a conductor with positive-type charge 

carriers (p-type). As the gate voltage is increased (Vg > 0) valence states become 

completely filled in the middle of the NT. The NT is in the “off” state and 

conductance drops. Changes in electrostatic energy are greatest in the middle section 

of the NT because the electric field is screened close to the electrodes. As Vg is 

increased further the chemical-potential energy of states in the middle of the NT is 

8
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Figure 1.4 A nanotube transistor. (a) Side view of a typical NT transistor 

geometry. The NT is insulated from the gate by a dielectric material, typically 

SiO2. (b) The conductance of a NT device, G, changes as a function of gate 

voltage Vg. (c) Band diagrams of the NT device at different Vg. The NT conducts 

when Vg < 0 because valence states are partially filled. Conduction also occurs 

when Vg > 4V, but is limited by the probability of tunneling from valence states to 

conduction states. When 0 < Vg < 4V the valence (conduction) band is completely 

filled (empty) and the transistor is in the “off state”.
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lowered far enough so that conduction states become occupied (Fig. 1.4c). The middle 

section of the NT is n-type (negative-type charge carriers). At this gate voltage 

transport is limited by the p-n tunnel barriers at either end of the NT.

At zero temperature the “off” state of a NT would correspond to a completely 

filled valence band and a completely empty conduction band. However, at finite 

temperature, thermal activation of electrons over the energy gap results in empty 

valence states and occupied conduction states. Therefore, the off-state conductance of 

a semiconducting NT is non-zero and depends sensitively on temperature and the size 

of Egap. Figure 1.5 shows conductance vs. Vg for a small-bandgap NT (Egap ~ kT). This 

NT has a much smaller bandgap than the NT in Fig. 1.4b and the two devices have 

very different off-state conductance. Measurements of off-state conductance can be 

used to quantify NT bandgaps as discussed in Chapters 4 and 5. 

1.4 Quantum dot spectroscopy 

In the previous section we saw how the energy gap of a semiconducting NTs is 

reflected in field-effect transistor behavior. More information about the energies of 

electron states in a NT can be found using quantum dot spectroscopy.   

Quantum dots (QDs) are formed when a nanostructure confines electrons in all 

three dimensions. In the case of NTs this occurs when electrons are held in the tube by 

tunnel barriers at either end (Bockrath et al. 1997; Tans et al. 1997). Due to this 

complete confinement, the electrons in a QD occupy a discrete spectrum of energy 

levels which can be probed by electron transport experiments (Kouwenhoven et al. 

1997; Kouwenhoven & Marcus 1998). In this section we discuss how measurements 

of electrons tunneling in and out of a QD are used to study the quantized energy levels 

of the dot. In Chapter 5 we use these methods to investigate the coupling between 

magnetic field and the electron orbitals in NTs. 

10



Figure 1.5 Room temperature conductance of a NT with Egap ~ kBT. The 

off-state conductance is high because many carriers are thermally activated 

over the small bandgap. 
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Single-electron charging plays an important role in the transport properties of a 

QD. Figure 1.6a shows a nanostructure coupled to electrodes via tunnel barriers. From 

the size scale of the island, L, we estimate the capacitance of the island C ~ L. If the 

number of electrons occupying the dot changes by one, there is an energy cost ~ e
2
/C.

By lowering temperature such that kT < e
2
/C, the number of electrons, N, on a QD 

becomes stable (the fluctuations in N due to thermal energy are suppressed). For a 

typical NT device (L = 1 m, silicon oxide substrate  = 4 0) this “Coulomb blockade” 

regime is reached at temperatures below ~ 30K.  

The total energy of the N-electron state of a QD depends on the electrostatic 

environment felt by the electrons and the quantized energy levels occupied by the 

electrons. In the constant-interaction model (Kouwenhoven et al. 1997), electrostatic 

interactions are approximated using the capacitance of the dot C, and the energy of the 

i
th

 quantum state Ei is assumed to be independent of electron number. The energy of 

the ground state with N electrons is then 

C

Ne
ENU

N

i

i
2

)(
)(

2

1

,

The difference between ground state energies U(N) - U(N-1) is the electrochemical 

potential of the dot

C

eN
ENUNUN Ndot

2)2/1(
)1()()(

The N
th

 electron will enter the dot if dot(N)  is smaller than the electrochemical 

potential of a nearby electrode. Note that dot increases with N; each additional 

electron raises the total energy of the electronic ground state more than the electron 

before. The ladder of dot(N) is shown in Fig. 1.6b and c. 
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(b)

(a)

(c)

Figure 1.6 Electron transport through a quantum dot. (a) A quantum dot with 

length scale L. Tunnel barriers separate the dot from a pair of electrodes. The dot 

is capacitively coupled to a gate electrode. (b) The chemical potential of the dot 

(a function of the number of electrons on the dot) and the chemical potential of 

the electrodes L and R. Because N0) is aligned with L,R the occupancy of the 

dot can fluctuate between N0 and N0-1 and low-bias conduction is possible. (c)

Same as (b) except the dot is stable with N0 electrons. Low-bias conduction is 

blocked because electron occupancy cannot fluctuate.

e-

L

L R

gate

L R(N0)

(N0-1)

(N0-2)

(N0)

(N0-1)

(N0+1)
L R
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For current to flow through a QD, the number of electrons occupying the dot 

must fluctuate. In the Coulomb blockade regime (kT < e
2
/C) this can occur if there 

exists dot(N) such that L dot(N) R (or L dot(N) R) where L and R are the 

chemical potentials of the electrodes. Figure 1.6b illustrates the situation where L

= dot(N0) R. The total energy of the system (the two electrodes and the dot) does 

not change as the occupancy of the dot fluctuates between N0 and N0-1 electrons. The 

N0
th

 electron makes an equal contribution to the energy of the system whether it is on 

the dot or one of the electrodes. Because of this degeneracy between N0 and N0-1

states, a small bias ( L - R  0) will cause current to flow through the dot. The non-

degenerate situation is shown in Fig 1.6b. Here the occupancy of the dot cannot be 

changed without increasing the overall energy of the system. The dot is stable with N0

electrons and low-bias current is blocked.

A gate voltage Vg can be used to adjust dot, and therefore the conductance of a 

quantum dot. With the chemical potential of the electrodes held constant we have 

(Kouwenhoven et al. 1997) 

g

g

Ngdot V
C

C
e

C

e
NEVN

2

)2/1(),(  (1.5) 

The term in Vg is independent of N since the electric field between gate and dot is felt 

equally by every electron. Figures 1.6b and c are examples of electrochemical 

potentials at different values of Vg. If Vg is swept continuously, the electrochemical 

potential of different charge states will periodically align with L,R. A peak in low-bias 

conductance is expected whenever dot(N, Vg) aligns with the chemical potential of the 

electrodes. These “Coulomb peaks” are illustrated in Fig. 1.7a. An expression for the 

position of the N
th

 Coulomb peak is found by rearranging Eq. 1.5 
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Figure 1.7 (a) Schematic of the low-bias conductance of a QD as a function of Vg.

Sharp peaks in conductance occur when dot aligns with the electrochemical 

potential of the electrodes. (b) Color plot of differential conductance dI/dV
bias

of a 

NTQD as a function of bias eV
bias

= L- R, and gate voltage V
g

at temperature T =

4 K (from Jarillo-Herrero et al. 2004). Black is zero conductance, white is 3 S.

Regions of (Vg, Vbias) where current is blocked appear as dark diamonds. The width 

of the diamonds corresponds to Vg in (a). The height of the diamonds is e2/C+ E

as illustrated in (c). (c) Electrochemical potential of the dot and electrodes near the 

top of a zero conductance diamond. V
g

is such that current is blocked for bias 
L
-

R

< e2/C+ E. If V
g

is changed, or V
bias

increased, a charge state of the dot (either N0

or N0+1) will become available to facilitate transport. 
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constant)(
2

C

e
NE

eC

C
NV N

g

g  (1.6) 

We see that the constant-interaction model predicts that Coulomb peak positions will 

reflect the orbital energies EN.

To use Coulomb peak positions Vg(N) to infer EN we must find the ratio of total 

capacitance C to gate capacitance Cg.  This ratio is found experimentally by mapping 

out the conductance of a dot at different Vg and different biases eVbias R - L. Figure 

1.7b shows a two-dimensional plot of conductance as a function of Vg and Vbias for a 

NTQD. A series of diamonds can be seen where the dot does not conduct current. The 

width of a diamond is the distance between Coulomb peaks Vg(N)-Vg(N-1) = 

(C/eCg)( E+ e
2
/C), where E= EN -EN-1. The height of a diamond is eVbias = E+ e

2
/C,

as illustrated in Fig 1.7c. The ratio of width to height, therefore, gives C/Cg.

1.5 Scanned Probe Techniques 

Scanned probe techniques are an indispensable tool for preparing and 

characterizing NT samples. Basic information, such as NT diameter, is easily 

measured with a commercial atomic force microscope (AFM). More sophisticated 

characterization is possible using nano-manipulation techniques and taking advantage 

of electrical interactions between an AFM tip and a NT.  

Figure 1.8b shows an AFM image of a NT on a SiO2 substrate. A cross-section 

of this topographic image gives height information about the NT. Care must be taken 

in interpreting these measurements because the NT is more compressible than the 

substrate. The apparent NT height in an AFM image can be smaller than the true NT 

diameter (Postma et al. 2000). Error is minimized by reducing the forces between the 

AFM tip and the NT.  
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Figure 1.8 Scanning probe techniques. (a) An oscillating AFM tip is used to 

detect the surface. The tip approaches the surface until a drop in oscillation 

amplitude is detected. Images of surface topography are made by maintaining a 

constant diminished amplitude. (b) A surface topography image of a NT device 

and a cross section of the image. Scale bars are 300nm. Gold electrodes at the top 

and bottom of the image are much taller than the NT. A cross section of the image 

shows the diameter of the NT, D 1nm. (c) The bending of an AFM cantilever can 

be used to measure the elastic forces associated with stretching a suspended NT.

(b)
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A gold coated AFM tip can be used to make low-resistance electrical contacts 

at any point along a NT (de Pablo et al. 2002; Park et al. 2004; Yaish et al. 2004). This 

technique is very useful when building NT devices. For example, if multiple NTs are 

connected to a pair of electrodes, the AFM tip can be used as a third electrode to 

individually characterize the tubes. Unwanted NTs can then be burnt by injecting large 

currents from the AFM tip into the selected tube (Park et al. 2002). Using an AFM tip 

as a third electrode is also useful for investigating different sections of the same NT. 

For example, in Chapter 5, we measure electrical properties of suspended and 

unsuspended sections of the same NT. These measurements reveal important 

interactions between the substrate and NT.  

The final use of scanned probe techniques in this thesis is for mechanical 

manipulation of NTs. Long suspended NTs can be stretched by downward pressure 

from an AFM tip as shown in Fig. 1.8c (Walters et al. 1999; Tombler et al. 2000; Kim 

et al. 2002). The exquisite force sensitivity of the AFM allows us to measure the 

elastic forces associated with stretching the NT. In addition to measuring mechanical 

forces, the electronic properties of a NT can be measured as it is stretched (Tombler et 

al. 2000). These techniques are used in Chapters 3 and 4 to study NT mechanical and 

electromechanical properties.  

1.6 Summary and Outline 

In this Chapter we reviewed the basic theory of electron transport through 

nanostructures and the experimental techniques that are used in this thesis. Chapter 2 

gives a theoretical overview of NT band structure, emphasizing the effects of 

mechanical strain and magnetic field on NT band structure. In Chapter 3 we describe 

experiments that probe the mechanical properties of NTs. In Chapter 4 we show that 

mechanical stretching changes NT bandgaps. Finally, in Chapter 5, we present 
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measurements of NT band structure in an applied axial magnetic fields, confirming 

theoretical predictions for orbital magnetic moments in NTs.  
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CHAPTER 2 

THEORY OF NANOTUBE BAND STRUCTURE  

2.1 Introduction 

Theoretical work on carbon nanotubes (NTs) has lead to many remarkable 

predictions (Dresselhaus et al. 2001). In this chapter we focus on two of these 

predictions. First, the strong coupling between NT electrical properties and 

mechanical strain (Heyd et al. 1997; Rochefort et al. 1998; Yang et al. 1999; Yang & 

Han 2000). Second, the large orbital magnetic moments of electrons in NTs (Ajiki & 

Ando 1993; Lu 1995). We present the theory behind these predictions, emphasizing 

results that are experimentally tested in Chapters 4 and 5. 

Our theoretical treatment begins with a description of the electronic structure of 

NTs. Other useful reviews of NT electronic structure are found in (White & Mintmire 

1998; McEuen 2000; Dresselhaus et al. 2001). With a clear picture of the allowed 

electronic states in a NT, we then explore the effects of mechanical strain and 

magnetic field.  

2.2 Rolled up graphene  

Carbon nanotubes have a cylindrical structure. The cylinder is formed from 

graphene – a honey-comb lattice of covalently bonded carbon atoms (Fig. 2.1). There 

are many possible NT geometries, depending on how graphene is rolled into a cylinder 

and whether the NT is strained. Subtle geometric variables, such as the alignment 

between the cylinder axis and the graphene crystal axes, strongly influence the 

electrical properties of a NT.
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Figure 2.1 Forming a NT from a graphene sheet. (a) The graphene lattice 

and lattice vectors a1 and a2. A wrapping vector n1a1+n2a2 = 4a1+2a2 is

shown. The shaded area of graphene will be rolled into a tube so that the 

wrapping vector encircles the waist of the NT. The chiral angle is

measured between a1 and the wrapping vector. (b) A NT with wrapping 

vector 5a1+5a2, = 30°.

