Capstones in Physics: Electromagnetism ©1999 Oregon State University P. Siemens Worked Example page 1

LCL 10-9 The 10-ton golf cart

Could a golf cart store its energy in a capacitor?

a. To store this energy in a capacitor, we have an energy density $\frac{1}{2}D \cdot E$

(see "Energy In Dielectric"), but $D = \varepsilon E$,

so energy density is $\frac{1}{2} \varepsilon E^2$, max. when **E** has max value *a*

b. For Mylar, $a = 1.6 \times 10^8$ volts/meter, $\varepsilon = 3.2\varepsilon_0 \Rightarrow$

max energy density is $\frac{1}{2} \varepsilon a^2 = (1.6)^3 \times 10^{16} \times 8.9 \times 10^{-12} \text{ J}$

 $= 3.6 \times 10^5 \text{ J/m}^3$

compare

1 kWh = 3600 kWsec = 3.6×10^6 Watt-sec = 3.6×10^6 J \Rightarrow

needed volume = 3.6×10^{6} J/ 3.6×10^{5} J/m³ = 10 m³ per kWh

estimate density of mylar similar to water \approx 1 ton/m³

 \Rightarrow 10 tons of capacitor needed

Note that an ordinary car battery, volume about 0.02 m^3 , is rated at about 500 amperes at 12 volts for 30 seconds, about $500 \times 12 \times 30 = 1.8 \times 10^5 \text{ J}$, for an energy density of about $1.8 \times 10^5 \text{ J}/0.02 \text{ m}^3 = 9 \times 10^6 \text{ J/m}^3$. The battery offers an order of magnitude greater energy storage capacity, even by weight (batteries are much denser than mylar)