10.1.2 Single-particle basis vectors are $|+\rangle$ and $|-\rangle$. Two-particle basis vectors are $|++\rangle$, $|+-\rangle$, $|-+\rangle$ and $|--\rangle$. Single-particle operators are

$$\sigma_1^{(1)} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $\sigma_2^{(2)} = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$

with row/column labeling of + and -. Now find two-particle operators, using labeling ++, +-, -+, --. First do $\sigma_1^{(1)\otimes(2)} = \sigma_1^{(1)} \otimes I^{(2)}$. For the first row, we get

$$\langle + + | \sigma_{1}^{(1)\otimes(2)} | + + \rangle = \langle + + | \sigma_{1}^{(1)} \otimes I^{(2)} | + + \rangle = \langle + | \sigma_{1}^{(1)} | + \rangle \langle + | I^{(2)} | + \rangle = a * 1 = a$$

$$\langle + + | \sigma_{1}^{(1)\otimes(2)} | + - \rangle = \langle + + | \sigma_{1}^{(1)} \otimes I^{(2)} | + - \rangle = \langle + | \sigma_{1}^{(1)} | + \rangle \langle + | I^{(2)} | - \rangle = a * 0 = 0$$

$$\langle + + | \sigma_{1}^{(1)\otimes(2)} | - + \rangle = \langle + + | \sigma_{1}^{(1)} \otimes I^{(2)} | - + \rangle = \langle + | \sigma_{1}^{(1)} | - \rangle \langle + | I^{(2)} | + \rangle = b * 1 = b$$

$$\langle + + | \sigma_{1}^{(1)\otimes(2)} | - - \rangle = \langle + + | \sigma_{1}^{(1)} \otimes I^{(2)} | - - \rangle = \langle + | \sigma_{1}^{(1)} | - \rangle \langle + | I^{(2)} | - \rangle = b * 0 = 0$$

For the second row, we get

For the third row, we get

For the fourth row, we get

$$\begin{split} & \langle -- \big| \sigma_1^{(1) \otimes (2)} \big| + + \rangle = \langle -- \big| \sigma_1^{(1)} \otimes I^{(2)} \big| + + \rangle = \langle -\big| \sigma_1^{(1)} \big| + \rangle \langle -\big| I^{(2)} \big| + \rangle = c * 0 = 0 \\ & \langle -- \big| \sigma_1^{(1) \otimes (2)} \big| + - \rangle = \langle -- \big| \sigma_1^{(1)} \otimes I^{(2)} \big| + - \rangle = \langle -\big| \sigma_1^{(1)} \big| + \rangle \langle -\big| I^{(2)} \big| - \rangle = c * 1 = c \\ & \langle -- \big| \sigma_1^{(1) \otimes (2)} \big| - + \rangle = \langle -- \big| \sigma_1^{(1)} \otimes I^{(2)} \big| - + \rangle = \langle -\big| \sigma_1^{(1)} \big| - \rangle \langle -\big| I^{(2)} \big| + \rangle = d * 0 = 0 \\ & \langle -- \big| \sigma_1^{(1) \otimes (2)} \big| -- \rangle = \langle -- \big| \sigma_1^{(1)} \otimes I^{(2)} \big| -- \rangle = \langle -\big| \sigma_1^{(1)} \big| - \rangle \langle -\big| I^{(2)} \big| - \rangle = d * 1 = d \end{split}$$

The result is

$$\sigma_1^{(1)\otimes(2)} = \left(\begin{array}{cccc} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{array}\right)$$

Now do $\sigma_2^{(1)\otimes(2)} = I^{(1)} \otimes \sigma_2^{(2)}$. For the first row, we get