(n1, n2)=(5,5)

(b)

(a)

a1

a2
n1a1+n2a2
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The geometry of an unstrained NT is described by a wrapping vector. The 

wrapping vector encircles the waist of a NT so that the tip of the vector meets its own 

tail. One possible wrapping vector is shown in Fig. 2.1. In this example, the shaded 

area of graphene will be rolled into the NT. The wrapping vector can be any n1a1 + 

n2a2 where n1 and n2 are integers and a1 and a2 are the unit vectors of the graphene 

lattice (|ai|  0.25 nm). The angle between the wrapping vector and the lattice vector a1

is the chiral angle of a NT. Chrial angle  can vary between 0˚ and 30˚ (any wrapping 

vector outside this range can be mapped onto 0˚ <  < 30˚ by a symmetry 

transformation). In later sections we will see that the parameters n1, n2 and  all play 

important roles in describing the electrical properties of NTs. 

2.3 Tight binding calculation for graphene 

To describe the electronic states of a NT we must first understand the electronic 

structure of graphene. The graphene lattice has unique electronic properties. Using the 

tight-binding approximation (Ashcroft & Mermin 1976) we will see that conduction 

and valence states in graphene only meet at two points in k-space and that dispersion 

around these special points is conical. In Section 2.5 we describe the electronic states 

of a NT by combining these properties of graphene with cylindrical boundary 

conditions.

Figure 2.2 shows the real space geometry of the graphene lattice. Each unit cell 

has two carbon atoms, labeled A and B. The bonds between carbon atoms form a 

hexagonal lattice, with each A atom connected to three B atoms and vice versa. The 

bonds are directed along the vectors 1, 2 and 3.

 Each carbon atom has four valence electrons. Three of these electrons 

participate in the C-C sigma bonding. The fourth electron occupies a pz orbital. The pz

states mix together forming delocalized electron states with a range of energies that 
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Figure 2.2 Geometry of the graphene lattice. The unit cell, indicated 

by a dashed line, contains two carbon atoms labelled A (black) and B 

(white). The three bond vectors are labeled 1, 2 and 3. The x-axis is 

parallel to 1.

A B
1

2

3

x

y
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includes the Fermi energy. These states are responsible for the electrical conductivity 

of graphene. 

To proceed with a tight-binding calculation we build linear combinations of pz

orbitals that satisfy the symmetry of the graphene lattice. An electron wave function in 

a periodic lattice must satisfy the Bloch condition. 

)()exp()( rrkr
k

ui ,

where u(r) has the periodicity of the crystal lattice (Ashcroft & Mermin 1976). In the 

case of graphene, the function u(r) can be approximated using X(r), the pz atomic 

orbital of an isolated carbon atom. Positioning the function X(r) at every lattice site 

gives

BA

)()exp()()exp()( BBAA XiXi RrRkRrRkr
k

 , (2.1) 

where RA and RB are the positions of A and B atoms. The phase difference between 

two atoms in the same unit cell is e
ik· 1 ( 1 is the bond vector connecting the two 

atoms in the unit cell). Note that Eq. 2.1 satisfies Bloch’s theorem, i.e. 
k

 can be 

written in the form exp(ik·r)u(r) where u(r) has the crystal lattice periodicity.  

Our goal is to find the eigenenergies Ek of the wavestates 
k

. To approximate 

Ek = 
kk

H  we start with an expression for 
kk

H  that neglects the overlap 

integrals between the A atoms (each A atom is surrounded by B atoms):  

rRrRkRrRk
k

dXiHXi
N

EE BBAA

BA

*

0 )()exp()()exp(
1

(2.2)
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where E0 is the energy of the bare pz orbital, N is the number of carbon atoms in the 

lattice and H is the Hamiltonian describing the lattice. Equation 2.2 is simplified 

further by removing the remaining non-nearest-neighbor terms:  

i

0 )exp( ii itEE k
k

, (2.3) 

with

rRrRr dHXXt iBAi )()( ,

* , (2.4) 

where the index i = 1, 2 or 3 refers to three B atoms neighboring each A atom.  

The last step in determining Ek is finding the phase factor . From variational 

principles  is a complex number of norm unity ( = 1) which makes Eq. 2.3 real 

valued (Wallace 1947). From Wallace’s result we have 

i

0 )exp( ii itEE k
k

,  (2.5) 

where the  are associated with different values of .

There are two eigenvalues for every k in Eq. 2.5 due to the two possible values 

of  at each point in k-space. For example, at k = 0 the high energy state has = 1 

while the low energy state has  = -1. The two wavefunctions 1

0k
and 1

0k
 are 

shown schematically in Fig. 2.3. The phase of the wavefunction at each lattice site is 

designated by + or - signs. Just as in a diatomic molecule, the low-energy “bonding 

state” forms when neighboring atomic orbitals add constructively (  = 1) while the 

high-energy “anti-bonding state” forms when neighboring orbitals add destructively (

= -1). 
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Figure 2.3 Bonding and anti-bonding wavefunctions in graphene. The 

tightbinding wavefunction contains an orbital from each atom. The 

phase of each orbital is labelled either + or -. (a) When k = 0 = +1 

all orbitals have the same phase and add constructively to form a 

bonding state. (b) When k = 0 = -1 neighboring wavefunctions have 

opposite phase and an anti-bonding state is formed. 

(b)

(a)
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The dispersion relation described by Eq. 2.5 is plotted in Fig. 2.4. Figure 2.4a 

shows the high energy (Ek>E0) and low energy (Ek<E0) states that make up the 

conduction and valence bands of graphene. From this plot we see that the conduction 

and valence bands meet at certain points in k-space. These special points, where 

conduction and valance states are degenerate, are called “K points”. Figure 2.4b shows 

a contour plot of the energy of valence band states. The circular contours around the K 

points reflects the conical shape of the dispersion relation near the K points. 

Electronic states near the Fermi level of graphene are located on dispersion 

cones. Therefore, the shape and position of these cones is critical for describing 

graphene (and NT) electronic properties. The two K points labeled K1 and K2 in Fig. 

2.4b are positioned at (kx, ky) = a
-1

(0, 4 /3) where a = |ai|= 0.25 nm. The slope of the 

cones is ( 3 /2)t0a where t0 2.7eV (White & Mintmire 1998). The slope of the cones 

determines the Fermi velocity of graphene, vF 8x10
5
 ms

-1
.

2.4 Symmetries in graphene 

An important feature of Fig. 2.4 is the vanishing energy diffence between 

conduction and valance states at special points in k-space (the “K points”). By 

considering the symmetries of graphene we can gain a deeper understanding of this K-

point degeneracy. Symmetry arguments also show there are only two inequivalent K 

points in graphene, and that this pair of points (K1 and K2) must satisfy the 

relationship K1 = -K2.

To understand K-point degeneracy we consider states associated with the 

wavevector K1= (0,4 /3). Using this wavevector we construct a pair of wavefunctions 

(using two different values of ) which demonstrate the physical basis for this 

degeneracy.  Figure 2.5 illustrates the wavefunctions 
1K
with  = e

i2 /3
 and  = e

i4 /3
.

The phase of the wavefunction is indicated at each carbon atom. The wave functions 
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Figure 2.4 The dispersion relation of graphene. (a) The energy of valence and 

conduction states in graphene plotted as a function of wavevector k. The valence 

and conduction states meet at singular points in k-space called K points. Dispersion 

around these points is conical. (b) A contour plot of the valence state energies in 

(a). Lower energies are colored darker. The circular contours around six K points 

(colored white) can be seen. The hexagon formed by the six K points defines the 

graphene unit cell in k-space, beyond this unit cell the dispersion relation repeats 

itself. Arrows point to the two inequivalent K points, K1 and K2.
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Figure 2.5 Degenerate wavefunctions associated with the K1 wavevector. 

The ‘A’ atoms are colored black and positioned at RA, the ‘B’ atoms are 

colored white. The phase of the wavefunction at the A atoms is eK1.RA = 0, 

ei2 /3 or ei4 /3 as shown in (a) and (b). The phase of the wavefunction at the 

B atoms depends on . (a) The K1 wavefunction when = ei2 /3. (b) The

K1 wavefunction when = ei4 /3. This wavefunction maps onto (a) by a 

120° rotation, as indicated by the arrow. 
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map onto each other by a 120˚ rotation. Because the graphene lattice also has a 120˚

rotational symmetry the two wavefunctions must be degenerate. Valence and 

conduction states with K1= (0,4 /3) are built from these degenerate  = e
i2 /3

 and  = 

e
i4 /3

 states. Therefore, valence and conduction states at the K1 point are degenerate.

There are two further symmetries of graphene which are important for our 

analysis. The first is between k and -k states. Unless there is a magnetic field (Section 

2.9), forward and backward moving states have identical eigenenergies (by time 

reversal symmetry). If conduction and valence states meet at K1 they must also meet at 

-K1. Therefore, the degeneracy we found at the K1 point also occurs at K2 = -K1.
(1)

Lastly,  the translational symmetry of the graphene lattice means that k-states are 

equivalent if they can be connected by a reciprocal lattice vector. The unit reciprocal 

lattice vectors are G1 and G2 where ijji 2aG . In Fig. 2.4b the K1 point can be 

mapped by reciprocal lattice vectors onto the lower left and lower right K points. 

Similarly, the K2 point is equivalent to the upper left and upper right K points. There 

are only two inequivalent K points in graphene; all electron states near the Fermi level 

of graphene have k-vectors close to either K1 or K2.

In the next section we examine the affect of rolling graphene into a cylinder, 

focusing on the electronic states near K1 = -K2.

2.5  Quantization around a graphene cylinder 

In a cylinder such as a NT, the electron wave number perpendicular to the 

cylinder’s axial direction, k , is quantized. This quantization, together with the 

properties of graphene, lead us to a description of NT electronic structure.  

                                                
1 We can construct a pair of degenerate wavefunctions for K2, just as we did for K1.  These 

2K

wavefunctions will be mirror images of the 
1K

wavefunctions shown in Figs. 2.5a and b. 
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Because nanotube diameters are small ( ~ 1nm), there is a significant spacing 

between quantized values of k  (Fig. 2.6). In the direction parallel to the NT axis, 

however, electrons are free to move over much larger distances and the electron 

wavenumber in the parallel direction, k||, is effectively continuous. The continuum of 

k|| states in each k  wrapping mode are called one-dimensional (1-D) subbands. 

The quantized k  are determined by the boundary condition  

D k = 2 j, (2.5)

where j is an integer and D is the NT diameter. The parallel lines in Fig 2.6b represent 

the allowed k states in a NT; each line is a different 1-D subband. The interline 

separation in Fig 2.6b translates into a large energy spacing between 1-D subbands. 

The only electron states with Ek close to EF are in 1-D subbands with allowed k close 

to K1 or K2.

The exact alignment between allowed k values and the K points of graphene is 

critical in determining the electrical properties of a NT. To see how different types of 

alignment come about, we consider NTs with wrapping indices of the form (n1,0).  In 

lattice vector units such tubes have circumference n1, allowed k = 2 j/n1 and K1 is 

positioned at (k||, k ) = (0, 4 /3).

When n1 is a multiple of 3 (n1 = 3q where q is an integer) there is an allowed k

that coincides with K1. Setting j = 2q

3

4

3

42

1 q

q

n

j
k .

The intersection of a 1-D subband with the K1 point is illustrated in Fig. 2.7a.

Two cases exist when n1 is not a multiple of 3. First, if n1 = 3q+1 we find the 

closest k to K1 by setting j = 2q+1:
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Figure 2.6 Quantization of wave states around a graphene cylinder. (a) The 

parallel and perpendicular axes of a NT. (b) Contour plot of graphene valence 

states for a NT with chiral angle = 0. The parallel lines spaced 2/D indicate

the k vectors that are allowed by the cylindrical boundary condition. Each line 

is a 1-D subband. (c) Electron states near EF are defined by the intersection of 

allowed k with the dispersion cones at the K points. 
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Figure 2.7 Different alignment between the dispersion cone at K1 and allowed k.

(a) When p = -1 the misalignment between K1 and the nearest 1-D subband is -

2/3D. The bandgap of the subband is Egap = 2hvF(2/3D). (b) When p = 0 a 

subband intercepts the K point. The subband is metallic. (c) When p = 1 the 

misaligment between K1 and the nearest 1-D subband is +2/3D. The subband has 

Egap = 2hvF(2/3D).
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Similarly, if n1 = 3q-1 the closest allowed k  corresponds to j = 2q-1:
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The two cases where 1-D subbands do not intersect K1 are shown in Fig. 2.7b and c.

All NTs fall into one of the three families illustrated in Fig. 2.7 (Dresselhaus et 

al. 2001). Given a wrapping index (n1, n2) we calculate n1 n2 = 3q + p where q is an 

integer and p is either –1, 0 or 1. The index p defines the type of alignment between 

allowed k and the K points as follows (the symmetry between +k and –k states 

ensures that the subbands near K1 and K2 are degenerate): 

i) p = 0: a line of allowed k intercepts K1 (Fig. 2.7a). Both 1-D subbands are 

metallic
2
.

ii) p = 1: a line of allowed k misses K1 by k = +2/3D, (Fig. 2.7b). The 1-D 

subbands associated with both K points have bandgaps Egap = 2 vF(2/3D). 

iii) p = -1: a line of allowed k misses K1 by k = -2/3D, (Fig. 2.7c). The 1-D 

subbands associated with both K points have bandgaps Egap = 2 vF(2/3D). 

The p = 1 type NTs have large bandgaps (Egap ~ 0.7eV/D[nm]), a feature 

which clearly distinguishes them from p = 0 type NTs. The physical differences 

2 Nantubes with p = 0 can develop small bandgaps if k is modified by other perturbations such as 

strain (see Section 2.8). 
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between p = 1 and p = -1 type NTs are less obvious, but will become clear as we turn 

to the electromechanical properties of NTs. 

