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18.2.2: The perturbation Hamiltonian is
HI = _d ° E = _(_er) ° 8026_12/72 _ ezgoe—f2/12

Time dependent perturbation theory tells us that the coefficient to be in a new state | f) at time
t = oo after starting (at time ¢ = —oo) in state |1) is :

(=)= [P ) ar

For this case, we get
e, (o0)= % [~ @om 17 (#)100) 50
_ % [™ (20m|eze e [100)e 50 gy
_ %<2€m| 100) [ & e ar’

where w = (E2 -k, ) / h . The time integral can be done without knowing the final state, so let's
do that first:

Cotm (°°) = %<2€m| Z| 100> J:o e_tlz/fzeiwt’ dr’ = %<2£m| Z| 100> \/;‘L'e_wzfz/4

Now we need to calculate the spatial matrix elements (2/m|z|100). Selection rules tell us that
the final state must have m = 0 and odd parity, so only the 2p, state has a non-zero matrix
element (the book appears to be incorrect).

(200]z|100)=0
(21,£1|2/100) =0

Now we need to find (210|z|100) . To calculate the matrix elements we need the following.

2
Rlo(r):_ge Jeo

a
R e
1 (00)=

7(6.0)= | cos0=7,,(6.9)

—rcose—r,/ Y,,(0,0)= 4/4 Y,,(6,9)
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o

Jx”e"‘”‘dx =

0

n!

+1
an

The matrix element can be broken into radial and angular parts:

(210[2100) = [ R;,(r) r Ry (r) rdr [Y,,(6.9) cos® ¥,,(6.9)dQ

R, (r) r Ry(r) 2erY109¢ \/?10(0¢)m dQ
Ry, (r) r Ry(r zdr\/_JYqu) Y, (0.,9) dQ

Il
S8 O—8§ Oo—3

The angular part is simple, leaving.

1 _ 1 op=rt
r/ZaOerr_ JO —e 3r/2a0dr

210|z|100) = = o — =
(21012 \/_J ‘ \/g(ao)fa 3V2 %0 af

ay
a © a, 4! a, 2°
=—1 Jx“e 2y = —9 =7
&

W2 () 23

Thus we get
Copn (20) = e.ﬁﬂz—sx/;w“"zfz/“
The resultant probabilities are
P () = (=) =0

2 ea,& g 215 _0?r?
?210(°°):‘0210(°°)‘ :( ;lo) ?75’526 &

P s (°°) = ‘CZI,il (°°)|2 =0

18.2.4: The ejected electron has energy 16 keV, which is about 1000 times larger than the
energy of the bound electron. Hence the velocity of the ejected electron (E = mv*/2 ) is about
41000 times larger than the bound electron and the time scale of the ejection (perturbation) is
about +/1000 times smaller than the time scale of the bound electron motion. The probability of
a transition (Eqn. 18.2.13) caused by the perturbation scales like e TR = o , so this sudden
perturbation causes transitions with probabilities at the 0.1 % level, which we neglect. Thus we
conclude that the wave function of the bound electron after the beta decay is the same as it was
before the decay. The ground state of tritium (before the decay) is (Z=1)

WTIOO(F,G’(])): 1 ol

Ta
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The ground state of helium 3 (after the decay) is (Z=2)

\/g —2r/a,
e

3
71'610

WHEIOO (r’0’¢) -

The wave function is unchanged in the decay, so the probability is found from the inner product
of the two states:

2
P e = KWHeloo ‘l//noo)‘

The inner product is

<WH6100|WT100> = J.V/;ewo (F,G,(]))ll/rwo (V’G’Q))dV

= jo“’ joz” fo” J8 e L a2 o0 g0 dodr

J‘O“rze*”/“o a’r)(j(:r sin@de)(.[ozn d(/))}
-2 o) or) - 2522

giving a probability

For the second case, the final wave function is

l//He16,3,0 (7,9,¢) - Rl6,3 (V) )730 (0’¢)

The initial state is
WTIOO (}",9,(])) = RI,O (7") 1/00 (9’¢)

The angular functions of these two wave functions are orthogonal, so the amplitude and hence
probability is zero.