For the second row, we get

$$\begin{split} & \langle + - \big| \sigma_2^{(1) \otimes (2)} \big| + + \rangle = \langle + - \big| I^{(1)} \otimes \sigma_2^{(2)} \big| + + \rangle = \langle + \big| I^{(1)} \big| + \rangle \langle - \big| \sigma_2^{(2)} \big| + \rangle = 1 * g = g \\ & \langle + - \big| \sigma_2^{(1) \otimes (2)} \big| + - \rangle = \langle + - \big| I^{(1)} \otimes \sigma_2^{(2)} \big| + - \rangle = \langle + \big| I^{(1)} \big| + \rangle \langle - \big| \sigma_2^{(2)} \big| - \rangle = 1 * h = h \\ & \langle + - \big| \sigma_2^{(1) \otimes (2)} \big| - + \rangle = \langle + - \big| I^{(1)} \otimes \sigma_2^{(2)} \big| - + \rangle = \langle + \big| I^{(1)} \big| - \rangle \langle - \big| \sigma_2^{(2)} \big| + \rangle = 0 * g = 0 \\ & \langle + - \big| \sigma_2^{(1) \otimes (2)} \big| - - \rangle = \langle + - \big| I^{(1)} \otimes \sigma_2^{(2)} \big| - - \rangle = \langle + \big| I^{(1)} \big| - \rangle \langle - \big| \sigma_2^{(2)} \big| - \rangle = 0 * h = 0 \end{split}$$

For the third row, we get

$$\begin{split} & \langle -+ \big| \sigma_2^{(1)\otimes(2)} \big| + + \rangle = \langle -+ \big| I^{(1)} \otimes \sigma_2^{(2)} \big| + + \rangle = \langle - \big| I^{(1)} \big| + \rangle \langle + \big| \sigma_2^{(2)} \big| + \rangle = 0 * e = 0 \\ & \langle -+ \big| \sigma_2^{(1)\otimes(2)} \big| + - \rangle = \langle -+ \big| I^{(1)} \otimes \sigma_2^{(2)} \big| + - \rangle = \langle - \big| I^{(1)} \big| + \rangle \langle + \big| \sigma_2^{(2)} \big| - \rangle = 0 * f = 0 \\ & \langle -+ \big| \sigma_2^{(1)\otimes(2)} \big| -+ \rangle = \langle -+ \big| I^{(1)} \otimes \sigma_2^{(2)} \big| -+ \rangle = \langle - \big| I^{(1)} \big| - \rangle \langle + \big| \sigma_2^{(2)} \big| + \rangle = 1 * e = e \\ & \langle -+ \big| \sigma_2^{(1)\otimes(2)} \big| -- \rangle = \langle -+ \big| I^{(1)} \otimes \sigma_2^{(2)} \big| -- \rangle = \langle - \big| I^{(1)} \big| - \rangle \langle + \big| \sigma_2^{(2)} \big| - \rangle = 1 * f = f \end{split}$$

For the fourth row, we get

$$\begin{split} & \langle -- \big| \sigma_2^{(1)\otimes(2)} \big| + + \rangle = \langle -- \big| I^{(1)} \otimes \sigma_2^{(2)} \big| + + \rangle = \langle -\big| I^{(1)} \big| + \rangle \langle -\big| \sigma_2^{(2)} \big| + \rangle = 0 * g = 0 \\ & \langle -- \big| \sigma_2^{(1)\otimes(2)} \big| + - \rangle = \langle -- \big| I^{(1)} \otimes \sigma_2^{(2)} \big| + - \rangle = \langle -\big| I^{(1)} \big| + \rangle \langle -\big| \sigma_2^{(2)} \big| - \rangle = 0 * h = 0 \\ & \langle -- \big| \sigma_2^{(1)\otimes(2)} \big| - + \rangle = \langle -- \big| I^{(1)} \otimes \sigma_2^{(2)} \big| - + \rangle = \langle -\big| I^{(1)} \big| - \rangle \langle -\big| \sigma_2^{(2)} \big| + \rangle = 1 * g = g \\ & \langle -- \big| \sigma_2^{(1)\otimes(2)} \big| -- \rangle = \langle -- \big| I^{(1)} \otimes \sigma_2^{(2)} \big| -- \rangle = \langle -\big| I^{(1)} \big| - \rangle \langle -\big| \sigma_2^{(2)} \big| - \rangle = 1 * h = h \end{split}$$

The result is

$$\sigma_2^{(1)\otimes(2)} = \left(\begin{array}{cccc} e & f & 0 & 0 \\ g & h & 0 & 0 \\ 0 & 0 & e & f \\ 0 & 0 & g & h \end{array} \right)$$

