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10.1.2 Single-particle basis vectors are |+) and |-) . Two-particle basis vectors are |++),
|+—> , +> and |——>. Single-particle operators are

ol=| ¢ b and o= ¢/
c d g h

with row/column labeling of + and -. Now find two-particle operators, using labeling ++, +-, -+,
--. Firstdo 0" =0"®I® . For the first row, we get

(404 4) = (+ 40" @ 1P+ 4) = (0" [+)(+] 17| +) =a*1=
(404 =) = (+H 0" @17+ =) = (+[0"[+)(+[I?'| ) =a*0 =0
({0 4) = (1401 ©1| =)= 4l ) 4] 12 )= b1
(410170 =) = (1 4]0 @1 =)= (4]t (4]17]) = b0 =0
For the second row, we get
(r<lol > 4)= (|l @1 4)= (el 1) =0 -
(ol =)= (ol ©1° )= (4ol | (17 = a1
(=07 |=4) = (+ 0" @I +) = (+[0\"| - )(-[17'[+)=b*0
(+—o"?| =) =(+-0" @17 =)= {+[o}"|)(-[1"|-) =b*1
For the third row, we get
(=+0" [+ 4) = (= 0" @ 1P+ +) = ([0 [+) (17 +) = c*
(=+0" [+ =) = (= +0" @17+ =) = (]o}"[+)(+] 17| >=c
(=407 =4) = (-+ 0" @ 17— +) = (-]0}"| ) (+] 17| >=d*1 d
(=+0{"? =)= (-+ 0" ®1?]|-=) =(-[0\"|-)(+[I”'|-) =d*0
For the fourth row, we get
(==]0"* [+ 4) = (——[0)" @ 1P+ +) = ([0 [+)(-I7[+) = c*
(==10" [+ =) = (-0 @17+ =) = (]o}"[+)(-| 17| >=c
(==10"?|=4) = (-—[0}" @ 17— +) = (-]o}"[-)(-|1?| >=d
(=—o"?|==)=(-—o" ®17|-=) = {-|a}"|)(-[1?|-) =d*
The result is
a 0 b O
el 02 D
0 ¢c 0 d
Now do ¢{"*® =1"®0c> . For the first row, we get
(4054 4) = (HH IV @ 0,7+ 4) = (H1V|+) (+] 0,7 +) = 1% e
(404 =) = (HH IV @ 0,7+ =) = (H V| +) (0, |) = 1% f = f
(#4037 =4) = (+ HI" @037 | = +) = (+[ 17| =) (0,7 +) = 0*e=0
(400 =) = (+H IV @057 — =) = (+1V|-)(+[0,”|-) = 0% f =0
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For the second row, we get

