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15.1.1 We want to find the S* operator in the uncoupled basis ‘m1m2> , which comprises four
states:

|++),

=) 14 1)

The S* operator is
S?=(S,+S,) =82 +82+28, -8,
Let's do each piece in turn. The eigenvalue equations for S and S; are
Sf‘mlm2> =5, (s1 + 1)h2‘m1m2>

S;‘mlm2> =5,(s, +1)h2‘m1m2>

where s, =1/2 and s, =1/2. Now use these to find the matrix elements:

(mim}|S;|mym, ) = (mimj|s, (s, + )1 |mm,) = s, (s, + 1)7° (m{mj|mm, ) = s, (s, + 1)?125,”1,”{5,”2”,é
<ml’m; Sg‘m1m2> = <m1'm;‘s2 (s2 + 1)h2|m1m2> =s, (s2 + 1)h2 (ml’m; m1m2> =, (s2 + 1)/‘125,”1,”i ot
yielding
1 0 0 O ++
Sz - _hz 01 00 +—
' 0010 |-+
0 0 0 1 ——
1 0 0 O ++
Sz - zhz 01 0 O +—
4 1001 0 |-+
0001 )—-

So each is proportional to the identity matrix.
Now work on the cross term:
S,+S,= 8.8, + S]ySZy + SleZZ

Rewrite this in terms of the ladder operators, which are
S, =8, + iSLv S, =8, + iSzy
S_=S,, - iSly S, =8, —iS

2y

Solve these for the Cartesian components:

and substitute to get
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S,+S,=5,5,,+5,5,,+5..5,.
(S 5 )H (S 5. )5, ~ S ) H(S.. =5, )+5,5.
=1(8, 8. +5.85,, +5,,.8,_ + 8.5, )= (8,85, = S-S, = S..S,_ + 5,5, )+ 5.,
2(8,8, +8,.8,,)+S..S,.
The ladder operators yield zero when acting on the extreme states
S+ +)=8,[+=)=8|-+)=5,]--)=0
S l++) =8, |- 4)=S, [+-)=5,|--)=0
For the other states, use the ladder operator equation

N=h[jG+D=mm, £1]" | jm, £1)

which gives
S.|—+)=1[s,(s, +D—m,(m, +1)]”2|++) = h[%%—(—%)(—%+ 1)]”2|++> =n[3+ ]”2|++)
=7|++)

The other results are

Sul==)=h[$3= (-1 4+ D] [+ =) =3 +4] [+ =) =h]+-)
S |++)=m[43-(3)G-D] |- +)=n[3+4]"|-+)=n]-+)
S |+=y=m[43-(3)G-D]"|-=)=n[3+4]"|--)=n]--)
Sy |+ =)= h[412 (=124 D] [+ D = a3+ 4]+ 1) =+ +)
Sul==) =43 = (=D 4+ D] =) = h[3 +4] |- +) = h[ =)
Sy l++)=[13-(H)E-D] [+ -y =n[3+4] [+ =) = 1+-)
Sul-#)=n[13-H)E-0] -y =n[3+4]"|--)=1]--)

The action of S, +S, on the basis states [m,m,) is

S, S |++>:{i(s S, +S, S2+)+SIZS }|++ ={1(0+0)+1ntn}|++)=L1’]++)

S,+8.|=)={3(0+0)+(3)n(3)n}l-=) =41’ --)
S,+8,|+=) =0+ nh|- > Ln()+-) =102 (2 =+)=|+-))
S, +S,|—+) = 0+Lhhl+—)+1h(3) 8| —+) =1 (2[+-) |- +))

Solution for the exclusive use of students in PH 653 in Spring 2016 — DO NOT DISTRIBUTE



PH 653: Spring 2016 Oregon State University, Department of Physics
Solution to Homework 1 Page 3 of 7

Projecting these results onto the basis states yields the matrix representation
I 0 0 0 | ++

2
Sl-SZih— 0 -1 2 0 | +-
410 2 -1 0 | —+
0O 0 0 1 )--
Now add the three parts to get
S*=8;+8;+28, S,
1 0 0O 1 0 0 O
2
293420 010 0 | A7)0 -1 20
4 0 010 0 2 -10
0 0 01 0 0 0 1
200 0 | ++
= p2 0O 1 1 0 | +-
0O 1 1 0 |-+
0 00 2 )—-

This operator is block diagonal, so we know two eigenvalues and eigenstates by inspection (we
know that the eigenvalues have the form s(s+1)%%):
s, =1, sazl,ma=1>=|++>

Sb=1, |sb:],mb:—]>:‘__>

The other two eigenvalues and eigenstates are found by diagonalizing the submatrix in the
middle

w-aoon|_,
P oR-A

(2 =2) —(n*) =
(n*=2)=+(n*)

L=h>+h* =2h 00
s=10

The resultant eigenstates are superpositions of the two states |+ —) and |— +):

Sczli( :z Zj ]( Z ]thz[ (g ]:>a+ﬁ=2a:>a=[5:> sc>:7|+_>+‘_+>

sd:O:[ :z :z ]( g }:th[ Z }:>oc+ﬁ:0:>a=—ﬁ:>|sd>:7|+_>\/_§‘_+>

o)
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15.1.2 (1) The hyperfine Hamiltonian is