Now find $(\sigma_1 \sigma_2)^{(1) \otimes (2)} = \sigma_1^{(1)} \otimes \sigma_2^{(2)}$. Do first by simple product of $\sigma_1^{(1) \otimes (2)}$ and $\sigma_2^{(1) \otimes (2)}$:

$$\left(\sigma_{1}\sigma_{2}\right)^{(1)\otimes(2)} = \sigma_{1}^{(1)\otimes(2)}\sigma_{2}^{(1)\otimes(2)} = \left(\begin{array}{cccc} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{array}\right) \left(\begin{array}{ccccc} e & f & 0 & 0 \\ g & h & 0 & 0 \\ 0 & 0 & e & f \\ 0 & 0 & g & h \end{array}\right) = \left(\begin{array}{ccccc} ae & af & be & bf \\ ag & ah & bg & bh \\ ce & cf & de & df \\ cg & ch & dg & dh \end{array}\right)$$

Now find with matrix elements. First row:

Second row

Third row

Fourth row

$$\langle -- | (\sigma_1 \sigma_2)^{(1) \otimes (2)} | ++ \rangle = \langle -- | \sigma_1^{(1)} \otimes \sigma_2^{(2)} | ++ \rangle = \langle -| \sigma_1^{(1)} | + \rangle \langle -| \sigma_2^{(2)} | + \rangle = c * g = cg$$

$$\langle -- | (\sigma_1 \sigma_2)^{(1) \otimes (2)} | +- \rangle = \langle --| \sigma_1^{(1)} \otimes \sigma_2^{(2)} | +- \rangle = \langle -| \sigma_1^{(1)} | + \rangle \langle -| \sigma_2^{(2)} | - \rangle = c * h = ch$$

$$\langle -- | (\sigma_1 \sigma_2)^{(1) \otimes (2)} | -+ \rangle = \langle --| \sigma_1^{(1)} \otimes \sigma_2^{(2)} | -+ \rangle = \langle -| \sigma_1^{(1)} | - \rangle \langle -| \sigma_2^{(2)} | + \rangle = d * g = dg$$

$$\langle -- | (\sigma_1 \sigma_2)^{(1) \otimes (2)} | -- \rangle = \langle --| \sigma_1^{(1)} \otimes \sigma_2^{(2)} | -- \rangle = \langle -| \sigma_1^{(1)} | - \rangle \langle -| \sigma_2^{(2)} | - \rangle = d * h = dh$$

Putting the rows together gives

$$\left(\sigma_{1}\sigma_{2}\right)^{(1)\otimes(2)} = \sigma_{1}^{(1)\otimes(2)}\sigma_{2}^{(1)\otimes(2)} = \left(\begin{array}{cccc} ae & af & be & bf \\ ag & ah & bg & bh \\ ce & cf & de & df \\ cg & ch & dg & dh \end{array}\right)$$

as above.

10.2.3 The Hamiltonian for the 3-D isotropic harmonic oscillator is

$$H = \frac{p_x^2 + p_y^2 + p_z^2}{2m} + \frac{m\omega^2}{2} (x^2 + y^2 + z^2)$$

We know the 1-D solutions:

$$H_1 = \frac{p_x^2}{2m} + \frac{m\omega^2}{2} x^2 \implies H_1 | n \rangle = E_n | n \rangle \implies E_n = (n + \frac{1}{2}) \hbar \omega$$

We can separate the 3-D case into 3 1-D cases:

$$\begin{split} H &= \frac{p_x^2 + p_y^2 + p_z^2}{2m} + \frac{m\omega^2}{2} \left(x^2 + y^2 + z^2 \right) \\ &= \left(\frac{p_x^2 + p_y^2}{2m} + \frac{m\omega^2}{2m} x^2 \right) + \left(\frac{p_x^2 + p_y^2}{2m} + \frac{m\omega^2}{2m} x^2 \right) + \left(\frac{p_x^2 + p_y^2}{2m} + \frac{m\omega^2}{2m} x^2 \right) \\ &= H_x + H_y + H_z \end{split}$$