(=04 4) = ({17 @07+ +) = (+1V|+) (] 0,7 +) = 1% ¢
(=04 =) = (1Y @037 |+ =) = (H IV |+) (057 ) = 1*h
(=07 =4) = (+ 1" @037 = +) = (+ 17| =) (-] 057 +) = 0*¢
BN O N
For the third row, we get
(400 4] = (=411 @04 = (1) 0 )= 0% e =0
(=404 =) = (—H IV @07+ =) = (17| +)(+ 0,7 ) = 0% f =0
(=407 =) = (~H 1" @037 —+) = (-[1V| =)+ 0,7 +) = 1*
(=+0"? =) = (- HI" @057 |— =) = (-[1V|-)(+[0y"|-) =1*f = f
For the fourth row, we get
(=0t 4= (-1 ©0 4= (| 1L (o ) =07 =0
s S 00 W A o e
(=07 =) = ([ 1" @037 —+) = (- 17| =) (-] 057 +) = 1*
o =11 0 )= 1) o =19
The result is
e f 0 O
se _| 8 h 00
: 00 ¢ f
0 0 g h
Now find (0,0 2)(1)®(2) o"®0c'”. Do first by simple product of o{"** and ¢{"*®:
a 0 b O e f 0 0 ae af be bf
(O_G)(1)@(2):G(l)®(2)o_(l)®(2): 0 a 0 b g h 0 O _| a8 ah bg bh
2 ! ? c 0 d O 00 ¢ f ce of de df
0 ¢ 0 d 0 0 g h cg ch dg dh
Now find with matrix elements. First row:
(+H(0,0.)" [+ ) =(++o" @ [++)=(+{0)"+) (o [+) =a*e=ae
(++(0,0,) "+ =) = (++{o]" @0 |+ =) = (+|o}"[+)(+] o] ) = a* f
(++(0,0,)"7 = +)=(+ o @0 |- +) = (+|o"|-){+|oP|+) = b e = be
(++(0,0,)" |- =) = (++lo" @0 |==) = (+o[" |- )+ o | ) = b* f = bf
Second row
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(+-l(0,0,) " [+ 4) = (+ o @ [+4) = (+o[|+){-| ot +) =a*g = ag
(0,0,)" [+ =)=+ o’ @ |+ =)= {(+|o{"|+)(-|0t| ) =a*h=ah
+(0,0,) =) =(+ o’ @ |- +) = (+|o"| ) (o |+) = b*g =bg
(0,0,) " |==)=(+-|o\" @0 |-=) = (+|o"|-)(-|o|-) =b*h=bh
Third row
(0,0,) " [+ 4)=(~+lo" @ |++) = (-|o{" [+){+|oP | +) = c Fe=ce
(~H(o,0,)" [+ =)= (o @ |+ =) = (o [+){Ho| ) = c* f
(~+l(0,0,)"7|=+) = {~Ho" @ |-+)=(-{o}"| ) (+o | +)=d*
(0,0,) " |==)={~Ho" @ |-=)=(-{o"|)(Ho | ) =d* f = df
Fourthrow
~(0,0,) "+ )= (o’ @ [+ +)=(-|o"|+)(HoP [+)=c*g=cg
~(0,0,) "4 )= (o’ @ |+ =) = (o [+) (o |) = c*h=ch
——\( )= (ol @0 |- 4) = (o) (o |+) =d * g = dg
(~(0,0,)"7 =)= {~-ol" @ |-=)=({o}"| ) (-0 -) =d* h=dh
Putting the rows together gives
ae af be bf
( )(1)®(2):G(l)®(2)o_(1)®(2): ag ah bg bh
2 ! ? ce cf de df
cg ch dg dh

as above.
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10.2.3 The Hamiltonian for the 3-D isotropic harmonic oscillator is
piAP AP mo

H = o (x2+y2+zz)
We know the 1-D solutions:
2 2
leé’x + 29 0 o H|n=E|n) = E,=(n+i)ho
m

We can separate the 3-D case into 3 1-D cases:

2 2 2 >
P tp,tp; +mCU

H = 5 (x2+y2+z2)

2m

2 2 2 2 2 2
S LS e O L e U (Y S
2m 2 2m 2 2m 2

=H +H +H,

The coordinates and momenta commute across dimensions, so the three 1-D Hamiltonians
commute with each other. Thus we can find simultaneous eigenstates of the three 1-D
Hamiltonians:

H, nx>=EnX nx> = E, =(nx+%)ha)
H, ny>:Eny ny> = E, =(ny+%)ha)
Hz|nz>=EnZ nz> = E, =(nz+%)ha)
The direct product states ‘n ®| >® n> =|n.nn > satisfy the 3-D eigenvalue equation
H|E,)=E,|E,)
(Hx+Hy+HZ) V=E|E,)

(H,+H,+H.)

nn,n> H +H +H)

x"fythz

n)®

n.>®‘n,>

H(X)I(})I(Z) +I(X)H(})I(Z) +I(X)I(Y)H(Z)) >

(

=(

( )l eln.)
[(n,+3) 0 +(n, +4)ho +(n, +4)ho |
(

(

®‘ny>®‘nz>

E+E+E)

nx>®‘ny>®|nz>

notn +n +3 )ha)

I’Ll’ll’l>

Xy 'z

n+3)

nnn>

Hence, we conclude that
E =(n+3)ho
where we define n=n, +n,+n_, witheachn;=0,1,2,3,....