2.6 K points shift due to strain 

In this section we consider what happens to the dispersion cones at K1 and K2

when graphene is stretched (Heyd et al. 1997; Yang et al. 1999; Yang & Han 2000). 

We will see that conduction and valence states still meet at single points in k-space, 

but the position of these points is shifted. 

For unstrained graphene the values of overlap integrals t1, t2 and t3 (Eq. 2.3) were 

identical. When the lattice is stretched, however, the distance between neighboring 

carbon atoms will change and the overlap integral will become unequal. As the values 

of ti become unequal the positions of the K points change. We consider the special 

case that graphene is stretched along the 1 direction, which we define as the x-

direction. The strained bond vectors are given by 

)0,1(1 CCd  (2.6a) 

))1(
2

3
),1(

2

1
(2 CCd  (2.6b) 

))1(
2

3
),1(

2

1
(3 CCd  (2.6c) 

where dC-C is the unstrained C-C bond length and strain  is the fractional change of 

length along the strain axis. Components of i perpendicular to the strain axis are 

compressed by (1- ) where  is the Poisson ratio of the material.  

We are interested in dispersion around the K points as we change . We 

concentrate on a slice of the dispersion relation along the line kx = 0. This line 
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intercepts K1 and K2 when  = 0 (as shown in Fig. 2.8). Using Eq. 2.5 with E0 = 0 and 

setting the lattice vectors to length unity (equivalent to setting dC-C = 1/ 3 ), we find 

)2/)1(exp()2/)1(exp()( 3210 yyky iktikttkE
x

,

which can be simplified using t2=t3, to give 

2

1

20 22

)1(
cos2)(

t

tk
tkE

y

ky
x

. (2.7) 

Equation 2.7 is plotted in Fig. 2.8b at  = 0 and  = 0.2. When  = 0 (t1 = t2) the K 

points are located at K1,y = -K2,y where we have E(Ki,y) = 0. When  > 0 there remains 

a unique pair of values K1,y = -K2,y for which E(Ki,y) = 0. The special property of 

graphene, namely zero bandgap at singular K points, survives when the lattice is 

strained (Kane & Mele 1997). 

To quantify the shift of the K points with respect to  we use the approximation

ti 1/| i|
2
 (Yang & Han 2000). From Eqs. 2.6a and b we have, for small ,

)1(
2

3
1

2

1

t

t
. (2.8) 

Combining Eqs. 2.7 and 2.8, and linearizing the function cos(ky(1- )/2) around

ky(1- )/2 =2 /3, we find 

)1(3)1(
3

4
)()( ,2,1 yy KK . (2.9) 

Equation 2.9 describes the strain-induced shift of the K points when strain is parallel 

to one of the bond vectors. The shift is significant even at small strain, and is critical 
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Figure 2.8 Changes in graphene bandstructure when strain is applied in the 

x-direction. (a) A contour plot of valence states in unstrained graphene. The 

vertical dashed line shows the slice kx = 0 which passes through both K1 and

K2. (b) Energy of valence and conduction states along the line kx = 0 when 

strain = 0 and 0.2. The K points (intersection of valence and conduction 

states) move toward smaller ky as strain is increased.
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for understanding the electromechanical behavior of NTs, as discussed in the next 

section.

2.7 Effect of strain on nanotube bandgap

Nanotube bandgaps depend on the alignment of allowed k states with the 

dispersion cones at K1 and K2 (Fig. 2.7). We found in Section 2.6 that Ki move when 

the graphene lattice is strained, therefore, we expect NT bandgaps to be sensitive to 

strain. We calculate this strain sensitivity below and show that it varies dramatically 

between different types of NTs. Depending on the chiral angle  and the index p = -1, 

0 or 1, the bandgap of a NT can increase, decrease or remain unchanged with strain 

(Heyd et al. 1997; Yang et al. 1999; Yang & Han 2000). 

We begin by considering a NT of type p = 0, with chiral angle  = 0 as shown in 

Fig. 2.9. When the NT is unstrained there is no misalignment between Ki and the 

nearest allowed k (Fig 2.9a). When the NT is strained, however, both Ki and the 

allowed k shift. The shift of Ki due to axial strain is given by Eq. 2.9 (the axis of the 

NT corresponds to the 1 direction since = 0). The quantized k  values change due 

to the changing diameter of the NT. The diameter shrinks by a factor (1- ), and the 

k nearest Ki become (4 /3)(1-
-1

. To first order in , the misalignment between 

K1 and the nearest allowed k is given by 

)1(3
1

)(
a

k ,

where a is the unstrained lattice constant. A similar shift occurs near K2 and the 

subbands remain degenerate. From the slope of the dispersion cones around the K 

points, ( 2/3 )t0a, we have 
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Figure 2.9 Stretching a p = 0 NT. The quantized k values are represented by 

vertical lines intercepting the dispersion cones at K1 and K2. (a) Allowed k

intercept the K points and the 1D subbands near K1 and K2 have zero bandgap. 

(b) Both the K points and the quantized k values shift when the NT is strained. 

Bandgaps open in the 1D subbands. Subbands remain degenerate due to k, –k

symmetry.
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Axial strain opens a bandgap in  = 0, p = 0 type NTs. The change in bandgap is 

independent of diameter. 

Next we consider NTs of type p =1 and -1, also with chiral angle  = 0. The 

unstrained p = 1 tube has k = 2/3D, while the unstrained p = -1 tube has k = - 2/3D

(see Fig. 2.7b,c). As in the p = 0 case, axial strain shifts the relative position of K1 and 

the nearest allowed k, and we find 

)1(3
1

3

2
)(

aD
k      when p = 1, 

)1(3
1

3

2
)(

aD
k     when p = -1. 

Since Egap | k| we find that the bandgap of a p = 1 type NT increases with strain, 

while the bandgap of the p = -1 type NTs decreases with strain.  

The examples given above are for NTs with chiral angle  = 0. Nanotube 

chirality affects the angle between dKi/d  and the lines of allowed k. For example, in 

the  = 0 cases above, axial strain causes Ki to move perpendicular to the lines of 

allowed k. When  = 30˚ the motion of the K points is parallel to the lines of allowed 

k and axial strain does not affect Egap. The following expression summarizes the full 

range of electromechanical behavior in NTs (Yang & Han 2000)  

)cos3(13 0

gap
t

d

dE
, (2.11) 

Where + applies to p = 0 and 1 type NTs and – applies to p = -1 type NTs.
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The maximum change in bandgap with respect to strain, assuming t0 2.7eV and 

0.2, is approximately 100 meV per 1% strain. This value is similar in magnitude to 

ddE /gap  of typical bulk semiconductors. Unlike bulk semiconductors, however, 

NTs can have zero bandgap at zero strain (p = 0) and ddE /gap can be either positive 

or negative in semiconducting NTs (p = 1). These predictions are tested 

experimentally in Chapter 4. 

2.8 Perturbations that modify nanotube bandgap 

We have seen that axial strain shifts the dispersion cones in a NT. Other 

perturbations, such as curvature (Kane & Mele 1997), twist (Yang & Han 2000), and 

inner-outer shell interactions (Kwon & Tomanek 1998), also shift the dispersion 

cones, thereby changing NT bandgap. Curvature and inter-shell interactions are 

intrinsic properties of a NT, while strain and twist can be built into a NT when it 

adheres to a surface. All of these factors affect the exact bandstructure of a NT.  

In p = 0 type NTs perturbations will open small bandgaps. For example, the 

curvature effect is expected to open a bandgap of ~ 40 meV in a p = 0 NT with D = 1 

nm and  = 0 (Kane & Mele 1997)
3
. Small bandgap NTs are often observed in 

transport experiments (Zhou et al. 2000). The perturbations responsible for these small 

bandgaps are not always clear, especially if the NT is stuck to a surface or has multiple 

walls.

There is also experimental evidence of perturbation-induced shifts of the K 

points in semiconducting NTs (type p = 1 and –1). The 1-D subbands on either side of 

K1 are shown in Fig. 2.10 for both types of semiconducting NT. With no perturbation 

the subband closest to K1 is expected to have an energy gap 2 vF(2/3D), while the 

3 The curvature bandgap scales as 1/D2 (Kane and Mele 1997) and is largest in NTs with small chiral 

angle. 
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Figure 2.10 Measuring the position of the K1 point relative to the nearest 

and next-nearest allowed k . The quantized k values are represented by 

vertical lines intercepting the dispersion cones. Without perturbations, the 

subband nearest K1 has half the bandgap of the next-nearest subband. 

Curvature induced strain moves the K1 point to the right. If p = -1, this 

curvature effect causes the large bandgap to decrease and the small bandgap

to increase. If p = +1, curvature has the opposite effect on the bandgaps. 

p = -1

p = +1

K1

K1

k
E

2/3D 4/3D
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next-nearest subband is expected to have twice the bandgap, 2 vF (4/3D). If the K1

point shifts, the ratio between these two bandgaps will be changed. A range of 

different bandgap ratios have been measured in photoluminescence experiments on 

semiconducting NTs (Bachilo et al. 2002). The spread in measured ratios was most 

dramatic in small diameter NTs (diameter can be measured independently by Raman 

spectroscopy). In some NTs the large bandgap was larger than expected (and the small 

bandgap smaller). In other cases, the opposite change in ratio was observed. The effect 

is well described by curvature-induced strain. This type of strain is predicted to move 

the K1 point to the right in Fig. 2.10. The strain will increase the larger bandgap and 

decrease the smaller bandgap in p = 1 type NTs, while the change in ratio is reversed 

for p = -1 type NTs. Because strain-induced bandgap changes are sensitive to 

chirality, Bachilo et al. were able to assign chiral angles to the small diameter NTs in 

their experiment. 

None of the perturbations discussed above break the degeneracy between the K1

and K2 subbands. Regardless of the perturbation, K1 = -K2, and the quantization 

condition allows both k  and - k . Therefore, the 1-D subbands still come in 

degenerate pairs, even in strained NTs.  

2.9 Effect of axial magnetic field 

When an axial magnetic field is applied to a NT, the wrapping modes (the 

allowed k ) are modified by an Aharonov-Bohm (A-B) phase (Ajiki & Ando 1993; 

Lu 1995). The A-B phase affects electron states differently depending on which 

direction the electron orbits a magnetic flux. As in previous sections, changes in NT 

bandgap can be calculated by considering the alignment between allowed k and the K 

points. Unlike previous sections, however, subband degeneracy can be broken.
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The boundary condition for electron wave states encircling a NT in the presence 

of an axial magnetic field B|| is 

jDk 22
0

, (2.12) 

where  = B|| D
2
/4 is the flux threading the NT and 0 = h/e is the flux quantum. The 

second term in Eq. 2.12 is the Aharonov-Bohm phase acquired by electrons as they 

encircle a magnetic flux. The set of allowed k values shifts by an amount 

(2/D)( / 0) as illustrated in Fig. 2.11. In this example, k is initially non-zero and the 

bandgap of the K1 subband, 1K

gapE , decreases with B||, while the bandgap of the K2

subband, 2K

gapE , increases with B. The changes in bandgap are given by

4
22

12
Dev

dB

dk
v

dB

dE

dB

dE
F

F

K

gap

K

gap
. (2.13) 

For a NT with D = 1nm the magnitude of this bandgap change is ~ 0.4 meV/T.  

Equation 2.13 leads us to an interesting connection between the quantum 

mechanical description of the NT wrapping modes and a semiclassical picture of 

electrons orbiting a NT. The quantity evFD/4 is the magnetic moment of an electron 

traveling in a loop of diameter D with velocity vF. Changes in the energy of electron 

states can be described by the interaction of this orbital magnetic moment orb = 

evFD/4 with an axial magnetic field. This semiclassical treatment is discussed in more 

detail in Chapter 5. 

We see that axial magnetic fields are predicted to cause significant changes in 

NT electronic structure. Electron states are shifted in energy due to orbital motion and 

the degeneracy between the K1 and K2 subbands is broken if k is initially non-zero. 

These predictions are experimentally tested in Chapter 5. 
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B

Figure 2.11 Changing bandgap due to axial magnetic field. (a) Applied

magnetic field B along the axis of a NT. (b) Quantized k values are 

represented by vertical lines intercepting the dispersion cones at K1 and

K2. When B = 0 the both subbands have the same non-zero bandgap.  (c)

When B > 0 the allowed k values shifted to the right an amount 

( / 0)(2/D) due to the Aharonov-Bohm phase. One bandgap becomes 

smaller, the other becomes larger. The degeneracy between subbands is 

broken.
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2.10 Conclusions 

There are important common elements in the description of electromechanical 

and magnetic effects in NTs. Both effects can be described by relative shifts between 

the allowed k states and the K points of a NT. From this unified theoretical framework 

the electromechanical and magnetic properties of NTs are relatively easy to describe. 

The theory predicts a rich variety of electromechanical effects and a strong coupling 

between axial magnetic field and NT electronic states. These predictions motivate the 

experiments described in Chapters 4 and 5. 
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CHAPTER 3 

MECHANICAL PROPERTIES OF NANOTUBES 

3.1 Introduction 

Carbon nanotubes (NTs) are cylinders of covalently bonded carbon atoms. The 

mechanical properties of NTs reflect the tremendous strength of this bonding 

network. Pioneering experiments have shown that NTs can accommodate very large 

strains (Walters et al. 1999; Yu et al. 2000) and have an extremely high Young’s 

modulus (for a review see Salvetat et al. 1999). Because of their great strength, tiny 

dimensions and high aspect ratio, NTs are promising as reinforcing fibers in 

composite materials (Calvert 1999), nanoscale probes (Dai et al. 1996) and 

nanomechanical resonators (Craighead 2000, Sazonova et al. 2004). With recent 

observations of strong coupling between mechanical deformation and electrical 

behavior (Tombler et al. 2000), NTs may also be important elements in nano-

electromechanical systems.   