The coordinates and momenta commute across dimensions, so the three 1-D Hamiltonians commute with each other. Thus we can find simultaneous eigenstates of the three 1-D Hamiltonians:

$$H_{x}|n_{x}\rangle = E_{n_{x}}|n_{x}\rangle \implies E_{n_{x}} = (n_{x} + \frac{1}{2})\hbar\omega$$

$$H_{y}|n_{y}\rangle = E_{n_{y}}|n_{y}\rangle \implies E_{n_{y}} = (n_{y} + \frac{1}{2})\hbar\omega$$

$$H_{z}|n_{z}\rangle = E_{n_{z}}|n_{z}\rangle \implies E_{n_{z}} = (n_{z} + \frac{1}{2})\hbar\omega$$

The direct product states $|n_x\rangle \otimes |n_y\rangle \otimes |n_z\rangle = |n_x n_y n_z\rangle$ satisfy the 3-D eigenvalue equation: $H|E_x\rangle = E_x|E_y\rangle$

$$\begin{split} \left(H_{x}+H_{y}+H_{z}\right) &|E_{n}\rangle = E_{n}|E_{n}\rangle \\ \left(H_{x}+H_{y}+H_{z}\right) &|n_{x}n_{y}n_{z}\rangle = \left(H_{x}+H_{y}+H_{z}\right) &|n_{x}\rangle \otimes |n_{y}\rangle \otimes |n_{z}\rangle \\ &= \left(H_{x}^{(x)}I^{(y)}I^{(z)}+I^{(x)}H_{y}^{(y)}I^{(z)}+I^{(x)}I^{(y)}H_{z}^{(z)}\right) &|n_{x}\rangle \otimes |n_{y}\rangle \otimes |n_{z}\rangle \\ &= \left(E_{n_{x}}+E_{n_{y}}+E_{n_{z}}\right) &|n_{x}\rangle \otimes |n_{y}\rangle \otimes |n_{z}\rangle \\ &= \left[\left(n_{x}+\frac{1}{2}\right)\hbar\omega+\left(n_{y}+\frac{1}{2}\right)\hbar\omega+\left(n_{z}+\frac{1}{2}\right)\hbar\omega\right] &|n_{x}\rangle \otimes |n_{y}\rangle \otimes |n_{z}\rangle \\ &= \left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right)\hbar\omega &|n_{x}n_{y}n_{z}\rangle \\ &= \left(n+\frac{3}{2}\right)\hbar\omega &|n_{x}n_{y}n_{z}\rangle \end{split}$$

Hence, we conclude that

$$E_n = \left(n + \frac{3}{2}\right)\hbar\omega$$

where we define $n = n_x + n_y + n_z$, with each $n_i = 0, 1, 2, 3, \dots$

The single-dimension wave functions are (see p. 195)

$$\psi_n(x) = A_n e^{-\frac{m\omega}{2\hbar}x^2} H_n \left[x \left(\frac{m\omega}{\hbar} \right)^{1/2} \right]$$

where H_n are the Hermite polynomials and A_n are the normalization constants. The 3-D wave functions are thus

$$\psi_{n_{x},n_{y},n_{z}}(x,y,z) = A_{n_{x}}A_{n_{y}}A_{n_{z}}e^{-\frac{m\omega}{2\hbar}x^{2}}H_{n_{x}}\left[x\left(\frac{m\omega}{\hbar}\right)^{1/2}\right]e^{-\frac{m\omega}{2\hbar}y^{2}}H_{n_{y}}\left[y\left(\frac{m\omega}{\hbar}\right)^{1/2}\right]e^{-\frac{m\omega}{2\hbar}z^{2}}H_{n_{z}}\left[z\left(\frac{m\omega}{\hbar}\right)^{1/2}\right]$$

$$= A_{n_{x}}A_{n_{y}}A_{n_{z}}e^{-\frac{m\omega}{2\hbar}(x^{2}+y^{2}+z^{2})}H_{n_{x}}\left[x\left(\frac{m\omega}{\hbar}\right)^{1/2}\right]H_{n_{y}}\left[y\left(\frac{m\omega}{\hbar}\right)^{1/2}\right]H_{n_{z}}\left[z\left(\frac{m\omega}{\hbar}\right)^{1/2}\right]$$

