Capstones in Physics: Electromagnetism ©1999 Oregon State University P. Siemens Worked Examples page 1

Resistance and Capacitance

Griffiths 7.3 Two ideal electrodes of arbitrary shape are immersed in a liquid of dielectric permittivity and conductivity .

a. Show that the capacitance *C* and resistance *R* are related by $R = \frac{-C}{C}$.

assume charges $\pm Q_{\text{free}}$ on electrodes

$$R = \frac{V}{I}$$
, $C = \frac{Q_{\text{free}}}{V}$ $V = \frac{Q_{\text{free}}}{C}$ $R = \frac{Q_{\text{free}}}{IC}$

compute current $I = o J \cdot d(area)$ over surface containing one electrode,

but J = E, so $l = oE \cdot d(area) = \frac{Q_{enclosed}}{o}$ by Gauss' law. For Q_{free} , need D = ESimilarly, $Q_{free} = oD \cdot d(area) = oE \cdot d(area)$ $l = \frac{Q_{free}}{C}$ so $R = \frac{Q_{free}}{lC} = \frac{C}{C}$ as claimed

b. At time t = 0, a battery is used to establish a potential difference V_0 between the conductors. After the battery is disconnected, the charge will gradually leak off. Show that $V(t) = V_0 e^{-t/t}$, and find the "time constant"

This is a slight generalization of Griffiths' problem, taken from his 2nd ed.