In this chapter we describe the use of an atomic force microscope (AFM) to 

study the mechanics of individual NTs. We measure the relationship between strain 

(fractional change in length) and tension in NTs with a range of diameters. We also 

demonstrate a new level of control in constructing NT structures by building tension 

into suspended NTs. The techniques developed in this chapter are critical for 

electromechanical studies presented in Chapter 4.   

3.2 Previous Work 

It is challenging to measure the mechanical properties of nano-structures. High 

resolution imaging must be combined with sensitive measurements of mechanical 
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forces.  Two experimental techniques have played a critical role in exploring NT 

mechanics, atomic force microscopy (AFM) and electron microscopy.  

Early AFM work on NT mechanical properties measured the bending rigidity of 

large diameter multi-walled nanotubes (MWNTs) and NT ropes (Wong 1997, 

Salvetat 1999). These experiments made use of small aspect ratio suspended NT 

structures, in which bending forces were larger than tensile forces. In later work, 

individual small diameter NTs (D~1-2nm) were suspended over long lengths (~ 500 

nm). The suspended NTs were fixed at both ends, allowing AFM measurements of 

tensile forces (Tombler et al. 2000; Kim et al. 2002). Further work remains to be done 

since Tombler and Kim each present data from only a single device. 

Electron microscopy techniques have complimented AFM studies. Inside a 

scanning electron microscope (SEM), Yu attached MWNTs (D~30nm) to spring-like 

cantilevers and stretched the fibers while monitoring tensile forces (Yu et al. 2000). In 

other work, using a transmission electron microscope (TEM), it was shown that the 

inner and outer shells of a MWNT slide against each other with very little friction 

(Cumings & Zettl 2000). Other SEM/TEM experiments have quantified NT bending 

rigidity by imaging vibrations (Treacy et al. 1996; Krishnan et al. 1998; Poncharal et 

al. 1999). 
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3.3 Device Fabrication 

The samples studied in this chapter consist of individual NTs suspended above 

trenches made in Silicon dioxide (Fig. 3.1). In most cases our devices also have 

electrical contacts which are used in complimentary experiments (see Chapters 4 and 

5). There are three major fabrication steps, 1) Growing NTs, 2) Fabricating electrodes, 

3) Removing oxide from beneath the NTs. The steps are outlined below.  

Nanotubes are grown on Si/SiO2 substrates (500nm oxide layer) using the CVD 

process (Kong et al. 1998). First, Fe/Alumina catalyst particles are deposited at 

lithographically defined sites on the substrate. NTs grow from these catalyst particles 

when exposed to a flow of methane gas at 900ºC. We find NTs with diameters 1 – 10 

nm and lengths of several microns growing from the catalyst sites.  

Gold electrodes (50 nm Au with 5 nm Cr adhesion layer) are aligned close to the 

catalyst sites using photolithography (Rosenblatt et al. 2002). The gap between each 

pair of electrodes is ~ 1 – 2 m. We identify devices in which the electrodes are 

connected by one or more NTs by probing electrical conductivity. The diameter of the 

NTs in conducting devices is then measured by AFM.

In the final fabrication step we release NTs from the SiO2 substrate by etching 

the oxide with a solution of buffered hydrofluoric acid BHF (3 minutes in 6:1 BHF, 

etch rate 80 nm/min) (Walters et al. 1999; Nygard & Cobden 2001). There are two 

options for defining the oxide area that will be etched. In the “self-aligned” method the 

gold electrodes protect the oxide beneath them, while the exposed oxide between the 

electrodes is etched. The NT is left hanging between the electrodes (Fig. 3.1c). In the 

“lithography” method, e-beam lithography is used to define a strip of exposed oxide 

centered between the electrodes. Using the lithography method, only a short section of 

the NT lying between the electrodes is suspended (Fig. 3.1d).
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SiO2

Figure 3.1 Fabrication steps for suspended NT devices. (a) Catalyst is 

patterned on SiO2/Si wafer. Nanotubes grow from catalyst. (b) Electrodes 

are defined by photolithography. (c) The “self-aligned” etching method. 

All exposed SiO2 is etched. (d) The “lithography” etching method. A 

narrow trench between the electrodes is etched into the SiO2.

(b)

(c)

(a)

(d)
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After the wet oxide-etching procedure, care must be taken in drying the devices. 

Surface tension forces during drying tend to collapse suspended structures. To avoid 

the problematic liquid/gas phase transition we have used critical point drying. This 

process utilizes the high pressure, high temperature state of CO2 where there is no 

phase transition between liquid and gas. 

Following the drying procedure, a final cleaning step is used. Residue left behind 

by early steps is effectively removed by heating chips to 400ºC in an Argon 

atmosphere. A completed device is shown in Fig. 3.2. 

3.4  AFM Techniques 

Our experiments were carried out in a commercial AFM system (Dimension 

3100, Digital Instruments). An important component of the instrument is the laser 

used to detect bending of the AFM cantilever. We use a low noise laser, available by 

special request from Digital Instruments technical support, designed to suppress 

interference effects that can occur as the partially reflective cantilever travels up and 

down above a reflective substrate.

Two calibration steps are necessary for AFM-based mechanical measurements. 

The output voltage of the laser detector (which is proportional to the bending angle of 

the cantilever) must be calibrated to measure the displacement of the cantilever DC.

Figure 3.3b shows a typical calibration curve. The photodetector voltage increases as 

the piezo presses the tip against an oxide surface. Because the oxide is rigid there is a 

one-to-one correspondence between DC and the distance traveled by the piezo zpiezo.

In the second calibration step, the spring constant of the cantilever is measured. 

The AFM tips used (Nanosensor EFM tip) have a nominal spring constant ktip = 1-5 

N/m. To determine ktip more accurately we use the thermal noise method (Hutter & 

Bechhoefer 1993). A typical frequency spectrum for the thermal motion of a tip is 
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Figure 3.2. SEM image of a nanotube device. A catalyst pad is seen on the 

left (4 m square). Hundreds of NTs grow in the catalyst area. The distance 

between the catalyst pad and the edge of electrodes is chosen so that, on 

average, one NT bridges the gap between the electrodes. 
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Figure 3.3 AFM calibration (a) Pushing the AFM tip into a rigid surface to 

calibrate DC. The spring-like cantilever is bent backward. A laser aimed at the 

back of the cantilever reflects onto a photodetector. (b) The photodetector’s

response to cantilever deflection. The photodetector signal is proportional to 

DC. (c) Thermal motion of an AFM cantilever at room temperature. The fit

curve is a Lorentzian with integrated area 0.0013 nm2. The area under the 

curve implies the cantilever spring constant is 3.1 N/m.
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shown in Fig 3.3c. The measurement was made with a Stanford Research Systems 

Spectrum Analyser and a two minute integration time. From the area under the 

Lorentzian fit curve we the find average thermal displacement < th
2>. The total energy 

stored in this vibrational mode is ½ ktip< th
2>. Comparing this energy to ½ kBT  we 

have, by the equipartition theorem, 

2
Th

b
tip

Tk
k .

After completing these calibration steps the AFM can be used to measure forces in z-

direction, Fz = ktip DC.

We locate suspended NT devices in the AFM by tapping mode imaging. In this 

mode, the cantilever is driven into oscillation at its resonant frequency. The oscillation 

amplitude drops when the tip approaches the surface, or comes into contact with a 

suspended NT (the interaction between the suspended NT and the oscillating AFM tip 

is discussed in Appendix 1). Topography is mapped by recording the height of the 

AFM tip while a feed-back circuit maintains a constant oscillation amplitude. A 

typical image is shown in Fig 3.4a. The suspended NT appears fuzzy because it is 

displaced by the AFM tip during imaging.  

To make mechanical measurements, the AFM tip (nominal radius of curvature of 

20 nm) is centered above a suspended NT using the tapping mode image for guidance. 

Piezo drift is neglible on the time-scale of ~ 1 minute if the x-y position is allowed 

several minutes to stabilize. The AFM tip is then moved in the z-direction as 

illustrated in Fig. 3.4b. As the AFM tip pushes on the NT the oscillation amplitude 

drops to zero (see Appendix 1) and we monitor the static deflection of the cantilever 

DC. Note that the position of the tip ztip depends on both zpiezo and DC as shown in Fig 

3.4c.
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Figure 3.4 (a) AFM image of a suspended NT. (b) Experimental geometry 

for applying strain and gate voltage with an AFM tip. L0 is distance between 

anchoring points, z is the distance the center of the NT is displaced from the 

plane of the anchoring points. (c) Schematic of the relationship ztip = zpiezo +

DC + constant. 
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3.5 Mechanical Measurements 

Plotted in Fig. 3.5 is the deflection force on the cantilever Fz, as a function of the 

tip height ztip while raising the AFM tip. Figure 3.5 shows that the force the tube exerts 

on the tip can be both positive (upward) as well as negative (downward). These are 

separated by a region of near-zero force when the tip is near the plane of the contacts. 

From Fig. 3.5 we note that there is significant adhesion between the AFM tip 

and the NT, allowing the AFM tip to pull upward on a NT. As discussed by Decossas 

et al. (2001) some adhesion is likely due to van der Waals forces between NT and tip. 

In Appendix 2 we show that NT/tip adhesion is also sensitive to electrostatic forces.  

From force-distance curves such as Fig. 3.5 we can determine the “slack” in 

suspended NTs.  Slack is defined here as Ltube L0 where Ltube, the tube length, is 

greater than L0, the separation between the anchoring points. We determine slack from 

the distance between pushing and pulling onsets, zonset, in a force-distance curve. For 

example, in Fig 3.5, NT1 has zonset = 80 nm and L0= 1 m. From the sides of a right-

angle triangle we have

2

2

0

2

22 onset
Tube z

LL

Nearly all NTs measured were slack, with typically 5-10nm of slack for a 1 m

tube. The slack is consistent with the slightly curved paths NTs followed across the 

oxide surface before etching. We have been able to manipulate the slack in NTs, as 

discussed in Section 3.6.

Our force-distance curves can be accurately fit by ignoring the bending modulus 

of the tube and assuming a linear proportionality between NT tension T and axial 

strain . We write the proportionality constant as YA, where Y is an effective Young’s 

modulus, and A is an effective cross-sectional area of the NT: 
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Figure 3.5 Force-distance curves of two NTs; Data from NT 1 is offset for 

clarity. Open circles show the measured deflection force as the AFM tip 

retracts towards positive z. NT 1 has D=5.3±0.5nm, L0=1.0±0.1 m. NT 2 has 

D= 2.3±0.5nm, L0=1.5±0.1 m. Solid lines are fit curves given by Eq. 3.1. We 

find NT 1 has slack=11nm, AY=2 N and NT 2 has slack=22nm and 

AY=2.9 N. The tubes were not measured by the same AFM cantilever. 
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0)(z tipzF               for onsetzztip  (3.1) 

where tubetube
22

0 /4)( LLzLz tip  for onsetzztip . Equation 3.1 was used to 

draw the fit curves in Fig 3.5a. The accurate fit shows that the small-strain mechanical 

behavior of long, suspended NTs is well described by the effective parameter YA.

A summary of fitted YA parameters, for NTs with a range of diameters D, is 

shown in Fig. 3.6. Error bars on YA values are considerable, due to the combination of 

uncertainty in L0, x-y tip positioning and the cantilever spring constant. However, we 

can still make important observations. The three lines in Fig. 3.6 show theoretical 

predictions for YA of single-, double- and triple- wall NTs when all walls share 

mechanical load (each wall contributes YA  0.36 [ N/nm] D (Yakobson et al. 

1996; Lu 1997)). The observed magnitudes of YA and linearity with diameter agree 

reasonably with the single-wall prediction. This result is initially surprising; NTs with 

D > 2nm are likely to have multiple walls. A possible explanation for this mechanical 

behavior follows from experiments by Yu et al. (2000) which show that only the 

outer-most wall of a MWNT breaks when a NT is over strained. From Yu’s results, 

and our measurements of YA magnitude, it appears that mechanical loads are carried 

predominantly by the outer-most wall of MWNTs, while inner-walls remain 

unstrained. For this to occur, inner walls must be free to slide against the outer wall. 
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Figure 3.6 Summary of measured strain-tension proportionality constants, 

AY, for NTs as a function of diameter D. Solid lines show predicted AY

values for single-, double- and triple-walled NTs when all shells carry the 

same mechanical load.
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3.6 Tuning tension in suspended nanotubes 

The suspended NTs we have studied are generally slack after standard 

processing (see Section 3.5). However, by using AFM manipulation we have been 

able to create suspended NT structures with built-in tension. This technique will be 

useful for applications such as tuning the frequency of nano-mechanical resonators 

(Sazonova et al. 2004).

Figure 3.7 shows force-distance curves taken before and after NT tension has 

been modified. We first concentrate on the upper curve which shows the NT in the 

slack state. The elastic properties of the tube can be found by fitting Eq 1 to the force-

distance curve. We find slack = 9nm and AY = 3.6 N.

To build tension in the suspended segment of a NT we manipulate a nearby 

oxide-bound segment of the same NT. Figure 3.7b shows the oxide-bound segment on 

the right-hand side of the trench. The AFM tip was pressed against the oxide surface 

with a force of ~ 200 nN and then dragged across the oxide. The arrows in Fig. 3.7b 

indicate the path taken by the AFM tip as it pushed the tube in three different places. 

The dashed line indicates the original position of the NT on the oxide. 