The parity of the Hermite polynomials can be seen by looking at the functions on page 195:

$$H_n(-x) = (-1)^n H_n(x)$$

i.e., they are alternately even and odd. The parity of the 3-D functions is thus

$$\begin{split} \psi_{n_{x},n_{y},n_{z}}\left(-x,-y,-z\right) &= A_{n_{x}}A_{n_{y}}A_{n_{z}}e^{\frac{-m\omega}{2\hbar}\left((-x)^{2}+\left(-y\right)^{2}+\left(-z\right)^{2}\right)}H_{n_{x}}\left[-x\left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}}\right]H_{n_{y}}\left[-y\left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}}\right]H_{n_{z}}\left[-z\left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}}\right]\\ &= A_{n_{x}}A_{n_{y}}A_{n_{z}}e^{\frac{-m\omega}{2\hbar}\left(x^{2}+y^{2}+z^{2}\right)}H_{n_{x}}\left[-x\left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}}\right]H_{n_{y}}\left[-y\left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}}\right]H_{n_{z}}\left[-z\left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}}\right]\\ &= A_{n_{x}}A_{n_{y}}A_{n_{z}}e^{\frac{-m\omega}{2\hbar}\left(x^{2}+y^{2}+z^{2}\right)}\left(-1\right)^{n_{x}}H_{n_{x}}\left[x\left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}}\right]\left(-1\right)^{n_{y}}H_{n_{y}}\left[y\left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}}\right]\left(-1\right)^{n_{z}}H_{n_{z}}\left[z\left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}}\right]\\ &= \left(-1\right)^{n_{x}+n_{y}+n_{z}}\psi_{n_{x},n_{y},n_{z}}\left(x,y,z\right) \end{split}$$

Hence the parity is $(-1)^n$. The ground state is $|000\rangle$ and the wave function is

$$\psi_{000}(x,y,z) = A_0 A_0 e^{-\frac{m\omega}{2\hbar}(x^2 + y^2 + z^2)} H_0 \left[x \left(\frac{m\omega}{\hbar} \right)^{1/2} \right] H_0 \left[y \left(\frac{m\omega}{\hbar} \right)^{1/2} \right] H_0 \left[z \left(\frac{m\omega}{\hbar} \right)^{1/2} \right]$$

$$= \left(\frac{m\omega}{\pi\hbar} \right)^{3/4} e^{-\frac{m\omega}{2\hbar}(x^2 + y^2 + z^2)}$$

$$= \left(\frac{m\omega}{\pi\hbar} \right)^{3/4} e^{-\frac{m\omega}{2\hbar}r^2}$$

giving a simple form in spherical coordinates.

The first excited state is three-fold degenerate because there can be one quantum of excitation in any of the three dimensions. These three states are $|100\rangle, |010\rangle, |001\rangle$. The three wave functions are

$$\psi_{100}(x,y,z) = A_1 A_0 A_0 e^{-\frac{m\omega}{2\hbar}(x^2 + y^2 + z^2)} H_1 \left[x \left(\frac{m\omega}{\hbar} \right)^{1/2} \right] H_0 \left[y \left(\frac{m\omega}{\hbar} \right)^{1/2} \right] H_0 \left[z \left(\frac{m\omega}{\hbar} \right)^{1/2} \right]$$

$$= \left(\frac{m\omega}{\pi\hbar} \right)^{3/4} \frac{1}{\sqrt{2}} e^{-\frac{m\omega}{2\hbar}(x^2 + y^2 + z^2)} \left[2x \left(\frac{m\omega}{\hbar} \right)^{1/2} \right]$$

$$= \left(\frac{m\omega}{\pi\hbar} \right)^{3/4} \left(\frac{2m\omega}{\hbar} \right)^{1/2} e^{-\frac{m\omega}{2\hbar}r^2} r \sin\theta \cos\phi$$

