solutions to TRANSLATING TENSORS Worksheet 3

by Philip J. Siemens

TOPICS		page
A.	Checking previous exercises	2
	 Brick Cage 	
В.	Translating the CageX inertial tensor	4
	 From corner of cage to center of mass From center of cage to center of mass 	
C.	C. Numerical values	

A. CHECKING PREVIOUS EXERCISES

We can use formula C.7 in the chapter on Rigid Bodies to compare the tensors we calculated in the worksheet *Inertial Integrals*, in the center of mass and another coordinate system. (This equation is also 11.49 in Marion and Thornton.)

The inertial tensor in the center-of-mass coordinate system is given by

$$I'_{ij} = I_{ij} - T_{ij} \tag{C.7}$$

where T_{ij} is the inertia of a point mass M at the center-of-mass's position R:

$$T_{ij} = M \left(R^2_{ij} - R_i R_j \right). \tag{C.7a}$$

A.1. Brick

$$X \qquad \qquad \frac{1}{2}A$$
Center of mass:
$$Y = \frac{1}{2}B$$

$$Z \qquad \qquad \frac{1}{2}C$$

The translation tensor is

$$B^2 + C^2 - AB - AC$$
 $T_{ij} = M (R^2_{ij} - R_{i} R_{j}) = \frac{M}{4} - AB A^2 + C^2 - BC$.
 $-AC - AC A^2 + B^2$

The tensors for the brick, calculated in the Worksheet Inertial Integrals, are

origin at corner, $I_{ij} =$

center of mass, $I'_{ij} =$

These 3 matrices actually work in eq. (C.7)!

A.2. Cage

Center of mass:

The translation tensor is the same as for the brick. The tensors calculated in the Worksheet on *Inertial Integrals* are

origin at corner, $I_{ij} =$

$$12AB^{2}C + 8B^{3}(A+C) -6AB(AB+BC+AC) -6AC(AB+BC+AC)
+12ABC^{2} + 8C^{3}(A+B)$$

$$\frac{-6AB(AB+BC+AC)}{12} \quad \begin{array}{c} -2A^2BC+8A^3(B+C) & -6BC(AB+BC+AC) \\ +12ABC^2+8C^3(A+B) & \end{array}$$

$$-6AC(AB+BC+AC)$$
 $-6BC(AB+BC+AC)$ $12A^2BC+8A^3(B+C)$ $+12AB^2C+8B^3(A+C)$

center of mass, $I'_{ij} =$

The difference is
$$B^2+C^2-AB-AC$$

$$I_{ij}-I'_{ij}=\frac{M}{4}-AB-A^2+C^2-BC$$

$$-AC-AC-AC-A^2+B^2$$

check comparison:

the difference is equal to T_{ij}

B. TRANSLATING THE CAGEX INERTIAL TENSOR

Use formula (C.7) in the chapter on Rigid Bodies to compare the tensors you calculated in the worksheet *Inertial Integrals*, in the center of mass and another coordinate system.

The inertial tensor in the center-of-mass coordinate system is given by

$$I'_{ij} = I_{ij} - T_{ij} \tag{C.7}$$

where T_{ij} is the inertia of a point mass M at the center-of-mass's position R:

$$T_{ij} = M \left(R^2_{ij} - R_i R_j \right). \tag{C.7a}$$

B.1. From corner of cage to center of mass

The CageX apparatus consists of a hollow rectangular cage with two square faces and four narrow rectangular faces.

Its length in the x and y directions is L, and the length in the z direction is h.

The walls of the cage have a uniform surface mass density, and its total mass is M.

In addition there is a clay sphere of mass m fastened to the corner of the cage at the origin. The radius of this sphere is r.

The expression for the center of mass of the cage-ball system in terms of M, m, L, h, and r is:

$$\mathbf{R} = \frac{M}{M+m} \quad \frac{L}{2}, \frac{L}{2}, \frac{h}{2}$$

The numerical values from the *Inertial Integrals* Worksheet are

$$X$$
 $Y =$
 Z

B.1. From corner of cage to center of mass (continued)

The translation tensor for the cage-ball apparatus expressed in terms of M , m , L , and h is

$$L^{2}+h^{2}$$
 $-L^{2}$ $-Lh$
 $M_{T}(R^{2} ij - R_{i} R_{j}) = T_{ij} = \frac{M^{2}}{M+m} \frac{1}{4}$ $-L^{2}$ $L^{2}+h^{2}$ $-Lh$
 $-Lh$ $-Lh$ $2L^{2}$

The inertial tensor for the cage-ball apparatus in the original coordinate system from section ${\bf C}$ of the Worksheet on *Inertial Integrals* expressed in terms of M, m, L, and h is

$$8L^{4}+20L^{3}h -6L^{3}(L+2h) -6L^{2}h(L+2h)$$

$$+12L^{2}h^{2}+16Lh^{3}$$

$$I_{ij} = \frac{M}{24(L^{2}+2Lh)} -6L^{3}(L+2h) \frac{8L^{4}+20L^{3}h -6L^{2}h(L+2h)}{+12L^{2}h^{2}+16Lh^{3}} -6L^{2}h(L+2h)$$

$$-6L^{2}h(L+2h) -6L^{2}h(L+2h) \frac{16L^{4}+40L^{3}h}{-6L^{2}h(L+2h)}$$

The center-of-mass inertial tensor calculated from these results is I'_{ij} =

B.2. From center of cage to center of mass

This time we work in a coordinate system with origin at the center of the cage.