This manipulation put significant tension into the suspended section of the NT as 

shown by the lower curve of Fig 3.7a. We estimate tension T from the slope of Fz(ztip)

at ztip=0

000

4

)2/(
2

L

T

L

z
T

dz

d

dz

dF tip

tipztip

z

tip

From Fig 3.7a we find (dFz/dztip)|z = 0 ~ 0.2N/m and T = 85nN (  ~ 2%). The adhesion 

of the NT to the oxide substrate is sufficient to hold this strain in place. This tensioned 
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Figure 3.7 Creating tension in a suspended NT. (a) The first measurement 

(upper curve) was made on the NT in its slack configuration. From z
onset

= 90nm 

and L
0

~ 1.7um we find L
tube

= L
0

+ 9nm. The second measurement (lower 

curve) was taken after the NT was pushed to a new position on the oxide. (b)

The manipulated section of oxide-bound NT. The arrows indicate where the 

AFM tip pushed the tube across the surface. The dashed line shows the initial 

position of the NT. (c) The suspended NT in the tight configuration. The NT 

diameter D = 5nm. 
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NT should have resonance properties like a guitar string with a fundamental resonance 

defined by L0 and T, rather than bending modulus. 

3.7 Limited range of strain 

The work presented in this chapter is limited to strains of about 2%. At higher 

strain we encounter problems such as the NT slipping up the side of the pyramidal 

AFM tip or sliding across the oxide surface.  

There are many interesting possibilities to explore at higher strains. For 

example, the onset of plastic deformations (irreversible changes in bonding topology) 

is predicted to depend sensitively on temperature and NT chirality (Nardelli et al. 

1998; Zhang et al. 1998). The onset of these deformations could be detected by 

mechanical measurements. Electromechanical effects at high strain are also predicted 

to be very interesting (Heyd et al. 1997; Rochefort et al. 1998; Yang et al. 1999; Yang 

& Han 2000). 

Possibilities for reaching higher strain are promising, but require new methods 

of device fabrication and different AFM techniques. For example, recent work 

showed that the ends of suspended NTs can be embedded in oxide (Whittaker et al. 

2003) or resin (Kim et al. 2002). These embedded tubes may have improved 

mechanical anchoring. Problems of tube/tip slipping may be solved with lateral force 

microscopy. In this technique, the side of the AFM tip is used to pull the structures 

sideways while measuring twisting forces on the cantilever (Wong et al. 1997; 

Walters et al. 1999). 
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3.8 Conclusions

We have successfully used AFM techniques to characterize the slack/tension 

and elasticity of suspended NT structures. We show that it is possible to control the 

residual slack or tension in these structures by AFM manipulation.  

Our elasticity measurements show that tensile forces in NTs are well described 

by a proportionality constant YA relating strain and tension. A linear trend between 

YA and NT diameter is observed, suggesting that only the outer shell of a MWNT is 

effective at carrying mechanical load.  
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CHAPTER 4 

TUNING NANOTUBE BANDGAPS WITH STRAIN 

4.1 Introduction 

Carbon nanotubes (NT) have exciting electromechanical properties. The 

conductance of a metallic NT can be dramatically lowered by mechanical strain 

(Tombler et al. 2000) and it is hoped that NTs may be used as the active elements in 

nano-electromechanical devices such as strain gauges and pressure sensors. As 

discussed in Chapter 2, NT electromechanical properties are expected to depend 

sensitively on chirality, with axial strain predicted to open a bandgap in certain 

metallic NTs, and to either open or close the bandgap of semiconducting NTs (Heyd 

et al. 1997; Rochefort et al. 1998; Yang et al. 1999; Yang & Han 2000). These 

chirality dependent predictions suggest that there is a rich variety of 

electromechanical effects to be explored in NTs. 

In this chapter we study the relationship between axial strain and electronic 

structure in a number of individual NTs. Following the pioneering work of Tombler 

et al (Tombler et al. 2000) we use an atomic force microscope (AFM) tip to strain 

doubly-clamped suspended NTs while simultaneously measuring electrical transport 

characteristics (Fig. 4.1). Our measurements show that the conductance of some NTs 

decreases with strain while the conductance of others increases. We show that these 

changes in conductance are related to either increasing or decreasing bandgaps. Our 

measurements are consistent with theory (Heyd et al. 1997; Rochefort et al. 1998; 

Yang et al. 1999; Yang & Han 2000) and provide the first conclusive evidence that 

strain can be used to tune NT bandgaps. 
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Experimental geometry for applying strain and gate voltage with an AFM 

tip, and measuring conductance with gold contacts. L0 is the distance 

between anchoring points; ztip is the height of the AFM tip, measured from 

the plane of the anchoring points.

k||

EF

E

gapE

(b)

(a)

E

EF

k||

65



4.2 Methods 

Suspended NT devices were fabricated as described in Section 3.3. The oxide 

substrate is etched from beneath the NT, leaving the tube hanging between gold 

electrodes (Fig. 4.1c). The entire length of NT is suspended allowing the whole tube to 

be uniformly strained.  

Electromechanical measurements are carried out in the atomic force microscope 

(AFM) described in Chapter 3 (Dimension 3100, Digital Instruments). Probe station 

manipulators mounted to the AFM stage were used to make electrical contact to the 

NT devices (Park et al. 2002). Conductance measurements were made at low-bias 

(10mV) using a lock-in amplifier. Axial strain  was controlled by pushing or pulling 

on the suspended tube with the AFM tip (see Fig. 4.1 and Sections 3.3 and 3.4).

The AFM tips used (Nanosensor EFM tip) have a nominal radius of 20 nm, 

cantilever spring constants ktip = 1-5 N/m, and are coated with a PtIr metal layer. The 

conductive coating allows us to use the tip as a local gate to change electrostatic 

potential of the NT. The PtIr coating makes very poor electrical contact with the NT 

and leakage currents occur very infrequently. 

4.3 Electromechanical measurements

To probe the electromechanical response of a NT, we monitor device 

conductance G and control AFM tip voltage Vtip while straining the tube. Figure 4.2 

shows the deflection force on the AFM tip Fz, and conductance G, while pushing (ztip

<0) and then pulling (ztip > 0) on a tube. Vtip is held at 0V. Whenever the cantilever is 

deflected (  > 0), G is lowered, in agreement with previous results (Tombler et al. 

2000). When the NT is released from the AFM tip (ztip = 110nm) conductance returns 

to the zero-strain value.  
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Figure 4.2 Deflection force and conductance as a function of tip 

height for a NT with d = 6.5nm, L0 = 1.9 m at Vtip= 0V. The tip 

was first moved toward the surface (toward negative z) and then 

away from the surface. 
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Interestingly, different NTs showed very different response to strain. Of the 

seven samples studied, two semiconducting tubes showed increasing G when strained, 

one semiconducting and two metallic tubes showed decreasing G when strained. We 

have also observed two metallic tubes which showed no significant change in 

conductance when strained. 

To understand the origin of this behavior, the AFM tip is used as a gate to 

investigate the band structure of the NT under strain. Vtip is swept ~ 3 times a second 

over a range of a few volts as strain is slowly increased. G vs. Vtip for different  are 

shown in Fig. 4.3 for two NTs.  We first concentrate on Fig. 4.3a. At no strain ( 0 )

the observed Vtip dependence indicates that this NT is metallic (G is independent of 

Vtip). As strain increases, an asymmetric dip centered at Vtip 1V develops in G-Vtip.

The NT shown in Fig. 4.3b is semiconducting at  = 0 (G is strongly dependent on 

Vtip). This semiconducting tube shows an increase of G with strain and the dip in G-

Vtip becomes more symmetric with strain. The insets show the maximum resistance 

)(maxR  for each sweep of Vtip as a function of strain, along with a fit to the functional 

form:   

)exp()( 10max RRR . (4.1) 

This exponential form fits the data well in both cases, but with different values of R0,

R1 and .
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Figure 4.3 (a) G-Vtip measurements of NT with d = 3 ± 0.5nm and L0 = 1.4 ± 

0.1 m at 0, 0.5, 0.7, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0% strain. (b) G-Vtip

measurements of NT with d = 4 ± 0.5nm and L0=1.1 ± 0.1 m at 0, 0.2, 0.6, 

0.8, 1.1, 1.3, and 1.6% strain. Closed circles in the insets show maximum 

device resistance as a function of strain. Solid lines in the insets show fit 

curves given by Eq. 3. For (a) R0 = 10.2h/e2, R1 = 0.5h/e2 and = 139. For (b) 

R0 = 0, R1 = 171h/e2 and = –213. 
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4.4 Analysis of electromechanical measurements

Our electromechanical measurements can be understood by the effect of axial 

strain on the bandgap of the tube, as described by previous authors (Heyd et al. 1997; 

Yang et al. 1999; Yang & Han 2000). From Chapter 2, Eq 2.10 we have  

)cos3(11)3sign(2 0
gap tp

d

dE
, (4.2) 

where t0 2.7eV is the tight-binding overlap integral, 0.2 is the Poisson ratio,  is 

NT chiral angle and p = 1, 0 or 1 such that the wrapping indices, n1 and n2 satisfy

n1 n2 = 3q + p where q is an integer. The maximum value of ddE /gap is

)1(3 0t 100meV/%. Note that half of all semiconducting NTs (p = 1) will have 

0/gap ddE , while the other half (p = 1) have 0/gap ddE .

We first interpret the measurements taken at constant Vtip (such as Fig. 4.2). 

When strain causes G to decreases we have ddE /gap > 0. When strain causes G to 

increase we have ddE /gap < 0. If G does not change, then ddE /gap is close enough 

to zero to be undetectable.1

The G-Vtip curves shown in Fig. 4.3 confirm this picture. The changing shape of 

these curves indicates a changing bandgap. Both NTs conduct well at negative tip 

voltages showing they are p-type for Vtip < 0. Increasing Vtip electrostatically depletes 

the p-type carriers from the NTs causing a dip in conductance. The size of the 

conductance dip depends on Egap, which changes with strain. In Fig. 4.3a the 

conductance dip deepens with  (indicting an increasing Egap), while in Fig. 4.3b the 

minimum conductance increases with  (indicating decreasing Egap).

                                                
1 Changes in the intrinsic conductance of a NT can be masked by the contact resistance between the NT 
and the metal electrodes. We observed two metallic NTs which showed no change in conductance at 
strains of ~ 1%. Based on the contact resistance of these devices, and measurement noise, we estimate 
that dEgap/d  could be up to 10 meV/% in these devices where conductance changes were not detected. 
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To model changes in conductance associated with changing Egap we assume the 

tip gate affects the middle portion of the tube while sections close to the contacts 

remain p-type (Park & McEuen 2001). For small positive Vtip the middle portion of 

NT is depleted of charge carriers (Fig. 4.4b). At higher Vtip an n-type region develops 

in the middle of the tube (Fig. 4.4c). As Vtip increases further, there is an increasing 

probability of tunneling between p-type and n-type sections and G can increase.

The model shown in Fig. 4.4 predicts that the maximum device resistance Rmax

will occur shortly before the depleted section of NT becomes n-type. Referring to Fig. 

4.4b electrons with energy |E-EF|<Egap will be reflected (neglecting the probability of 

tunneling between the p-type regions), while electrons with energy |E-EF|>Egap will be 

transmitted with some probability |t|2. We calculate the current I due to these thermally 

activated carriers by following the Landauer formalism for a 1D channel (see 

Appendix 3),

dEEfEf
h

e
tI

gapF EE

LR )()(2
22

,

)/exp(1

22 2
2

TkEh

e
t

bgap

V

where fR and fL are the Fermi distributions in the left and right electrodes and reflected 

electrons have been excluded from the integral. The current in this channel depends on 

the width of the Fermi distributions ( T) compared to the size of Egap.

A NT has two 1D channels and additional series resistances RS due to metal-NT 

contacts etc. Therefore, we find the following expression for Rmax,:
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Figure 4.4 Evolution of the energy band diagram as Vtip is increased. The tube 

is held p-type at the contacts. The valence and conduction band edges are 

denoted by V and C. (a) Vtip = 0, the NT is a p-type semiconductor. (b) Vtip is

near 1V, transport is interrupted by a depleted region. (c) Vtip > 1V, a p-n-p 

junction forms in the middle of the tube. Transport due to tunneling increases as 

the distance becomes smaller. 
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RR

b

gapexp1
8

1
22Smax , (4.3) 

where Egap is expected to depend linearly on strain, 

d

dE
EE

gap

gapgap

0 . (4.4) 

By combining Eqs (4.3) and (4.4) we can interpret the fitting parameters , R0 and R1

that were used to fit measured Rmax( ) (see Eq. (4.1)). Most important is , the 

exponential fitting parameter which is related to the strain-dependence of the gap: 

kTddE /gap .  From the measured values of , we obtain dEgap/d  = 53meV/% 

for the semiconducting tube in Fig. 4.3b and dEgap/d  = +35 meV/% for the metallic 

tube in Fig. 4.3a.

Additional knowledge about the device can be gained from the fitting parameter 

)/exp()8/( 0
gap

22
1 kTEtehR . Fitting results for the metallic tube ( 00

gapE ) gives R1

= 0.49h/e2, and hence a transmission probability |t|2 = 0.25.  Transport of thermally 

activated electrons across the junction region is thus not ballistic, but nevertheless 

highly transmissive, as expected from previous measurements of long mean free paths 

in NTs (Bachtold et al. 2000).  Fitting the semiconducting tube data yields a much 

higher resistance, R1 = 171h/e2. Using an estimate of |t|2 = 0.25 from above, we infer 

0
gapE = 160meV.  This inferred energy gap corresponds to a tube with diameter d =

4.7nm (using Egap = 0.7eV/D[nm] (Dresselhaus et al. 2001)), in reasonable agreement 

with d = 4  0.5nm measured by AFM. The agreement provides support for the 

validity of Eq. 4.3. However, variable temperature studies are needed to definitively 

separate out the tunneling and thermal activation contributions.  
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4.5 Tunneling model 

To better understand the role of tunneling in our measurements we have used a 

WKB model to quantify the tunneling contribution to Rmax.