The single-dimension wave functions are (see p. 195)

_mo 12
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where H, are the Hermite polynomials and A, are the normalization constants. The 3-D wave
functions are thus

_mo 12 _mo o 12 _mo , 12
v, (x,y,z) A A A e TN H (@) e 25 H” y(@) e 2h H (@j
Xy h 'y h h
7ma) 220 1/2 1/2 1/2
:An An An e ( Y )Hn x(@j Hn y(@ Hn Z(@

The parity of the Hermite polynomials can be seen by looking at the functions on page 195:
H,(-x)=(-1)"H,(x)
i.e., they are alternately even and odd. The parity of the 3-D functions is thus

Vo cxmvma)= A, A AT [y T, (o), [—<() ]
} [ %wﬂ

x(
—AAAe_”(HHZH[x%ﬂ [ () A,
i, [ () |-, [o(=) |

Jey

l\)|._.

N|.—

=A, A, A, e Wy

:(_l)n . l//n Ay (x,y,Z)

=
1

x(’"T

Hence the parity is (—1)" The ground state is |OOO> and the wave function is

patosei=ans 3 2] o5 5

3/4 mw( . 2. 2
_ ma e—ﬁ(x +y“+z )
h

3/4 mow ,
_ mao e—ﬁr
wh

giving a simple form in spherical coordinates.

The first excited state is three-fold degenerate because there can be one quantum of excitation in
any of the three dimensions. These three states are |100>, >, > . The three wave
functions are

_mo Payter? 1/2 12 2
vtesa=anae 5[ (22) | (2] Ju[ {22
= (m_w) W 1 e‘g(x +y? 427 )|:2x(@j1/2}

1/2 _mo
(ma)j (2m_a)) e 2" rsin6 cos¢

rth fi
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e /2 172 1/2
l//mo(x’yﬂz):AoAleeiﬁ(X» )Ho{x(n/;l_w) }Hl{y(n;l_wj i|H0|:Z(n;l_wj :|

_(m)yg el (@)/
rth \/5 fi

mo " (2mow )" -m2e
=(—] (—j e *" rsin@ sing
h h

mo( 2, 2, 2 1/2 1/2 /2
petes=as 7[5 (2] Jal {2 ]

_ (m)/ ) 2{@)“
th 2 h

3/4 12 me

mao 2mao -2

=(—j (—) e " rcos@
rth fi

The degeneracy of a general state with energy E, :(n-i—%)ha) is obtained by counting the
number of ways that three integers n,, n, n, (0 included) can be added to get the same result
n=n,+n +n_. For a given energy state determined by n, there are n + 1 possible values for
any one of the n; e.g., n, could be 0 (with n=n +n_) or n, could be n (with 0=n +n_), and
then all possibilities in between. For each value of n, we then need to find out how many
permutations there are for the other two indices. A table is helpful here:

n, nn, nn, nn, o NN, nn, # of states

n 00 1
n—1 10 01 2
n—2 20 11 02 3

1 n-10 n-2,1 n-32 -+ 1,n—-2 0,n—-1 n

0 n0 n-11 n-2,2 --- 1,n-1 On n+l

Note that this table does include all degenerate possibilities, e.g. n00, On0, 00n are all in the table
as are (n-1)10, (n-1)01, O(n-1)1, 1(n-1)0, 10(n-1), 01(n-1). Thus the total degeneracy is the sum
of the integers in the last column (1 -> n+1):

n+l

Deg:Zk:1+2+3+4+...+(n—1)+n+(n+1) then group first and last terms etc to get
k=1

=(n+2)+(n+2)+(n+2)+(n+2)+... *(n+1) times
=1(n+1)(n+2)
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10.3.1 Two identical bosons in states |¢) and \1// > . Symmetrized state is
|oy.S)=4(1+ R, )|ow)

= (| oy)+lyg))

This may not be normalized, so use

0w .S) = N(|ow)+|vg))

and then find N by requiring normalization:

~{owSlow.s)
=((ow|+(yol) A" 9w ) +lw)

=[N ((pw| 0w ) + (0w [wo) + (wol oy ) + (| wo))

=N ((glo)(wlw) +(alw) (wlo)+(wlo)elw) +(wlw)(9l4))
=[N (2(00)(w|w)+2(lw)(w|g))

= 2| N[ (1-+/(gl )

Choosing N to be real and positive gives

1

V2 1+{{oly )

When the two states are orthogonal, we get the expected 1/ V2, but when they are not orthogonal
we must include this overlap factor.

