PH575 Spring 2009

Lecture #26 & 27
Phonons: Kittel Ch. 4 & 5
Phonons are:
A. Fermions
B. Bosons
C. Lattice vibrations
D. Light/matter interactions
PH575 Spring 2009
POP QUIZ

Phonon dispersion relation:
A. Same as electron $E(k)$
B. Different from electron $E(k)$
C. k undefined for phonons
D. Linear $E(k)$
PH575 Spring 2009
POP QUIZ
Phonons relevant to:
A. Optical properties of solids
B. Electrical properties of solids
C. Thermal properties of solids
D. Magnetic properties of solids
Until now, we have considered that nuclei in the solid are fixed in space - a good assumption at $T = 0$, but not otherwise. What extra energy does this motion add and what are the consequences?

The overall nuclear motion can be organized into collective normal modes called phonons. Phonons are partly responsible for heat transport.

Phonons provide the interaction that yields a net attractive interaction between electrons to give superconductivity.

Phonons disrupt lattice periodicity and cause electrical resistivity.

And more

Phonon focussing

Superconductivity
Focus on one example: energy transport - calculate specific heat due to phonons. Start with total energy.

\[U(T) = \int_{0}^{\infty} D(E)_{\text{phonons}} E f(E,T)_{\text{phonons}} \, dE \]

What is this quantity?

What do we need to know to find it?

What is this quantity?

What is this?
Occupation function:

Each classical mode of frequency ω_k is assumed to be a quantum particle or phonon with energy $\hbar \omega_k / 2\pi$.

Phonons are BOSONS. Bosons have integer (or zero) spin. Like photons, phonons are massless. There is no restriction on the number in the same quantum state (the PEP does not apply). Bosons occupy states with probability

$$f_{BE}(\omega) = \frac{1}{e^{\hbar \omega / k_B T} - 1}$$

f_{BE} is called the Bose-Einstein function and it plays the same role as the Fermi function for electrons. Note that the “-1” in the denominator, and note also that there is nothing analogous to the Fermi energy for bosons.
\[
f_{BE}(\omega) = \frac{1}{e^{\frac{\hbar \omega}{k_B T}} - 1}
\]
\[
f_{FD}(\omega) = \frac{1}{e^{\left(\frac{\hbar \omega - 1eV}{k_B T}\right)} + 1}
\]
\[
f_{MB}(\omega) = e^{-\frac{\hbar \omega}{k_B T}}
\]

\[T = 600K = 327^\circ C = 0.05eV\]

\(f_{BE}\) is called the Bose-Einstein function and it plays the same role as the Fermi function for electrons. Note that the “-1” in the denominator, and note also that there is nothing analogous to the Fermi energy for bosons.
Phonon dispersion relation:

Use Newton’s law to treat the problem classically, but a more refined quantum treatment yields similar results.

Positive ions coupled by springs. Individual spring force is characterized by vibration frequency, ω_0, stiffness κ, mass m.

\[F = -\kappa (x - x_0) = -m\omega_0^2 (x - x_0) \]
Phonon dispersion relation: 1-dimension for illustration. Ions’ equilibrium positions are pa where integer p labels ion, but each ion executes (mostly small) motion from equilibrium. Displacement is denoted as x_p. In true 1-D, this motion would have to be along the spring direction (longitudinal).

\[
m \frac{d^2 x_p}{dt^2} = -m \omega_0^2 (x_p - x_{p-1}) - m \omega_0^2 (x_p - x_{p+1})
\]

\[= -m \omega_0^2 \left(2x_p - x_{p-1} - x_{p+1} \right)\]