In our expression for Rmax (Eq. (4.3)) we assume that electrons with |E-EF|<Egap

are completely reflected from the depleted section of the NT (Fig. 4.4b). However, 

there is a possibility that some of these electrons are transmitted via tunneling 

processes. To calculate the current from tunneling electrons we consider the WKB 

expression for the probability of tunneling through a triangular barrier length L and

steepness  (Fig. 4.5a) 

2/

0tunnel 22
2

exp)(
L

eff dxxmLP

2/32/12/12
exp LE

v
gap

F

,

where meff=Egap/2vF
2 . Similar calculations for tunneling probabilities in 

semiconducting NTs are found in Leonard et al. (1999) and Odintsov (2000). 

Referring to Fig. 4.5a, the barrier length L is large for electrons with E = EF (L = 

2Egap/ ) and decreases as E approaches EF – Egap (L goes to zero). Integrating over this 

range of energies we estimate a tunneling current 

dEEfEfEP
h

e
I

EF

EgapEF

LRtunneltunnel )()()(
2

Figure 4.5b shows Itunnel as a function of Egap for  = 2.5 meV/nm and 5 meV/nm. 

For barriers of this steepness the tunneling current is much less than the thermal 

activation current over all bandgaps. We find that tunneling current becomes 
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Figure 4.5 Tunneling through the depleted section of NT. (a) Holes with 

energies between EF-Egap and EF may be transmitted via tunneling. The stepness

of the barrier is . (b) Tunneling current and thermal activation current as a 

function of bandgap (see Eq. 4.5). Tunneling current is smaller thermal 

activation current for all Egap if < 10 meV/nm. 
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comparable to thermal activation current when ~ 10 meV/nm. This is a reasonable 

upper bound for , corresponding to a depletion length of 20 nm (the radius of the 

AFM tip) when Egap=200meV (the largest bandgap studied). These calculations show 

it is reasonable to assume that thermal activation is the dominant transport mechanism 

in our measurements of Rmax.

4.6 Effect of local bending 

When an AFM tip is used to strain a suspended NT there will be some amount of 

local deformation where the tube is touched by the tip (Fig. 4.6). In the first analysis of 

experiments by Tombler et al. (Liu et al. 2000; Tombler et al. 2000), electrical 

changes were attributed to this deformation. More recent analysis, however, together 

with the experimental results presented in this chapter, suggests that local deformation 

is not responsible for electrical changes.  

Motivated by Tombler’s experiment, Maiti et al. (2002) used molecular 

dynamics simulations to investigate the electronic effects of pushing a suspended NT 

with an atomically sharp AFM tip. In this simulation, conductance changes due to 

local deformation were overwhelmed by the effect of axial strain changing the NT 

bandgap. Maiti and co-workers conclude that Tombler’s results can be explained 

entirely by bandgap changes induced by axial-strain.

Given these molecular dynamics simulations, and the good agreement between 

our results and axial-strain predictions, it is unlikely that local deformation contributes 

significantly to the electrical changes observed in our experiments. 
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Figure 4.6 Simulation of local bending when a NT is pushed by an AFM tip 

(from Maiti et al. (2002)). The suspended (12,0) NT bends as pressure is 

applied by the atomically sharp tip. Atoms in the AFM tip are represented by 

spheres beneath the NT.
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4.7 Chirality assignment 

From our measurements of dEgap/d  we can estimate NT chirality. For the NTs 

in Fig. 4.3(a) and (b) we found |dEgap/d | = 35 meV/%  and 53 meV/% respectively. 

Using Eq. 4.2 we estimate chiral angles 23º and 19º for the two tubes. In principle, 

measurements of dEgap/d  could be an accurate technique for determining chiral angle. 

The accuracy is currently limited, however, until further experiments verify the 

quantitative validity of Eqs. 4.2 and 4.3. 

Chirality assignment is important as researchers look for correlations between 

and physical properties such as the onset of plastic deformations (Nardelli et al. 1998; 

Zhang et al. 1998) or the existence of curvature induced bandgaps in nominally 

metallic NTs (Kane & Mele 1997; Zhou et al. 2000). Currently, there are very few 

methods to experimentally determine the NT chirality. Direct imaging by STM is the 

most robust method (Odom et al. 1998; Wildoer et al. 1998), but requires special 

sample preparation, low temperatures, vibration isolation and vacuum. In contrast, 

measurements of dEgap/d  can be performed in ambient conditions.  

Chirality assignment of semiconducting NTs has also been achieved with a 

combination of photoluminescence and resonance Raman measurements on NTs in 

solution (Bachilo et al. 2002). The technique could potentially be extended to in-situ 

measurements of individual semiconducting NT devices. Interestingly, built-in axial 

strain or twist would confound chirality assignment by this technique, whereas 

measurements of dEgap/d  should not be affected by built-in strains.

78



4.8 Conclusions

We have shown that metallic NTs can be made semiconducting with applied 

mechanical strain, and that the bandgap of semiconducting NTs can be modified by 

strain. The use of strain to continuously tune the bandgap of a NT has a number of 

potential applications. Accurate measurements of dEgap/d   may be used to uniquely 

determine the wrapping indices of small-diameter tubes.  Electrical transduction of 

small forces is also possible; for example, the most sensitive device studied here has a 

sensitivity of 0.1nN/(Hz)1/2 at low frequencies. Finally, NT heterostructures, where 

different sections of a single NT have different bandgaps, can be created if the 

different sections can be selectively strained. Heterostructures are enormously useful 

for engineering electronic devices. For example, a 1D super-lattice of quantum wells 

could be constructed using a periodically strained NT.  
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CHAPTER 5 

ORBITAL MAGNETIC MOMENTS IN CARBON NANOTUBES 

5.1 Introduction 

Carbon nanotubes (NTs) have impressive mechanical and electromechanical 

properties, as discussed in previous chapters. Here we show that their magnetic 

properties are also fascinating and significant.

Electronic states near the energy gap of a NT are predicted to have a large orbital 

magnetic moment µorb much larger than the Bohr magneton (the magnetic moment due 

to electron spin) (Ajiki & Ando 1993; Lu 1995). The moment is due to electron 

motion around the NT circumference. We have used two techniques to quantitatively 

confirm predicted values for µorb. The first technique is thermally activated transport 

through individual small bandgap NTs that are depleted of charge carriers. These 

bandgap measurements are very similar to those discussed in Chapter 4. The second 

technique is transport spectroscopy of NT quantum dots (introduced in Section 1.4), a 

technique which allows us to probe the energies of discrete quantum states inside a 

NT. With both methods we measure µorb values that are in close quantitative 

agreement with theory (Ajiki & Ando 1993; Lu 1995). Using this coupling between 

magnetic field and electronic states we modify NT bandgaps, break the degeneracy 

between NT subbands, and shift energy levels in a NT quantum dot.
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5.2 Previous work 

Magnetic susceptibility measurements of bulk NT material show that NTs have a 

much larger magnetic response than other forms of carbon, such as C60, graphite or 

diamond (Ramirez et al. 1994; Wang et al. 1994; Chauvet et al. 1995). Work with 

aligned NTs shows that the susceptibility of NTs is also very anisotropic (Chauvet et 

al. 1995; Walters et al. 2001). It is clear from these measurements that the unique 

geometry of NTs plays an important role in their magnetic behavior.  

Magneto-resistance measurements of large multi-walled NTs (D ~ 20 nm) have 

also yielded interesting results (Bachtold et al. 1999; Fujiwara et al. 1999; Lee et al. 

2000). These authors observe resistance modulations as a function of the magnetic 

flux threading a NT, showing that magnetic field strongly influences NT transport 

properties. However, the interpretation of these measurements is not clear. 

Localization effects (Aronov & Sharvin 1987) and changing NT bandgaps (Ajiki & 

Ando 1993; Lu 1995) may both affect resistance.

5.3 Coupling between magnetic field and electronic states 

The effect of axial magnetic field on NT electronic structure can be described in 

two equivalent ways. Following Ajiki & Ando (1993) and Lu (1995) an Aharonov-

Bohm phase is added to electron wave vectors that encircle the NT. The added phase 

leads to changes in the energy of electron states. Alternatively, a semiclassical 

argument can be used to calculate a magnetic moment for each electron state. Both 

descriptions predict the same energy shifts with applied magnetic field. A summary of 

the semiclassical description is given below (the Aharonov-Bohm description can be 

found in Section 2.9). 
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The electronic states of a NT are elegantly described by the quantization of 

electron wave vectors around a graphene cylinder (Dresselhaus et al. 2001)(see 

Chapter 2). Graphene is a zero band-gap semiconductor in which the valence and 

conduction states meet at two points in k-space, K1 and K2 (Fig. 5.1a). The dispersion 

around each of these points is a cone, Ei(k) = vF |k-Ki| (Fig. 5.1b). When graphene is 

wrapped into a cylinder the electron wave number perpendicular to the NT axis, k , is 

quantized, satisfying the boundary condition D k = 2 j, where D is the NT diameter 

and j is an integer. The resulting allowed k’s correspond to the horizontal lines in Fig. 

5.1a that miss Ki by an amount k . The conic sections of the dispersion cones by 

allowed k determine the NT band structure near the Fermi level as shown in Fig. 5.1b. 

The upper and lower branches of the conic sections correspond to the conduction and 

valence states of the NT. Both the K1 and K2 subbands have the same energy gap 

between conduction and valence states: 0
gE = vF k , where vF = 8x10

5
 ms

-1

(Dresselhaus et al. 2001). 

The electron states near the energy gap correspond to semi-classical electron 

orbits encircling the NT in a helical manner. The perpendicular component of orbital 

velocity v dE/d k  determines the clockwise (CW) or counterclockwise 

(CCW) sense of an orbit  For example, in Fig. 5.1b we see that v  is negative for the 

K1 conduction states but is positive for K1 valence states. Electrons with positive 

(negative) v encircle the NT in a CW (CCW) fashion. By symmetry, each CW 

(CCW) orbit in the K1 subband has an equal energy CCW (CW) partner in the K2

subband. As a consequence, the two subbands are degenerate, but the CW/CCW sense 

of valence and conduction states is reversed. 

From basic electromagnetic theory, an electron moving at velocity v around a 

loop of diameter D has an orbital magnetic moment of magnitude µ = Dev/4.  In a NT, 

electron states at the band-gap edges, where v is largest, have an orbital magnetic 
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Figure 5.1 Nanotube electronic states and orbital magnetic moments. (a) The

valence and conduction states of graphene meet at K
1

and K
2
. Horizontal lines 

show the quantized values of k for the NT structure in (c). The misalignment 

between horizontal lines and the K points is k . (b) Graphene dispersion near the 

K-points is described by the cones E
i
(k)=± v

F
|k – K

i
|. Lines of allowed k intersect

the two cones (blue and red curves). The conduction states near K
1

(upper blue 

curve) have dE/d k <0. Electrons in these states move around the CNT in a 

counterclockwise (CCW) fashion. The valence states near K
1

(lower blue curve) 

have dE/dk >0 and are associated with clockwise (CW) electron motion. CCW 

(CW) orbits correspond to positive (negative) magnetic moments along the CNT 

axis. The conic section near K
2

lies on the opposite face of an identical dispersion 

cone. Therefore, K
2

conduction (valence) states have CW (CCW) orbits. (c) Top,

perspective view of a CNT in the presence of a magnetic field B
||
. Below, the 

dispersion relations E
1
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) and E
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), shown in blue and red respectively. The sub-

bands are degenerate at B
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=0. The magnetic field breaks this degeneracy.
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moment of magnitude µorb = DevF/4 directed along the tube axis. A magnetic field 

parallel to the NT axis, B||, is predicted to shift the energy of these states by: 

4

||
orb

BDev
E

FBµ . (5.1) 

For NTs with a finite energy gap at B|| = 0, the energy gap of one subband 

becomes larger as B|| is increased, while the energy gap of the other subband becomes 

smaller (Fig. 5.1c). Electron orbits around a NT are much larger than electron orbits 

around atomic nuclei, therefore we expect orb to be larger than the Bohr magneton B

( B = 0.058 meV/T). For a NT with D = 1 nm we find orb  0.2 meV/T. 

5.4 Suspended nanotube devices 

We use small bandgap, suspended NTs in our experiments. Small bandgap NTs 

(see Section 2.8) have the advantage that thermally activated transport can be studied 

down to low temperatures (kT ~ 0

gE ). The NTs are suspended to reduce potential 

fluctuations along the length of tube. Evidence of potential fluctuations in oxide-

bound NTs is seen in scanned gate experiments; different parts of an oxide-bound 

semiconducting NT are depleted of charge carriers at different gate voltages (Bachtold 

et al. 2000; Tans & Dekker 2000). A NT in vacuum has a more uniform electrostatic 

environment than a NT on oxide, therefore, we expect depletion of charge carriers to 

be more uniform when NTs are suspended. Evidence for uniform depletion is seen in 

our conductance vs. gate voltage measurements of suspended small bandgap and 

semiconducting NTs: changes in conductance occur at sharply defined gate voltages. 

Recent work by the Delft group investigating NT transport before and after 

suspending a NT also shows reduced electrical disorder in suspended NTs (Jarillo-

Herrero et al. 2004).
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Devices were fabricated as described in Section 3.3. Trenches were defined 

between gold electrodes using e-beam lithograph and HF etching. Completed devices 

had sections of NT both bound to the oxide and suspended above a trench in the oxide 

(Fig. 5.2).

We have characterised our devices using a gold-coated atomic force microscope 

(AFM) tip as a movable, local electrode (de Pablo et al. 2002; Yaish et al. 2004). 