The expression for the center of mass of the cage-ball system in terms of M, m, L, and h is:

$$\mathbf{R} = -\frac{m}{M+m} \quad \frac{L}{2}, \frac{L}{2}, \frac{h}{2} \quad .$$

The numerical values from the *Inertial Integrals* Worksheet are

$$X$$
 $Y =$

 \boldsymbol{Z}

The translation tensor for the cage-ball apparatus expressed in terms of M, m, L, and h is

$$M_T\left(R^2\ _{ij}-R_i\,R_j\,\right)\,=\,$$

$$T_{ij} = \frac{m^2}{M+m} \frac{1}{4} -L^2 L^2 +h^2 -Lh$$
$$-Lh -Lh 2L^2$$

B.2. From center of cage to center of mass (continued)

The inertial tensor for the **ball only** in the cage-centered coordinate system of section \mathbf{B} of the Worksheet on *Inertial Integrals* may be approximately expressed in terms of m, L, and h as

$$I_{ij} = \frac{m}{4} -L^2 -Lh$$

$$-Lh -Lh 2L^2$$

The inertial tensor, for the **cage only** in the cage-centered coordinate system found in section $\bf B$ of the Worksheet on *Inertial Integrals*, expressed in terms of M, m, L, h, and r is

$$I_{ij} = \frac{M}{12(L^2 + 2Lh)} \begin{array}{cccc} L^4 + 4L^3h & 0 & 0 \\ & +3L^2h^2 + 2Lh^3 & 0 \\ & 0 & L^4 + 4L^3h & 0 \\ & & +3L^2h^2 + 2Lh^3 \\ & 0 & 0 & 2L^4 + 8L^3h \end{array}$$

The inertial tensor for the **cage plus ball** in the cage-centered coordinate system of section $\bf B$ of the Worksheet on *Inertial Integrals*, expressed in terms of m, L, and h is therefor

B.2. From center of cage to center of mass (concluded)

The translation tensor for the cage-ball apparatus, expressed in terms of M, m, L, and h, found on page 6, is

$$T_{ij} = \frac{m^2}{M+m} \frac{1}{4} \quad -L^2 \quad L^2 + h^2 \quad -Lh$$
$$-Lh \quad -Lh \quad 2L^2$$

The inertial tensor for the **cage plus ball** in the cage-centered coordinate system, calculated on the previous page, expressed in terms of m, L, and h is

$$I_{t} = \frac{m}{4} \quad -L^{2} \quad L^{2} + h^{2} \quad -Lh \quad +$$

$$-Lh \quad -Lh \quad 2L^{2}$$

$$\frac{M}{12(L^{2} + 2Lh)} \quad 0 \quad 0$$

$$\frac{M}{12(L^{2} + 2Lh)} \quad 0 \quad L^{4} + 4L^{3}h \quad 0$$

$$0 \quad L^{4} + 4L^{3}h \quad 0$$

$$0 \quad 2L^{4} + 8L^{3}h$$

The center-of-mass inertial tensor calculated from these results is I'_{ij}

Comparing this result to that of part **B.1**, we observe that they are the same.

C. Numerical values

The inertial tensor for the cage-ball apparatus in the original coordinate system, found in section **C.3** of Worksheet 3 *Inertial Integrals*, is $I_{ij} =$

numerically expressed in units of_____.

The measured numerical values of the center-of-mass coordinates, from page 5 of the CageX1 Workbook, are

Y =

 \boldsymbol{Z}

The corresponding translation tensor for the cage-ball apparatus, evaluated numerically from the expression

$$T_{ij} = M (R^2_{ij} - R_i R_j)$$
 is $T_{ij} =$

The center-of-mass inertial tensor calculated from these results, is $I'_{ij} =$

numerically expressed in units of _____.

B.3. Numerical values continued

We can compare some of the elements of the inertial tensor to the measured results from the CageX1 Workbook, page 10:

Cases	Observed moment I'_{obs}	Corresponding element I'??	Calculated value above	Comparison
	(units)		(units)	

InertiaCalcs_cage.nb

CageX Inertia Tensor in Center-of-Mass frame (correction to Translating Tensors worksheet solution, p. 5 and p. 8, to Rotating Tensors worksheet solution, p. 4, and to Principal Axes worksheet solution, p. 6)

Written as one piece:

$$\left(\begin{array}{c} \frac{\text{M } (3 \, \text{h}^2 \, \text{L } (2 \, \text{m+M}) + 2 \, \text{h}^3 \, (4 \, \text{m+M}) + 2 \, \text{h}^2 \, (5 \, \text{m} + 2 \, \text{M})}{12 \, (2 \, \text{h} + \text{M})} \\ - \frac{\text{L}^2 \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{L}^2 \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{m} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{4 \, (\text{m} + \text{M})} \\ - \frac{\text{h} \, \text{L} \, \text{M}}{$$

Written as two pieces:

$$\frac{m M}{4 (m + M)} \begin{pmatrix} h^2 + L^2 & -L^2 & -h L \\ -L^2 & h^2 + L^2 & -h L \\ -h L & -h L & 2 L^2 \end{pmatrix} +$$

$$\frac{M}{12 (2 h L + L^2)} \begin{pmatrix} 2 h^3 L + 3 h^2 L^2 + 4 h L^3 + L^4 & 0 & 0 \\ 0 & 2 h^3 L + 3 h^2 L^2 + 4 h L^3 + L^4 & 0 \\ 0 & 0 & 8 h L^3 + 2 L^4 \end{pmatrix}$$