$$\begin{split} \psi_{010}(x,y,z) &= A_0 A_1 A_0 e^{-\frac{m\omega}{2\hbar}(x^2 + y^2 + z^2)} H_0 \left[x \left(\frac{m\omega}{\hbar} \right)^{1/2} \right] H_1 \left[y \left(\frac{m\omega}{\hbar} \right)^{1/2} \right] H_0 \left[z \left(\frac{m\omega}{\hbar} \right)^{1/2} \right] \\ &= \left(\frac{m\omega}{\pi\hbar} \right)^{3/4} \frac{1}{\sqrt{2}} e^{-\frac{m\omega}{2\hbar}(x^2 + y^2 + z^2)} \left[2y \left(\frac{m\omega}{\hbar} \right)^{1/2} \right] \\ &= \left(\frac{m\omega}{\pi\hbar} \right)^{3/4} \left(\frac{2m\omega}{\hbar} \right)^{1/2} e^{-\frac{m\omega}{2\hbar}r^2} r \sin\theta \sin\phi \\ \psi_{001}(x,y,z) &= A_0 A_0 A_1 e^{-\frac{m\omega}{2\hbar}(x^2 + y^2 + z^2)} H_0 \left[x \left(\frac{m\omega}{\hbar} \right)^{1/2} \right] H_0 \left[y \left(\frac{m\omega}{\hbar} \right)^{1/2} \right] H_1 \left[z \left(\frac{m\omega}{\hbar} \right)^{1/2} \right] \\ &= \left(\frac{m\omega}{\pi\hbar} \right)^{3/4} \frac{1}{\sqrt{2}} e^{-\frac{m\omega}{2\hbar}(x^2 + y^2 + z^2)} \left[2z \left(\frac{m\omega}{\hbar} \right)^{1/2} \right] \\ &= \left(\frac{m\omega}{\pi\hbar} \right)^{3/4} \left(\frac{2m\omega}{\hbar} \right)^{1/2} e^{-\frac{m\omega}{2\hbar}r^2} r \cos\theta \end{split}$$

The degeneracy of a general state with energy $E_n = (n + \frac{3}{2})\hbar\omega$ is obtained by counting the number of ways that three integers n_x , n_y , n_z (0 included) can be added to get the same result $n = n_x + n_y + n_z$. For a given energy state determined by n, there are n + 1 possible values for any one of the n_i ; e.g., n_x could be 0 (with $n = n_y + n_z$) or n_x could be n_x (with $n = n_y + n_z$), and then all possibilities in between. For each value of n_x we then need to find out how many permutations there are for the other two indices. A table is helpful here:

Note that this table does include all degenerate possibilities, e.g. n00, 0n0, 00n are all in the table as are (n-1)10, (n-1)01, 0(n-1)1, 1(n-1)0, 10(n-1), 01(n-1). Thus the total degeneracy is the sum of the integers in the last column $(1 \rightarrow n+1)$:

$$Deg = \sum_{k=1}^{n+1} k = 1 + 2 + 3 + 4 + \dots + (n-1) + n + (n+1)$$
 then group first and last terms etc to get
$$= (n+2) + (n+2) + (n+2) + (n+2) + \dots$$

$$= \frac{1}{2}(n+1)(n+2)$$
 times

10.3.1 Two identical bosons in states $|\phi\rangle$ and $|\psi\rangle$. Symmetrized state is

$$\begin{aligned} |\phi\psi,S\rangle &= \frac{1}{2} (1 + P_{12}) |\phi\psi\rangle \\ &= \frac{1}{2} (|\phi\psi\rangle + |\psi\phi\rangle) \end{aligned}$$

This may not be normalized, so use

$$|\phi\psi,S\rangle = N(|\phi\psi\rangle + |\psi\phi\rangle)$$

and then find N by requiring normalization:

$$1 = \langle \phi \psi, S | \phi \psi, S \rangle$$

$$= (\langle \phi \psi | + \langle \psi \phi |) A^* A (|\phi \psi\rangle + |\psi \phi\rangle)$$

$$= |N|^2 (\langle \phi \psi | \phi \psi\rangle + \langle \phi \psi | \psi \phi\rangle + \langle \psi \phi | \phi \psi\rangle + \langle \psi \phi | \psi \phi\rangle)$$

$$= |N|^2 (\langle \phi | \phi\rangle \langle \psi | \psi\rangle + \langle \phi | \psi\rangle \langle \psi | \phi\rangle + \langle \psi | \phi\rangle \langle \phi | \psi\rangle + \langle \psi | \psi\rangle \langle \phi | \phi\rangle)$$

$$= |N|^2 (2 \langle \phi | \phi\rangle \langle \psi | \psi\rangle + 2 \langle \phi | \psi\rangle \langle \psi | \phi\rangle)$$

$$= 2|N|^2 (1 + |\langle \phi | \psi\rangle|^2)$$

Choosing *N* to be real and positive gives

$$N = \frac{1}{\sqrt{2}\sqrt{1 + \left|\left\langle \phi \middle| \psi \right\rangle\right|^2}}$$

When the two states are orthogonal, we get the expected $1/\sqrt{2}$, but when they are not orthogonal we must include this overlap factor.