These measurements allow us to observe different doping levels in suspended sections 

of NT compared to oxide-bound sections of the same NT. For example, Fig. 5.2 shows 

measurements taken on a semiconducting NT device. The section of NT that rests on 

the oxide substrate remains conductive (p-type) up to large positive gate voltages. A 

section of the same NT that is suspended, however, becomes depleted of charge 

carriers at a much lower gate voltage.  

The different threshold voltages for depletion of carriers in oxide-bound and 

suspended sections of a NT is not a capacitive effect. Removing dielectric material 

from between the NT and the backgate reduces capacitive coupling to the gate 

(Nygard & Cobden 2001). Even with a smaller gate coupling, the suspended section is 

depleted of charge carriers at a lower gate voltage. We conclude that charge on the 

oxide leads to p-doping of the oxide-bound sections of NT.

The substrate-induced doping effect is important because it allows us to study 

the electronic structure of a suspended section of NT independently from the adjoining 

oxide-bound sections. A small bandgap, suspended NT can be tuned from p-type to n-

type using a small range of gate voltages. Over this range of gate voltages the oxide-

bound sections of the same NT remain conducting and act as p-type electrodes to the 

suspended section. 
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Figure 5.2 Substrate induced doping. (a) A gold-coated AFM tip is used to 

measure conductance as a function of gate voltage Vg of an oxide-bound 

section of NT. This section of NT remains conductive up to large positive 

gate voltage. (b) The same measurement is made on the suspended section 

of NT (with the oxide-bound section in series).  Conductance turns off very 

sharply at a low threshold voltage. 
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5.5 Thermal activation measurements 

We first study thermally activated transport in small bandgap suspended NTs 

that have been depleted of charge carriers. An axial magnetic field has dramatic 

effects on this thermally activated current. The experiment is shown schematically in 

Fig. 5.3. Device conductance G is measured as a function of gate voltage Vg and 

magnetic field B. The field is misaligned from the NT axis by an angle .

Figure 5.4a shows G vs. Vg of two small band-gap NTs. Device 1 shows a sharp 

dip near Vg = 0.4 V, corresponding to depletion of carriers in the suspended segment. 

A second, broader dip occurs at Vg  2 V as the oxide-bound segments become 

depleted. The inset shows the dip from the suspended section of Device 2. In both 

cases, the addition of a magnetic field substantially increases the conductance at the 

bottom of the dip. 

When the suspended NT segment is depleted, conductance occurs via thermal 

activation of carriers across the energy gap. Conductance is smallest at Vg = V
*
,

immediately before the suspended segment becomes n-type (Fig. 5.3c). The minimum 

conductance due to thermal activation, Gact(V
*
), can be estimated by considering the 

Fermi-Dirac function at temperature T and the Landauer formalism for 1D conduction 

channels (Maiti et al. 2002; Minot et al. 2003)(see Appendix 3) 

2,1 g

2
2

*

act
1)/exp(

22
),(

i B

Ki
TkE

t
h

e
TVG

i

, (5.2) 

where |ti|
2
 is the transmission probability for thermally activated carriers in the i

th

subband. The device conductance G is a combination of Gact in series with the 

conductance of the p-type sections of NT and the conductance of the metal-NT 

contacts, both of which are largely temperature independent. 
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Figure 5.3 Device geometry and band bending. (a) The NT lies between two 

electrodes and crosses a trench in the oxide. (b) AFM image of the suspended 

section of NT and nearby oxide-bound sections of device 1. Scale bar, 130 nm. 

The suspended section appears fuzzy because it is displaced by the AFM tip 

during imaging. From the image we find CNT diameter D=2.6 nm, suspended 

length L=500 nm, and determine the misalignment angle between applied 

magnetic field and the CNT axis. (c) Band bending in the suspended NT segment 

and neighbouring oxide-bound segments when V
g
=V*. The number of thermally 

activated carriers is minimized and there is no n-type region to facilitate tunnelling 

processes. The oxide-bound sections remain p-type at small V
g
.
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Figure 5.4 Effect of magnetic field on device resistance. (a) I–V
g

curves for 

devices 1 and 2 at T=100 K. Curves taken at B=0 T have lower conductance 

than curves taken at B=10 T. (b) R as a function of 1/T for device 2. The 

data shown are for B=0 T (larger R) and B=10 T (smaller R). The fit lines 

are exponentials of the form A0exp(A1/T) where A0 and A1 are fitting 

parameters. (c) R as a function of B for device 1 at T=78 K (upper curve) 

and device 2 at T=90 K (lower curve). The fit lines are given by Eq. 5.2 with 

Eg
Ki=E0±aB.
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We have measured G vs. Vg for Devices 1 and 2 at several temperatures. In Fig. 

5.4b (open circles) we plot the change in resistance R(T) = G(V
*
, T)

-1
 – G(Vg « 0, T)

-1

of Device 2 at B = 0 T. From the slope and intercept of the fitting exponential, and 

assuming subband degeneracy ( iK
Eg  = 0

gE ) we find: 0
gE  = 40 meV 

(1)
 and  |t1|

2
 + |t2|

2
=

1.6. Because |t1|
2
 + |t2|

2
is close to 2, we conclude that transport is nearly ballistic and 

that both the K1 and K2 subbands make comparable contributions to the device 

conductance.

Magnetic fields dramatically reduce R, as shown in Fig. 5.4c. The temperature 

dependence of R at B = 10 T is shown for Device 2 in Fig. 5.4b (black triangles). If 

we fit this high-field temperature-dependence data with the same method used for 

zero-field data, we find 0
gE  = 22 meV and |t1|

2
 + |t2|

2
 = 0.8. This change in thermal 

activation behavior is the first clue that band structure is modified by magnetic field. 

At least one subband has a significantly smaller bandgap when B = 10 T. We argue 

below that the apparent change in |t1|
2
 + |t2|

2
 is due to the increasing band-gap of the 

second subband. 

As magnetic field is swept from 0 to 10T, R(B) shows a distinctive functional 

form (Fig. 5.4c). Changes in R are small at low magnetic field, but at larger magnetic 

field R decreases exponentially. This magnetic field dependence can be 

quantitatively described by equal and opposite changes in 1

g
K

E  and 2

g
K

E  due to the 

coupling of µorb with B||. At low fields, a small decrease in 1

g
K

E is compensated by a 

small increase in 2

g
K

E and R is unchanged. At larger fields the subband with the 

1 We find similar values of 
0
gE  in both devices (see Table 5.1). As discussed in section 2.8, 

small bandgaps occur in NTs where k non-zero due to perturbations such as strain. If the dominant 

perturbation in our devices was curvature-induced strain we would expect 
0

gE  1/D2 (Kane & Mele 

1997). The bandgaps studied here show no sign of diameter dependence, and are therefore unlikely to 

be curvature related. Further work is needed to identify the perturbations responsible for 
0
gE .
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smaller bandgap dominates the thermal activation behavior and we observe a 

exponential drop in R. Quantitative fits to R(B,T) are shown in Fig. 5.4c using Eq. 

5.2 and setting 1

g
K

E = 0
gE  – aB and 2

g
K

E = 0
gE  + aB. The only fit parameter is a; 0

gE

and |ti|
2
 are found from the temperature dependence of R at B = 0 T and setting |t1|

2
 = 

|t2|
2
.

The fitting results for Devices 1 and 2 are summarized in Table 5.1. In 

agreement with Eq. 5.1, the measured µorb scale with diameter, and are an order of 

magnitude larger than previously measured spin magnetic moments in NTs (Cobden et 

al. 1998; Tans et al. 1998). Thermally activated transport (Eq. 5.2), combined with the 

breaking of CW/CCW subband degeneracy, describes R over a wide range of T and 

B. At B = 10 T device conductance is almost entirely due to carriers which are 

thermally activated across the smaller band-gap, explaining why |t1|
2
 + |t2|

2
 decreases 

by a factor of 2 when subband degeneracy is incorrectly assumed at high field. Our 

measurements confirm theoretical predictions (Ajiki & Ando 1993; Lu 1995) for the 

sign and magnitude of orbital magnetic moments in NTs and show that an applied 

magnetic field can split the degeneracy of the K1 and K2 subbands. 

5.6  Quantum dot spectroscopy 

Orbital magnetic moments should also influence the energy level spectra of 

nanotube quantum dots (NTQDs) in applied magnetic fields (see Section 1.4 for an 

introduction to NTQDs). In our device geometry a NTQD forms when Vg > V
*
 and 

electrons are confined to conduction states of the suspended section by p-n tunnel 

barriers (Fig. 5.5a). Figure 5.5b shows the formation of a NTQD in Device 1 at Vg > 

V
*
, T = 1.5 K. There is a large region of zero conductance as the Fermi level passes 

through the energy gap of the suspended section. At higher Vg the Coulomb diamonds 

labelled 1, 2, 3 and 4 correspond to charge states of one, two, three and four electrons 
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Table 5.1 Summary of thermal activation results  

µorb  (meV/T) D (nm) 0
gE

(meV) 

(°) a

(meV/T) Experiment Theory 

30 ± 3 1.3 ± 0.1 0.7 ± 0.1 0.5 ± 0.1 Device 1 2.6 ± 0.3 36 ± 3 

60 ± 3 0.7 ± 0.1 0.7 ± 0.1 0.5 ± 0.1 

Device 2 5.0 ± 0.3 40 ± 3 45 ± 3 2.1 ± 0.2 1.5 ± 0.2 1.0 ± 0.2 

 is the misalignment angle between NT axis and the magnetic field direction. The 

experimental value of µorb is given by a/2cos . There is uncertainty in theoretical 

values of µorb due to uncertainty in vF and D.
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Figure 5.5 (a) Formation of a NTQD when V
g

> V*. Electrons are confined to 

conduction states of the suspended section by p-n tunnel barriers. (b) Differential 

conductance dI/dV
sd

as a function of source–drain voltage, V
sd

, and V
g
. Data are 

from device 1 at T=1.5 K. Dark blue represents dI/dV
sd

=0, dark red represents 

dI/dV
sd

=0.2 e2/h. In the white regions (top and bottom of the plot), current levels 

exceeded the measurement range. The first four Coulomb diamonds,

corresponding to discrete charge states, are labelled 1–4. In the large region of 

zero-conductance (to the left of Coulomb diamond 1) no electrons occupy the dot 

as the Fermi level crosses the NT bandgap. (c) A low-bias (V
sd

~ 0.1 mV) slice of 

the conductance plot shown in (a). The Coulomb peaks mark the transitions 

between different charge states.
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in the conduction band of the suspended segment. A low-bias (Vsd ~ 0.5 mV) slice of 

this conductance plot shows the peaks in conduction (Coulomb peaks) which mark the 

transitions between different charge states (Fig 5.5c). 

In the constant interaction model of quantum dots (Kouwenhoven et al. 1997) 

(Section 1.4) the position of the Nth Coulomb peak is given by  

constant
C

Ne

eC

C
NV N

g

g

2

)( , (5.3) 

where C is the total capacitance of the dot, Cg is the capacitance between the dot and 

the backgate, and N is the single particle energy of the state filled by the Nth electron. 

From Eq 5.3, we see that the position of Coulomb peaks can be used to monitor the 

energy of electron states in the NTQD.  

We begin by measuring the effect of magnetic field on the energy gap between 

the valence and conduction states of the suspended NT. In Fig. 5.6 the low-bias 

conductance of Device 1 is plotted in color scale as a function of Vg and B. We see the 

large region of zero-conductance corresponding to the Fermi level passing through the 

energy gap of the suspended region, followed by the first and second Coulomb peaks. 

The width of the large zero-conductance region shrinks as magnetic field is increased.

Figure 5.6 shows that valance and conduction states move closer together in 

energy as magnetic field is increased. The sharp turn-off of conductance at Vg ~ 

180mV corresponds to filling the last valence state in the suspended NT, while the 

first Coulomb peak above the bandgap marks the entry of the first electron into the 

NTQD. From Eq. 5.3, we expect the position of the first Coulomb peak to be Vg = 

(C/eCg) 1 + constant, where 1 is the energy of the first filled conduction state. 

Estimating C/Cg ~ 2.2 using the width-to-height ratio of Coulomb diamonds in Fig. 

5.5b (Kouwenhoven et al. 1997)(Section 1.4) we calculate d 1/dB ~ -0.7meV/T. This 
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Figure 5.6 Changing bandgap of a nanotube quantum dot. The color scale 
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low-bias conductance data is shown in Fig 5.5c for B = 0). We associate the 

sharp turn-off of conductance at Vg ~ 180 mV to filling of the last valence 
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energy shift suggests that the NT bandgap is reduced by ~ 1.4 meV/T, in good 

agreement with thermal activation measurements (see Table 1, device 1).    

Bandgap reduction is expected in only one of the NT subbands. Energy shifts in 

the opposite direction are expected for states in the second subband. We now consider 

the NTQD in more detail to see how the two subbands contribute to the energy level 

spectrum.  

We can estimate the energy level spectrum of our NTQD by considering the 

confinement of conduction electrons in a 1D potential well of length L. The 

confinement results in quantized k|| values which, combined with the dispersion 

relations Ei(k||), determine the energy levels of the dot. Near the band-gap edge Ei(k||)

are parabolic, therefore, the energy levels of the first few conduction states should be:

||orb
2

2*

220
g

|| µ
22

),,( Bn
Lm

E
Bin

i

, (5.4) 

where the quantum number n is a positive integer, the effective mass *
im  = 

)( ||g BE iK /2 2
Fv , and +/– applies to the two different subbands (CW and CCW orbitals). 

For device 1 we expect an energy scale for level spacing  = /2m
*
L

2
 ~ 0.25 meV. 

The energy level spectrum described by Eq. 5.4 is plotted in Fig 5.7a. Energy level 

crossings occur when states from different subbands and different n become 

degenerate.