N =

4. a) For two spin- particles, the possible two-particles spin states are |++), [+—),|—+) and
|-—). Symmetrizing these gives
s\++ = (14 R 4) = 44 ) =)
S|+=)=4(1+ B, )1+ =) =(+-)+[-+))
S|=+)=4(1+ B, )= +) =3(=+)+[+-)) = 1(+-)+]-+)
s\—— — (14 Pa)= ) = (|-} +--) =)
Two of the states are the same, so we get 3 states. Normalizing (see above) gives the states
[+.8)=|++)
45y =(+)+-+)
--)=I--)

A+ )= (1= P+ 4) = 4 44) - 44) =0

A=) = (1= Pa)l )= () -1-+4)

A= )= (1= P )= H)= |- )= =) =4+ )--+)
A==y = (1= Pa)| =)= (=) -1-) =0
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Two of the states are null vectors, and two of the states differ by a sign so they are the same
physical state, resulting in only 1 state. Normalizing gives the state

)= (-} -|-+)

For spin 1, the possible two-particles states are |11> , ), 1,—1> s ), ), O,—1> , , >,
|-1,0) and |-1,—1) . Symmetrizing these gives
S|11)=4(1+ P, )11) = 3(11)+[11)) =[11)
5110) = 4(1+ B, )[10)=4(10)+/o1)
S|L-1)=4(1+ P, )| 1.-1)=4(|L-1)+|-L1))
S|01)=4(1+ P, )|01) = £(|01)+|10)) = £(|10) +|01))
$100)=4(1+ £, )|00) = 4(00) +[00)) =| 00}
S]0,~1)=4(1+ B,)|0,-1)=4(|0,~1) +| 1,0))
S|-L1)=4(1+ R, )|-1.1)=3(-1.D)+[1.-1) = (| 1.-1)+|-1.1))
S|-1,0)= 4 (14 P,)|-1,0) = %(\—1 01)) = H(0-1)+}-1.0)
MR T s

Of the 9 states, there are 3 pairs of identical states, so we get 6 states. Normalizing gives the
states

|11,8)=]11)
\10 S>=f(1o +|01)
LS) =11, 1)
S>=| 0)
1) = 4001 +/-1.0)
\ sl >
For the antisymmetric states we get
A1) =4(1-P,)[11)=4(11)-[11))=0
A|10>:%(1 Plz)\lo =1(|10)—|01))

1>=%(1 P12) T =%( ‘ 1’1)

A01)=4(1- P, )|01) = £(|01)—[10)) =~ 4(/10)—|01))
A\00>=%(1 P,,)|00) = £(00)-|00)) =0
0.-1)=4(1-5,)[0.-1)=4(|0.-1)-|-1.0))

AI LD =4(1= R, ) =11 =3(-LD-[1-1)) == £(]1.-1)=[-1L.1))
A[=1,0)=$(1= B, )| -1,0) = £(|=1,0)=[0,-1)) = =1(]0,~1)=[-1,0))
Al-1=1)=4(1= P, )| -1-1) = (- 1-1)=|-1.-1)) =0
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Three of the states are null vectors, and there are three pairs that differ by a sign so they are the
same physical states, resulting in only 3 states. Normalizing gives the states

10,A) = 4(]10)—|01))
1L,-1,Ay=%(|1.-1)-|-11))
0,-1,4)=4%(0,~1)-|-1,0))

b) For the spin-1/2 case, there are 4 states in the direct product Hilbert space (|++), |[+-), |- +)
and |——)). The symmetric space has 3 states and the antisymmetric space has 1 state, so they
collectively cover the direct product Hilbert space.

For the spin-1 case, there are 9 states in the direct product Hilbert space (| 1 1) , 10) , 1,—1> , Ol) ,
|00}, [0,-1), |-1,1) |-1,0) and |-1,-1)). The symmetric space has 6 states and the
antisymmetric space has 3 states, so they collectively cover the direct product Hilbert space.

In both cases, the number of states in the symmetric space is greater than the number of states in
the antisymmetric space: Spin %: 3:1, Spin 1: 6:3.
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