3. The perturbation is
H'(t)= Voxze_'/f
Time dependent perturbation theory tells us that the coefficient to be in a new state |2) at time T
after starting in state |1) is:
1 er

c, (T):l_h . <2|H/(t/)|1>ei(E2—El)z'/h dr’
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For this case, we get

[ el ()

_ _;l<2|x2|l> J‘OT o BB g

&(T)= e (EzEl)"/hdt'Z,-;J 2|V, e (1) EEY D gy

Let's tackle the spatial matrix element first

(2]x*|1)= _[OL @, (X)X, (x)dx = EJOL Slnz—zxsm%dx

( 37txj
=—J xt= cos——cos— dx
L

2rl’x cosE + (ﬂzsz -2 ) sinE
L L

3 1
n L ——{671:L2xcosﬂ+(97r2Lx2 —2L3)sinﬁ}
27 L L 0
_ler
or?

Putting this into the equation above and doing the time integral, we get

Vi 161 \¢r o e gy 161%V. ¢t .. .
c. (T =0 _ e‘f/fe’(Ez El)t/hdt’:_ 0 e—r/‘rguuz]t dr’
-(7) ih( 97:2on iOnm’ Jo

_ 16L2‘/0 eia}ZIt'—t'/‘L' r . 16L2‘/0 einIT—T/T -1
iOnm® | i, =1/t | i9nn* | iw, -1/t

The unperturbed well energies are:

n’n’h’ E,-E 31’h
n = 3 = w2] = = 3
2mL h 2mL
Putting this together we get
2
2 | 16V, | e -1
P (T)=|c,(T) =|- -
2 (T)=lex(T) ionm’ { i, -1/t
2
161V, L (onttie _{\( iont—t
= elwzl T _1 e iy, /T _1
Ohn’ ) w3 +1/7° ( I )
2 2
_ 16L‘§] . 1 |: —2T/T+1 e -T/t (e—iwle +eiw21T):|
Ohn® ) w3l +1/7°

2
16LV, 1
sy 2| = vy 2[1+e"2T/T—2(3"T/Tcosa)2]T]
) o) +1/t
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In the long time limit, we get the probability

162v.Y 1
2%@a=( ;j :

Onn® ) wi +1/7°

19.3.3: The scattering potential is
V(r)=Vye '

In the Born approximation, the scattering amplitude is

j eV (r)d’r

7(6.0)=-31

Thus we get

1(09)=—5 e v i

7rh2

27'5712 V, J - /VOI” dY'J. d¢J sin@e " 40

B _ /r e—lq) cos6
= V. "t dr(2
27th2 oy el ”][ l

lqr
V.[ 2/r 2Sll’lqrdr

th V j ’/"‘rsmqrdr

The radial integral can be looked up to give

2” q\/—r() —q2r2/4
qh’ Pl

AN Jrr r0 o

h2

f(6.9)=-

The differential cross section is

Voly 7'Er0 — )2
)=lr (.00 [hzj e

The total cross section is obtained by integrating over all detection angles, using
g’ =2k*(1-cos0)
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o=[o(6.9)dQ= j j o (6,0)sin0d0d¢

-Ir (” Wy j Ty 430<09) i1 0. 46 d

V 2 T 2 L 22 (1cos
= —”h‘;ro %27rLe (=20 g (cos )
2 2 1
= —”‘/Oroz n-_rozzﬂe—kzlszl exkzro2 dx = ]/tVOI"O ﬂ-ro 21 K22 ™
h 4 1 e 4 k2r02 )
2
= HYoly VOrOZ 72"_”02271;6%%2 1 ( ekzrlf_ e—kzroz)
7"12 4 k2r02
HVoly n 2k
- 5 ) 2eli=e)