4. a) For two spin-½ particles, the possible two-particles spin states are $|++\rangle$, $|+-\rangle$, $|-+\rangle$ and $|--\rangle$. Symmetrizing these gives

$$S|++\rangle = \frac{1}{2}(1+P_{12})|++\rangle = \frac{1}{2}(|++\rangle+|++\rangle) = |++\rangle$$

$$S|+-\rangle = \frac{1}{2}(1+P_{12})|+-\rangle = \frac{1}{2}(|+-\rangle+|-+\rangle)$$

$$S|-+\rangle = \frac{1}{2}(1+P_{12})|-+\rangle = \frac{1}{2}(|-+\rangle+|+-\rangle) = \frac{1}{2}(|+-\rangle+|-+\rangle)$$

$$S|--\rangle = \frac{1}{2}(1+P_{12})|--\rangle = \frac{1}{2}(|--\rangle+|--\rangle) = |--\rangle$$

Two of the states are the same, so we get 3 states. Normalizing (see above) gives the states

$$|++,S\rangle = |++\rangle$$

$$|+-,S\rangle = \frac{1}{\sqrt{2}}(|+-\rangle + |-+\rangle)$$

$$|--,S\rangle = |--\rangle$$

For the antisymmetric states, we get

$$\begin{aligned} A|++\rangle &= \frac{1}{2} (1 - P_{12})|++\rangle = \frac{1}{2} (|++\rangle - |++\rangle) = 0 \\ A|+-\rangle &= \frac{1}{2} (1 - P_{12})|+-\rangle = \frac{1}{2} (|+-\rangle - |-+\rangle) \\ A|-+\rangle &= \frac{1}{2} (1 - P_{12})|-+\rangle = \frac{1}{2} (|-+\rangle - |+-\rangle) = -\frac{1}{2} (|+-\rangle - |-+\rangle) \\ A|--\rangle &= \frac{1}{2} (1 - P_{12})|--\rangle = \frac{1}{2} (|--\rangle - |--\rangle) = 0 \end{aligned}$$

Two of the states are null vectors, and two of the states differ by a sign so they are the same physical state, resulting in only 1 state. Normalizing gives the state

$$|+-,A\rangle = \frac{1}{\sqrt{2}}(|+-\rangle - |-+\rangle)$$

For spin 1, the possible two-particles states are $|11\rangle$, $|10\rangle$, $|1,-1\rangle$, $|01\rangle$, $|00\rangle$, $|0,-1\rangle$, $|-1,1\rangle$, $|-1,0\rangle$ and $|-1,-1\rangle$. Symmetrizing these gives

$$S|11\rangle = \frac{1}{2}(1+P_{12})|11\rangle = \frac{1}{2}(|11\rangle+|11\rangle) = |11\rangle$$

$$S|10\rangle = \frac{1}{2}(1+P_{12})|10\rangle = \frac{1}{2}(|10\rangle+|01\rangle)$$

$$S|1,-1\rangle = \frac{1}{2}(1+P_{12})|1,-1\rangle = \frac{1}{2}(|1,-1\rangle+|-1,1\rangle)$$

$$S|01\rangle = \frac{1}{2}(1+P_{12})|01\rangle = \frac{1}{2}(|01\rangle+|10\rangle) = \frac{1}{2}(|10\rangle+|01\rangle)$$

$$S|00\rangle = \frac{1}{2}(1+P_{12})|00\rangle = \frac{1}{2}(|00\rangle+|00\rangle) = |00\rangle$$

$$S|0,-1\rangle = \frac{1}{2}(1+P_{12})|0,-1\rangle = \frac{1}{2}(|0,-1\rangle+|-1,0\rangle)$$

$$S|-1,1\rangle = \frac{1}{2}(1+P_{12})|-1,1\rangle = \frac{1}{2}(|-1,1\rangle+|1,-1\rangle) = \frac{1}{2}(|1,-1\rangle+|-1,1\rangle)$$

$$S|-1,0\rangle = \frac{1}{2}(1+P_{12})|-1,0\rangle = \frac{1}{2}(|-1,0\rangle+|0,-1\rangle) = \frac{1}{2}(|0,-1\rangle+|-1,0\rangle)$$

$$S|-1,-1\rangle = \frac{1}{2}(1+P_{12})|-1,-1\rangle = \frac{1}{2}(|-1,-1\rangle+|-1,-1\rangle) = |-1,-1\rangle$$