Normal modes: $x_p = A_k e^{ikpa} e^{i\omega_k t}$

Assumption! Discuss. Just like electron case.
\[x_p = A_k e^{ikpa} e^{i\omega_k t} \]

\[x_{p+1} = A_k e^{ik(p+1)a} e^{i\omega_k t} \]

\[x_{p-1} = A_k e^{ik(p-1)a} e^{i\omega_k t} \]

\[
\frac{d^2 x_p}{dt^2} = -\omega_k^2 x_p \quad \text{Put this into} \quad m \frac{d^2 x_p}{dt^2} = -m\omega_0^2 \left(2x_p - x_{p-1} - x_{p+1} \right)
\]

\[-m\omega_k^2 x_p = -m\omega_0^2 \left(2x_p - x_{p-1} - x_{p+1} \right)\]

Now plug in expressions for \(x_p, x_{p-1}, x_{p+1}, \) lots of happy cancellations.

\[
\omega_k^2 = \omega_0^2 \left(2 - e^{-ika} - e^{+ika} \right) = \omega_0^2 \left(2 - 2 \cos(ka) \right) = 4\omega_0^2 \sin^2\left(\frac{ka}{2} \right)
\]

\[
\omega_k = 2\omega_0 \sin\left(\frac{ka}{2} \right) \quad \text{\textasciitilde Dispersion relation! \(\omega(k) \)}
\]
 Phonon dispersion relation (1-D, periodic BCs)

\[\omega_k = 2\omega_0 \sin\left(\frac{ka}{2}\right) \]

Group velocity is zero at BZB

\(\omega/k \) is constant at small \(k \). This velocity is the sound velocity!
Phonons & phonon dispersion relation:
Phonons are lattice vibrations (vibrations of heavy ions)
Simplest (“normal mode”) cases are depicted below
Any motion can be written as a superposition of the *normal modes*
The application of boundary conditions sets the quantization conditions

\[
\lambda_{\text{min}} = 2a \quad k_{\text{max}} = \frac{\pi}{a} = \frac{N\pi}{L}
\]

\[
k_n = \frac{n\pi}{L}
\]

\[
k_{\text{min}} = \frac{\pi}{L}
\]

1-D crystal, length \(L \)

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/imgsol/phonon.gif
Here’s a good Java Applet that shows the different motions of a linear chain: http://fermi.la.asu.edu/ccli/applets/phonon/phonon.html

Dispersion relations and some more realistic phonon modes (including surface phonons) in real crystals: http://www.phonon.fc.pl/index.php
Phonon dispersion relation (monatomic)

In 3 dimensions, there are have 3 branches of the dispersion relation, 2 transverse and 1 longitudinal. Different crystal structures have different propagation speeds along different directions.

In a monatomic lattice, the phonon modes are called “acoustic” modes. The frequency $\rightarrow 0$ as $k \rightarrow 0$ and the speed of the low frequency propagation is the speed of sound.

Phonon imaging:
Phonon dispersion relation (polyatomic)

In a polyatomic lattice, the phonon modes are both “acoustic” and “optical”. $\omega_k \to 0$ as $k \to 0$ for acoustic modes as before, but for optical modes $\omega_k \to$ constant as $k \to 0$. There can be transverse and longitudinal modes of both types.

The origin of this effect is EXACTLY the same as we discussed for electron dispersion when we had 2 different types of atom, or 2 different coupling constants.
The phonon dispersion relation can be measured experimentally by inelastic X-ray or neutron scattering.

http://www.physik1.uni-rostock.de/user/radtke/Course_I/Chapter_IV/II_Chap4_2.html

Figure 6.
Density of states:

We again recall the treatment for electrons.

Periodic boundary conditions: \(k = 0, \pm 2\pi/L, \pm 4\pi/L, \ldots \)

In 1-D \(k \) space, there is 1 allowed mode per \((2\pi/L) \text{ "} k \text{-volume}"\).