19.54: Find the s-wave phase shift for a square well of depth V|, and range r,. The allowed
wave functions inside and outside the square well are

R,(r)zB[ jé(ar); r<r,
R (r)=A4, [cos@ j,(kr)—sing, m(kr)]; r>r,

where (book uses k' for my o )

oﬂzilﬁ‘(mv) K = ;ﬁ‘E

Match the wave functions and their derivatives at the well boundary:
B, j€(06r0)=A/Z [coséé j((kro)—sin&Z m(kro)]
aB, j (or,)=kA, [Cos& j/ (k)= sind, m’(kro)}

Divide these two equations to eliminate the amplitudes in favor of the phase shifts.

jg’(aro) B kcos6ﬁ j[’(kro)—sin@ n[’(kro)
jé(aro) coso, jl(kro)—sincsg n((kro)

Now focus on just the s-wave scattering, noting that

. sin o cos sin
Jh(p)="E0 g (p)= 2R 22F

p P
cos ’ sin cos
n(p) ==L 5/ (p)="2L 4 EBP

’ 2

PP

Substitute
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cosar, sinar, coss, {cos kr,  sinkr }_ ing, [sm kr, 4 o8 kr, ]

OH’O (OCI"O )2 _ kro (kro )2 kro (kl"o )2
sinar, c0sd, sinkr, +5ind, coskr,
or, kr, kr,
Rearrange
1 I .
——cos(kr, +8,)— - sin(kr, +8,)
1 kro (kl"O)
o cotor, — poll k I
o —sin(kr, + 6
kr, ( 0 0)
1 1
| cotar, —— |=k| cot(kr,+8,)——
or, kr,
acotar, = keot(kry +8,)
Invert

atan(kr, + 8, ) = ktanarr,
k
kr,+8,=tan' (—tan (xroj
o
o k
0, =—kry+tan” | —tanar,
o

For small energy (kr, << 1), we ignore the first term and get

o k
8, = tan 1(—tanar0)
o

This will produce large scattering whenever tanor, =, which gives §,=m/2 and makes
o= (47t/ kz)sin2 0, maximum. These resonances happen whenever

T
o =2n-1)—=
n'0 ( ) 2
These same values of o, satisfy the equation for bound states at zero energy (see Prob. 12.6.9):
(04
—=—tanar, = -oacotar,=0 at k=0

The resonances can be parameterized as in McIntyre Chap. 5 to produce plots like below (where
we are using z = Qr, ).
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f(z)

-z cotz

Zz

The bound state energies occur when the circle of radius z, =+/2uV,r, /h* intersects the
—zcotz curves. For the zero energy resonances, this means we want the value of z, to be
r/2, 3m/2, etc. Each time the well depth (or width) increases to cause z, to equal one of these
values, a new zero-energy resonance will occur.

To find how the resonances depend on energy (through o =2 ]/t(E + VO) / #” ), note that near the
zero-energy resonances values, the —cotzfunction is linear in z=or,:

T
cotar, =—ar, +o,r, =—or, +(2n— 1)5

—cotz

4r

Hence the phase shift becomes (we set k =k, as the energy dependence is primarily in the cot
function)
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k k
8, =tan™ (—”tan ocroj =tan"'| —2—
o o cotar,

=tan”' u =tan”' _k
a[—aro +anr0] (ococn —az)ro

Since these are zero energy resonances, we have o, =+/2uV, / h* , giving

6 = tan” 2 ];nv 2
7 1o _2p
o L) i -2 )
:tan71 2]4}" kn
K0 (W (E+,) = (E+,))
nk,
= tan™' Hlo
2V0( 1+E_[1+ED
"V 4

Now assume E <V, and expand

nk,
5, =tan”' Hlo
2V, 1+£— 1+£
2V, Vo
nk, nk,
=tan”"'| — 0 - =tan™ 0” r‘}f
wlo- =
2V,

This has the desired resonance form

o T/2
50:5h+tan I(E / ]

with §,=0, E,=0 and T/2=7’k, /ur,
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