SOLUTION TO EXERCISE 1

A model of the water molecule H₂O is shown in MT Figure 9-B.

a. Where is the center of mass? X = ? Y = ? Z = ? let $= 52^{\circ}$

$$m_O = 16$$
 amu, $m_H = 1$ amu

$$x_H = a \cos , x_O = 0, X = \frac{m_H x_H + m_H x_H + m_O x_O}{2m_H + m_O} = \frac{2}{18} a \cos$$

$$y_H = \pm a \sin$$
, $y_O = 0$, $Y = \frac{m_H y_H - m_H y_H + m_O y_O}{2m_H + m_O} = 0$

 $z_H = 0$, $z_O = 0$, Z = 0. Z and Y can be seen directly from symmetry

b. What is the moment of inertia about the *x* axis? $I_x = ?$

$$I_x = 2m_H y_H^2 + 2m_H z_H^2 + m_O y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \sin^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 = 2 \text{ amu } a^2 \cos^2 y_O^2 + m_O z_O^2 + m_O z$$

c. What is the moment of inertia about the y axis? $I_y = ?$

$$I_x = 2m_H x_H^2 + 2m_H z_H^2 + m_O x_O^2 + m_O z_O^2 = 2$$
 amu $a^2 \cos^2 z_O^2 = 2$

d. What is the moment of inertia about the z axis? $I_z = ?$

$$I_x = 2m_H x_H^2 + 2m_H y_H^2 + m_O x_O^2 + m_O y_O^2 = 2$$
 amu $a^2 (\sin^2 + \cos^2) = 2$ amu a^2

e. What is the moment of inertia about an axis that goes through the hydrogen atoms? $I' = ? x' = x - x_H$, y' = y, z' = z

$$I' = mQx'Q^2 + 0 + 0 + 0 + 0 + 0 = (8 \text{ amu}) (a \cos)^2$$