\[
D(\omega) = D(k) \frac{dk}{d\omega} = \frac{L}{2\pi} \frac{dk}{d\omega}
\]

\[
\omega(k) = 2\omega_0 \sin \left(\frac{ka}{2} \right)
\]

\[
\frac{d\omega}{dk} = \omega_0 a \cos \left(\frac{ka}{2} \right) \xrightarrow{k \to 0} \omega_0 a
\]

\[
D(\omega) = \frac{L}{2\pi} \frac{1}{\omega_0 a \cos \left(\frac{ka}{2} \right)}
\]
Density of states:
In 3-d \(k \) space, there is 1 allowed mode per \((2\pi/L)^3\) “\(k \)-volume”.
Total number of modes \(S \) in a sphere of radius \(k \) is
\[S = \frac{4\pi k^3}{3} \left/ \left(2\pi/L\right)^3 \right. \]
for EACH of longitudinal and transverse type and for each branch
The density of states is (for each polarization)

\[
D(\omega) = \frac{dS}{d\omega} = \frac{V k^2}{2\pi^2} \frac{dk}{d\omega}
\]

\[
\omega(k) = 2\omega_0 \sin\left(\frac{ka}{2}\right)
\]
The Debye model assumes the linear relation holds for all k to a maximum k_D or maximum ω_D called the “Debye wavevector or Debye frequency”

$$\omega_k = \omega_0 ak = v_s k$$

Choose this to get right number of modes (N modes per branch if N atoms)

$$D(\omega) = \frac{Vk^2}{2\pi^2} \frac{dk}{d\omega}$$

$$\frac{d\omega}{dk} = v_s$$

$$D(\omega) = \frac{Vk^2}{2\pi^2 v_s} = \frac{V\omega^2}{2\pi^2 v_s^3}$$
Let’s calculate the Debye frequency, Debye temperature etc.

\[\omega_k = \omega_0 a k = v_s k \]

\[\frac{d\omega}{dk} = v_s \]

Number of modes (per branch) is \(N \) if there are \(N \) cells

\[N = \int_0^{\omega_D} D(\omega) d\omega \]

Quick class calc … show

Define Debye temperature

\[\omega_D = \left[\frac{6\pi^2 v_s^3 N}{V} \right]^{1/3} \]

\[\theta_{\text{Debye}} \equiv \frac{\hbar \omega_D}{k_B} \]
Debye model is useful, but only an approximation - nowadays, computers can crank out numerics very easily.

"debye" samples the reciprocal space randomly, calculates the 3 phonon frequencies associated with each sampled point, and develops a density of modes histogram. The density of modes (in blue) may be displayed either in a linear plot (left) or a log/log plot (right). A density of modes given by the Debye model (in red) is shown for comparison.

http://www.physics.cornell.edu/sss/debye/debye.html
Debye model of specific heat:

\[C = 9 N k_B \left(\frac{T}{\theta_D} \right)^3 \int_0^{x_D} dx \frac{x^4 e^x}{(e^x - 1)^2} \]

\[C = \frac{dU}{dT} \]

- \(C \) prop. to \(T^3 \) at low temp (<< \(\theta_D \))
- \(C \) constant at high temp (> \(\theta_D \))
- Na: 158 K, Si: 645 K,
- \(C_{\text{dia}} \): 2230 K

Debye temp measures sound speed or bond stiffness.

The data for silver shown is from Meyers. It shows that the specific heat fits the Debye model at both low and high temperatures.

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/phonon.html
From the density of states, the specific heat is calculated, is displayed, and can be compared with experimental data and with a Debye model calculation. In the log/log plot, the wrong force constant was chosen for the numerical calculation (in blue). Should it be increased or decreased, and by what factor? For the Debye model (in red), the wrong lattice constant was chosen! Should it be larger or smaller, and by what factor?

http://www.physics.cornell.edu/sss/debye/debye.html
Another important model of the phonon density of states is the Einstein model. This model works well for optical modes. Einstein model says all phonons have the same frequency!
“Normal” phonon collisions that conserve k-momentum (crystal momentum) do not allow relaxation (N-processes), but “Umklapp processes” (U-processes) do allow relaxation and limit thermal conductivity. This is because the medium is discrete, and k-values outside the 1st BZB can be mapped back into the 1st BZB with a reciprocal lattice vector.

http://vatlieu.us/definition/methods.html?view=mediawiki&article=Umklapp_scattering