H, =AS, .S,
We know from problem 15.1.1 that S, «S, is nondiagonal when expressed in the uncoupled
basis. However, it is diagonal in the coupled basis. This is clear if we note that

S*=(S,+8,) =82 +82+28, -8,
=8,+8,=14(S’-S}-8})
The coupled basis vectors |sm;s,s,)=|sm) are eigenstates of S*, S_, S, and S;. All the
coupled states have the same quantum numbers s, =1/2 and s, =1/2, and hence are eigenstates

of S} and S with eigenvalues s, (si + 1)7?12 =3n’ / 4 . The matrices are thus proportional to the
identity matrix (as they are in the uncoupled basis)

1 00 0 11
Szi3;_12010010
! 001 0 |1-1

00 0 1/ 00

1 0 0 0 ) 11
Szi3;_12010010
! 0 01 0 |1-1

00 01/ 00

where the rows (and columns) are labeled with the s,m quantum numbers. The matrix for S° is
obtained from the eigenvalue equation S*|sm)=s(s+1)h*|sm):

2 0 00 11
0 02 0 |IL-1
0 0 0O 00
The hyperfine Hamiltonian is thus
2 0 00 1 0 0O 1 0 0O
thzlAhz0200_§h20100_§h20100
2 0 0 20 4 0 010 0 01O
0 0 0O 0 0 01 0 0 01
1 00 O 11
AR’ 01 0 0 | 10
41001 0 1,-1
0 0 0 3 00
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Hence we can read the hyperfine energies from the diagonal values. These add to the
values for the original Hamiltonian, giving

~Ry+AR*/4; s=1
—~Ry-3AR*/4; s=0

There are 3 s = 1 states (|11),]10),[1,-1)) and 1 s = 0 state (|00) ), the triplet and singlet.
(2) The energy difference between these 2 levels is
AE=E(s=1)-E(s=0)=An’ = f,,

To estimate the frequency f,, of this hyperfine (/f) transition, note that the interaction energy of

the two magnetic dipoles separated by a distance ay is
A
E,= 3 -
a,

where the magnetic moments are given by Eqn. 14.4.18b:

- q =
=g—S
K g2mc
Hence we get
1 94 & 9 &
AS, S S
1°9; ggeZ P 1°8, 2mpc 2
1 eg, €8,

1 ¢(2) e(56)
~a_32m

c 2mpc

Hence the energy difference is
AE = AR
1 e(2) e(5.6)

3
a, 2m,c 2mc

z(mee2 )3 e(2) e(5.6) B <28 et m, )

hz

m,c
2 4 4
h 2m,c 2m,c et m,

~(28)a> e o’m,c* = (5.6)0” < Ryd
mP ml’
This gives a value of
1 1
AE =(5.6) >——13.6eV =221ueV
1377 1836

and a wavelength of

1240eVnm 1240eVnm
A= = =56cm
AE 221pueV

compared to the actual value of 21 cm. Our estimate for the frequency is
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¢ 3x10"cms™
~—=———— =534 MH
Ju A 56cm ¢

compared to the actual value of 1420 MHz.

(3) To estimate the thermal populations use the Boltzmann factor (note the degeneracy factor):

—E,_,/kT
Po_8a€¢ " _ 3Bt Eco) AT _ 3 ,~AEIKT

_Ex=0/kT
Py &-e

—221peV [25meV
~ 3 22neV/

= 3(1 —Mj = 3(1 —0.00009) =~ 3x0.99991=2.99973
25meV

3. Particle #1 has angular momentum 1 (j, = 1) and particle #2 has angular momentum 1/2 (j, =
1/2).

a) The possible uncoupled basis states ‘ Jim, j2m2> are:

There are 3 states with j, = 1, each with a different z-projection: m,=1,0,-1

There are 2 states with j, = 1/2, each with a different z-projection m, = 1/2,-1/2.

There are 6 possible states in the uncoupled basis states ‘ Jim, j2m2> . These are

133) (1133
1032) 104
L-144) [1-145)

b) For any angular momentum addition, the possible values are
J=ji+jjii+i—1,ji+j—2,...]j,—j,|. Inthis case, we get

=34
The allowed values of M are always —/ to J, giving
T M=1.1,%.3
J=3: M=1,3
¢) The coupled basis states are
33) B9 B 1)
33) [33)

d) The Clebsch-Gordan table is given below
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. i 3 3 3 3 1 1
h=1 e 2 2z 2] 2 2

3 1 1 3 1 1
=3 |Mlz 2 7z 2| 2 “2
m1 m2
1 : 10 0o 0] 0 0
1 1 2
1 -] o L o ol JF o
1 2 1
o I o JF o ol-% o0
1 2 1
o - 0o 0 S oo &
1 1 2
-1 3 o 0 L& 0|0 - |2
-1 -1 0 o0 o 1] o0 0

Using the columns of the Clebsch-Gordan table gives the coupled basis states in terms of the
uncoupled basis states

1)=1134)
[39)=H1145)+ VE|1044)
[33)=3[1043)+ JH[1-144)
43)=[1-142)
[£9)=El1143)-E|1044)
[$3)=[1043) - E|1-144)

e) Using the rows of the Clebsch-Gordan table gives the uncoupled basis states in terms of the
coupled basis states
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