Of the 9 states, there are 3 pairs of identical states, so we get 6 states. Normalizing gives the states

$$|11,S\rangle = |11\rangle$$

$$|10,S\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle)$$

$$|1,-1,S\rangle = \frac{1}{\sqrt{2}}(|1,-1\rangle + |-1,1\rangle)$$

$$|00,S\rangle = |00\rangle$$

$$|0,-1,S\rangle = \frac{1}{\sqrt{2}}(|0,-1\rangle + |-1,0\rangle)$$

$$|-1,-1,S\rangle = |-1,-1\rangle$$

For the antisymmetric states, we get

$$A|11\rangle = \frac{1}{2}(1 - P_{12})|11\rangle = \frac{1}{2}(|11\rangle - |11\rangle) = 0$$

$$A|10\rangle = \frac{1}{2}(1 - P_{12})|10\rangle = \frac{1}{2}(|10\rangle - |01\rangle)$$

$$A|1,-1\rangle = \frac{1}{2}(1 - P_{12})|1,-1\rangle = \frac{1}{2}(|1,-1\rangle - |-1,1\rangle)$$

$$A|01\rangle = \frac{1}{2}(1 - P_{12})|01\rangle = \frac{1}{2}(|01\rangle - |10\rangle) = -\frac{1}{2}(|10\rangle - |01\rangle)$$

$$A|00\rangle = \frac{1}{2}(1 - P_{12})|00\rangle = \frac{1}{2}(|00\rangle - |00\rangle) = 0$$

$$A|0,-1\rangle = \frac{1}{2}(1 - P_{12})|0,-1\rangle = \frac{1}{2}(|0,-1\rangle - |-1,0\rangle)$$

$$A|-1,1\rangle = \frac{1}{2}(1 - P_{12})|-1,1\rangle = \frac{1}{2}(|-1,1\rangle - |1,-1\rangle) = -\frac{1}{2}(|1,-1\rangle - |-1,1\rangle)$$

$$A|-1,0\rangle = \frac{1}{2}(1 - P_{12})|-1,0\rangle = \frac{1}{2}(|-1,0\rangle - |0,-1\rangle) = -\frac{1}{2}(|0,-1\rangle - |-1,0\rangle)$$

$$A|-1,-1\rangle = \frac{1}{2}(1 - P_{12})|-1,-1\rangle = \frac{1}{2}(|-1,-1\rangle - |-1,-1\rangle) = 0$$

Three of the states are null vectors, and there are three pairs that differ by a sign so they are the same physical states, resulting in only 3 states. Normalizing gives the states

$$|10,A\rangle = \frac{1}{\sqrt{2}} (|10\rangle - |01\rangle)$$
$$|1,-1,A\rangle = \frac{1}{\sqrt{2}} (|1,-1\rangle - |-1,1\rangle)$$
$$|0,-1,A\rangle = \frac{1}{\sqrt{2}} (|0,-1\rangle - |-1,0\rangle)$$

b) For the spin-1/2 case, there are 4 states in the direct product Hilbert space $(|++\rangle, |+-\rangle, |-+\rangle$ and $|--\rangle$). The symmetric space has 3 states and the antisymmetric space has 1 state, so they collectively cover the direct product Hilbert space.

For the spin-1 case, there are 9 states in the direct product Hilbert space ($|11\rangle$, $|10\rangle$, $|1,-1\rangle$, $|01\rangle$, $|00\rangle$, $|0,-1\rangle$, $|-1,1\rangle$, $|-1,0\rangle$ and $|-1,-1\rangle$). The symmetric space has 6 states and the antisymmetric space has 3 states, so they collectively cover the direct product Hilbert space.

In both cases, the number of states in the symmetric space is greater than the number of states in the antisymmetric space: Spin ½: 3:1, Spin 1: 6:3.