Figure 5.7b shows low-bias G-Vg plots of the first 8 Coulomb peaks in the 

NTQD. As the magnetic field is increased, peak positions move up and down between 

1.2 and 1.6 mV/T. The fifth and subsequent peaks show clear changes between 

positive and negative slopes. Peaks appear to be paired, each pair having a different 

zigzag pattern.
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Figure 5.7 Energy levels of a nanotube quantum dot. (a) Modelled energies 

of quantum levels from Eq (5.3), approximating meff as constant. For device 1 

we have ~0.25 meV. Coloured lines represent the expected zigzags in the 

first six Coulomb peaks, with red and blue representing respectively CCW 

and CW states. Arrows indicate spin degeneracy for each state. (b) Low-bias

conductance I/V
sd

as a function of V
g

and B showing the first eight Coulomb 

peaks of device 1, =30°. Dark blue represents I/V
sd

=0; dark red represents 

I/V
sd

=0.35 e2/h. The colour scale for peak 1 is magnified by 100 times.
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The main features of Fig. 5.7b are described by the Eq. 5.4. Peaks with d /dB > 0 

correspond to CW electron orbitals, while peaks with d /dB < 0 correspond to CCW 

electron orbital. The measured value of orb = | d /dB|| | = 0.7 ± 0.1 meV/T agrees with 

the values in Table 1 for Device 1. Furthermore, the striking difference between the 

first four peaks and later peaks is in qualitative agreement with the modeled spectrum 

(Fig. 5.7a). The first pair of peaks (spin up and spin down, n = 1, CCW orbital) are not 

expected to undergo level crossings. The second pair (peaks 3 and 4 in Fig. 5.7b) may 

undergo a level crossing at low field, however, the resolution of our data is limited by 

thermal broadening; levels separated by less than 4kBT  0.5 meV merge together. The 

third and fourth pairs clearly show the changes in slope that are expected when level 

crossings occur. We conclude that there are quantum levels near the band-gap edges 

with both positive and negative orbital magnetic moments whose magnitudes are 

consistent with theoretical predictions (Ajiki & Ando 1993; Lu 1995). The Coulomb 

blockade model does not describe all the features in Fig. 5.7b. The detailed structure 

of this NTQD system may depend on effects such as exchange coupling (Tans et al. 

1998; Liang et al. 2002), and will be the subject of future work.

5.7 Tranparency of p-n tunnel barriers 

The tunnel barriers that confine electrons in our NTQD can be modified by a 

magnetic field.  This effect will be useful for quantifying tunneling processes in NTs 

and for studying phenomena such as the Kondo effect which depend sensitively on the 

transparency of tunnel barriers to a quantum dot (Goldhaber-Gordon et al. 1998).  

Figure 5.8a shows the second Coulomb peak from device 1 (the intersection of 

the first and second Coulomb diamonds in Fig. 5.5b). The peak shifts with magnetic 

field, as discussed in the previous section, and doubles in conductance as B reaches

3.6 T.
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The increasing conductance of the second Coulomb peak shows that the tunnel 

barriers seen by the second electron become more transparent as B is increased. The

p-n junctions responsible for the tunnel barriers are shown in Fig. 5.8b. The 

probability of tunneling across one of the barriers, Ptunnel, depends on the width of the 

junction and the NT bandgap (the tunneling calculations are described in detail in 

Section 4.5). Fig 5.8b illustrates the effect of magnetic field on the p-n junctions. One 

NT subband (labeled K1 for convenience) has d 1K

gapE /dB < 0. The p-n junction 

associated with this K1 subband becomes smaller with B. Since the second electron 

occupies a state in the K1 subband (the second Coulomb peak shifts towards lower 

energies as B is increased), we expect tunneling to increase as E
K1

gap decreases. 

We also see evidence of decreasing tunneling probability to states in the K2

subband (d 2K

gapE /dB > 0). Coulomb peaks 5 and 6 in Fig. 5.7b show this effect most 

clearly. The conductance of peaks 5 and 6 is large when d /dB < 0 (tunneling into a 

state in the K1 subband) but conductance drops when d /dB > 0 (tunneling into a state 

in the K2 subband). 

This simple model, based on 1K

gapE  and 2K

gapE  and treating the subbands as 

independent, does not explain all peak amplitudes seen in Fig. 5.7b. Tunnelling 

between subbands (Liang et al. 2001), and the shape of electron orbitals may also have 

important effects on tunneling rates. 
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5.8 Conclusions 

We have measured µorb in NTs of diameter 2 – 5 nm and find values 10 - 20 

times larger than the Bohr magneton and the spin magnetic moment in NTs (Cobden 

et al. 1998; Tans et al. 1998). These measurements confirm theoretical predictions for 

the magnetic properties of NTs (Ajiki & Ando 1993; Lu 1995).

Since the completion of this work similar observations have been reported by 

other authors. Zaric et al. (2004) studied the magneto-optical properties of small 

diameter NTs in aqueous solution. An applied magnetic field aligned the NTs (parallel 

to the field) and shifted the energy of optical absorption and optical emission peaks. 

New transport experiments on multi-walled NTs (D ~ 30nm) have also confirmed 

magnetic field induced changes in electronic structure (Coskun et al. 2004). By using 

very short devices (length ~ 100 nm), Coskun et al. were able to eliminate weak 

localisation effects and study the coherent electron states on large diameter NTs. The 

results of both experiments are consistent with our measurements of µorb.

The large orbital magnetic moment of electrons in NTs give researchers a 

powerful new tool to control the electronic structure of NTs.  The tunnel transparency 

of p-n barriers can be tuned by using a magnetic field to modify the band-gap. This 

will be useful, for example, to study Kondo physics in NTQDs (Nygard et al. 2000; 

Liang et al. 2002) at different tunneling strengths. Researchers can also tune the 

energy levels of electrons in the 1D box formed by a NT. By applying large magnetic 

fields it is possible to investigate the properties of a NT in which only one subband is 

occupied. Conversely, by matching the energies of different subband states, the 

interactions between states arising from CW and CCW orbits can be explored.
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CHAPTER 6 

CONCLUSION 

6.1 Summary 

We have demonstrated that carbon nanotube (NT) electronic structure can be 

tuned by mechanical stretching and by axial magnetic field. These results confirm 

theoretical predictions and show the significance of nanoscale geometry in 

determining the electronic properties of NTs. 

To quantify electromechanical effects in NTs we developed methods to fabricate 

and manipulate suspended NTs, as discussed in Chapter 3. We showed that using an 

atomic force microscope it is possible to reversibly stretch suspended NTs while 

simultaneously monitoring tension forces. In Chapter 4 we combined mechanical 

manipulation techniques with electrical transport measurements to observe strain-

induced changes in NT electronic structure. We found that applied mechanical strain 

opened a bandgap in metallic NTs and modified the bandgap of a semiconducting 

NTs. Our results were consistent with a linear relationship between strain and NT 

bandgap, with equal bandgap changes in degenerate subbands. As expected, the sign 

and magnitude of bandgap changes varied among different NTs and these differences 

could be attributed to different NT chiralities. 

In Chapter 5 we demonstrated that the electronic structure of a NT can be tuned 

by an axial magnetic field. Measurements of thermally activated current, and energy 

shifts of the electron states in a NT quantum dot, showed that electron states near the 

NT bandgap couple strongly to magnetic field. The measurements also showed that 

subband degeneracy can be broken by axial magnetic field, with one bandgap growing 

and one bandgap shrinking as the field is increased. The observed coupling between 
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electron states and magnetic field was consistent with the predicted magnitude and 

direction of orbital magnetic moments in NTs.  

6.2 Future outlook 

The electromechanical and magnetic effects described in this thesis present new 

possibilities for studying quantum mechanics in NTs.  

It is already well established that NTs are a versatile system for studying 

quantum mechanical effects. Electron coherence lengths in NTs are long and 

interesting behavior such as discrete electron energy levels, Fabery-Perot interference 

and the Kondo effect have been observed.

New possibilities lie in the ability tune NT properties. For example, by 

selectively straining different sections of a metallic NT, a series of semiconducting 

barriers can be created. Such a device would allow researchers to study the properties 

of electrons confined to a 1-D superlattice. Tuning the energies of electron states in a 

NT by magnetic field will also be an important tool. For example, it will be possible to 

learn more about interactions between electrons by examining the field-dependent 

energies of NT quantum dots containing two, three, four electrons etc.
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APPENDIX

A.1 Forces during AFM imaging 

Tapping mode imaging of suspended NTs can be understood more clearly if we 

consider the interaction between an oscillating AFM tip and a suspended NT. We find 

that upward pulling of the suspended NT by the AFM tip is the most violent aspect of 

the imaging process.  

Figure A.1.1a shows a tapping mode image of a suspended NT. During imaging 

the AFM cantilever is driven into oscillation at its resonant frequency. The image is 

produced as the AFM tip scans across the surface and a feedback circuit tries to 

maintain constant oscillation amplitude. When the suspended NT is scanned, the tip 

height swings up and down wildly, as seen in the saw-tooth height profile (Fig. 

A.1.1a).

The large swings in tip height occur as the AFM tip sticks to the suspended NT 

and then pulls away. When the AFM tip meets the NT at the bottom of a swing, the 

oscillation amplitude drops because the cantilever/NT system has different resonance 

behavior than the bare cantilever (see Fig A.1.1b). The feedback circuit raises the 

AFM tip, attempting to restore oscillation amplitude. However, the NT is stuck to the 

tip. As the AFM tip is lifted the NT is put under greater strain and oscillation 

amplitude drops even further (Fig A.1.1b). Oscillation amplitude is not restored until 

the adhesion between NT and AFM tip is broken. As this process repeats, the AFM tip 

moves up and down, leading to the height swings in Fig. A.1.1a. The amplitude of the 

height variations is related to the slack in the suspended NT and the strength of the tip-

tube adhesion. 

When the adhesion force between AFM tip and NT is large, imaging can be 

violent. Poorly anchored NTs can be dislodged during imaging. Imaging could be 
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Figure A.1.1 (a) Tapping mode image of a suspended NT. A cross section of 

the image shows saw-tooth variations in tip height as the tip scans over the NT. 

The Cr/Au electrodes ( 80 nm thick) are seen on the left and right side of the 

image and cross-section. Scale bars are 500nm. (b) Changes in resonance 

behavior when tip is in contact with NT. Oscillation amplitude drops when 

AFM tip touches the suspended NT (grey arrow). Oscillation amplitude is 

restored when tip/NT contact is broken (white arrow). The distance between 

the grey and white arrow corresponds to height variations in (a).
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made less violent by reducing tip-tube adhesion forces. This may be possible by 

choosing appropriate material coatings for the AFM tip.

A.2 Voltage controlled tip-tube adhesion 

We have investigated the possibility of using electrostatic forces to control the 

adhesion between an AFM tip and a NT.

Figures A.2.1b and c show the force needed to break contact between a NT and 

an AFM tip as a function of the voltage difference between them. The force increases 

significantly for both positive and negative voltages. The effect is more dramatic for 

the larger diameter NT show in Fig. A.2.1c.  

The results suggest that the NT and the tip form two sides of a capacitor. The 

voltage difference induces positive (negative) charge on the NT which is attracted to 

negative (positive) charge on the AFM tip. In this model, electrostatic attraction will 

occur for both positive and negative voltages. The force depends on the area of the 

capacitor (the contact area between the NT and tip), and we expect larger forces for 

larger diameter NTs.  

This voltage controlled adhesion may be useful for NT manipulation, where 

increasing adhesion forces could allow researchers to pick up NTs.  
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Figure A.2.1 Voltage control of release force. (a) Schematic of experiment. 

Adhesion forces increase as the voltage difference between NT and tip is 

increased. (b) (c) Deflection force on cantilever when NT/tip contact is 

broken for a NTs with D = 10nm and 2.5nm respectively. 
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A.3 Thermally activated current 

The conductance of a semiconducting NT that has been depleted of charge 

carriers can be quantified using the Landauer-Buttiker formalism and the temperature-

dependent Fermi-Dirac distribution.  

The band bending diagram of a NT transistor in the off state is shown in Fig. 

A.3.1a. Electrons are transmitted if they have energy E > EF + Egap. Likewise, holes 

with energy corresponding to E < EF - Egap are also transmitted. Carriers with energies 

between EF - Egap and EF + Egap, however, can only be transmitted by tunneling to 

available states on the far side of the NT. Because the probability of tunneling across 

long distances is very small (Leonard & Tersoff 1999; Odintsov 2000) we assume that 

all carriers with energies between EF - Egap and EF + Egap are completely reflected.  

From the Landauer-Buttiker formalism (Section 1.2), the current through a 1-D 

channel is 

dEEfEft
h

e
I LR )()(

2 2
,

and for small bias we have  

dE
dE

df
teV

h

e
I

22
. (A.3.1) 

For a semiconducting NT that is depleted of charge carriers the transmission 

probability |t2| is energy dependent. The integration in Eq. A3.1 is shown graphically 

in Fig. A.3.1b. The two shaded areas represent the energies where |t|2 is non-zero. 

Assuming a constant |t|2 for E > EF + Egap and E < EF - Egap we find 
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eVt
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e
I

gapF EE

2
2 2

)]()([2
2 2

fEEfeVt
h

e
gapF

V
e

t
h

e
kTEgap /

2
2

1

22
.

This is the thermally activated, off-state current though a 1-D subband of a NT 

transistor. The current depends on the width of the Fermi distributions ( T) compared 

to the size of Egap. The current drops exponentially with bandgap when Egap >> kT.
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Figure A.3.1 Thermal activation of carriers. (a) Band diagram of a 

semiconducting NT in the off state. Thermally activated electron and holes can

pass through the NT. (b) The difference between the Fermi functions in the left 

and right electrode, fL – fR. The shaded areas are integrated to find the off-state 

current through the NT transistor.
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