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1.6.1 The matrix for the operator € is

0 0 1
Q=1 0 0
010

Its action on the unit vectors |z> is

00 1 )1 0
Qun=l 1 0 0 || 0 |=| 0 [=[2)
010 )0 1
00 1]\ o0 0
Q2)=l 1 0 0 1 (=] o [=]|3)
010 /)0 1
0 0 1 0 0
Q3= 10 0 || 0 |=] 0 |=|1)
01 0 )| 1 1

If we interpret these unit vectors as representing the spatial unit vectors i, j, and k , then Q
transforms the i J jk triad into the J ki triad. The diagram shows the two coordmate systems
with one displaced for clarity. To get from the i J k triad to the J ki triad requires a rotation of
27m/3 =120° around the (111) direction (i.e., the diagonal of the unit cube). To confirm this,
find the eigenvectors of the matrix. The (111) vector is the only real eigenvector.
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1.8.2 (a) The matrix is

0 0 1
Q= 0 0 0
1 00
Its adjoint is (complex transpose)
0 0 1
Q=000
1 00

Q=0Q", so the matrix is Hermitian.

(b) To find the eigenvalues and eigenvectors, first find the characteristic equation:

-A 0 1
0 -4 0 |=0 = -A(A*-0)+1(0+1)=0
10 -1

= -A(2*-1)=0
= A1=0,1,-1

Now find each eigenvector

0 0 1 u w=u
0 0 O v (=1 v = 0=y = v=0u=w
1 0 0 w w u=w
%
2 2 2 2 1 . :
‘u| +M +|w‘ =] = 2‘u| =1 = uzﬁ,sz,w=% = ‘1>= 0
f
0 0 1 w=0
0 0 O \% =0| v = 0=0 = u=w=0
1 0 0 u=0
0
‘M|2+‘V‘2+|w‘2:1 = ‘V|2:1 = u:O,V:LW:O = |0>: 1
0
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0 0 1 u w=-u
0 00 v |=-1 v = 0=v = v=0u=-w
1 00 w w u=-w
L
V2
W +p =1 = 20’=1 = u=fyy=0w== = |-1)=
-1
-t

(c) The transformation matrix is built from the eigenvectors as columns:

U=l 0 1 0
£ 0 3
Now transform the original matrix:
FO0O%F oo ) F0%
UQu=| 0 1 000 0 1
5 0 7 1 00 5 0 &
0| F o0
= 0 1 O 0 0 O
F0E s
1 0 0
=10 0 O
0 0 -1

Yielding a diagonal matrix with the eigenvalues along the diagonal.
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1.8.10 The commutator is

1 0 1 2 1 1 2 1 1 1 0 1
[QA]=QA-AQ= 00 1 0 -1 |- 1 0 -1 000
1 0 1 1 -1 2 1 -1 2 1 0 1
3 0 3 3 0 3
=l 0 0 0 |-] 00O
3 0 3 3 0 3
0O 0 O
=l 0 0 0 |=0
0O 0 O
so they do commute.
Find the eigenvalues and eigenvectors of € :
1-A 0 1
0 -2 0 |=0 = -A(1-A)+1(0+1)=0
1 0 1-4
= -A(A*-22)=0 = -2’(1-2)=0
= A1=0,0,2
Now find each eigenvector
1 0 1 u u ut+w=2u
0 0 0 v =2 v = 0=2vy = v=0u=w
1 0 1 w u+w=2w
1
V2
\u|2+\v\2+|w\2=1 = 2\u\2=1 = uzf,vzo,w:% = |2>= 0
f
1 0 1 u u u+w=0
0 0 O v =0 v = 0=0 = u=—-w,v="7
1 0 1 u+w=0
1
N

u* + +w* =1 = 20 =1 = u=Lyy=0w=2 = |0)=

S

The O eigenvalue is degenerate, which implies ambiguity in the choice of eignevectors. So let's
diagonalize the A matrix and see if that decides which basis we should choose.
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2-4 1 1
1 -1 -1 =0
1 -1 2-4

= (2-2)[-2(2-2)-1]-1[(2-2)+1]+1[-1+A]=0
= A 42 +1+6=0 = (A-3)(A-2)(A+1)=0
= A1=3,2,-1

(The factors of 6 are 3,2,1, so we expect a simple solution to involve those values (pos or neg)).
Now find the non-degenerate eigenvectors:

2 1 1 u u 2u+v+w=3u
1 0 -1 v |=3] v = u—w=73v = v=0,u=w
1 -1 2 w w U—v+2w=73w
e
V2
W +p W =1 = 20’ =1 = u=%ky=0w=% = [3)=| 0
%
2 1 1 u u 2u+v+w=2u
1 0 -1 v =2 v = Uu—w=2vy = u=v=—w
1 -1 2 w w U—v+2w=2w

2 1 1 u u 2u+v+w=—u v
1 0 -1 A% =—1 v = U—w=—y = u:—az—w
1 -1 2 w w U—v+2w=—-w
L
NG
WP+l =1 = 6 =1 = u=gr=w=s o D2 2
%

The transformation matrix is built from the eigenvectors as columns:

L

L _1
NCENCRN
U=l 0 % %
L =1 =L
V2 3 e
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Now transform the original matrices:

L 0 L I T
V2 V2 1 0 1 V2 3 Ve
veu=l 5 #looo || 0 F F#

L =2 - 1 0 1 I
Vo J6 o V2o 3 Ve
0 5 %00

=l & & w000

o - 2

FE A NFOO
2 00

= 0 0 O
0 0 O
L 0 -L I T
V2 V2 2 1 1 V23 s

UANU= & & 7|1 o 1|0 K F

I 1 -1 2 N
NN V2o 3 Ve
L 0 L 3 2 =
V2 V2 V2o V3 Ve

S S T B | 0 =< =

T V3 V33 V3 Je
I 3 =2 L
NN V2 V3 Ve
30 0

= 0 2 O
0 0 -1

Yielding diagonal matrices with the eigenvalues along the diagonals.
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