## solutions to ROTATING TENSORS

## worksheet

by Philip J. Siemens

| TOPICS                     |                           | page |
|----------------------------|---------------------------|------|
| <b>A.</b> Applying the pre | evious rotation - algebra | 2    |

## A. APPLYING THE PREVIOUS ROTATION – ALGEBRA

The CageLab apparatus consists of a hollow rectangular cage with two square faces.

Its length in the x and y directions is L, and the length in the z direction is h. h is shorter than L.

The walls of the cage have a uniform surface mass density, and its total mass is M.

There is a clay sphere of mass m and radius r fastened to the corner of the cage at the origin.



In the worksheet *Rotating Vectors* we found a rotation which keeps the sphere fixed and rotates the cage so that its long diagonal is along the z axis.





First, there was a rotation about the z axis by an angle , such that

$$\sin = -2/2 \quad \cos = 2/2$$

Next, there was a rotation about the *x* axis by an angle such that

$$\sin = \frac{-2L}{\sqrt{2L^2+h^2}} \quad \cos = \frac{h}{\sqrt{2L^2+h^2}}$$

These values can be substituted in the general expression for the rotation matrix,

The result still contains the last angle as an undetermined parameter: in terms of *L*, *h*, *etc*., we found

$$R() =$$

$$\frac{\cos 2}{2} + \frac{h \sin \frac{1}{\sqrt{2(2L^2 + h^2)}}}{\sqrt{2(2L^2 + h^2)}} - \frac{\cos \frac{1}{\sqrt{2(2L^2 + h^2)}}}{\sqrt{2(2L^2 + h^2)}} - \frac{h \sin \frac{1}{\sqrt{2(2L^2 + h^2)}}}{\sqrt{2(2L^2 + h^2)}} - \frac{2L \sin \frac{1}{\sqrt{2(2L^2 + h^2)}}}{\sqrt{2(2L^2 + h^2)}} - \frac{2L \cos \frac{1}{\sqrt{2(2L^2 + h^2)}}}{\sqrt{2(2L^2 + h^2)}} - \frac{L}{\sqrt{2(2L^2 + h^2)}} - \frac{L}{\sqrt{2(2L^2 + h^2)}} - \frac{h}{\sqrt{2(2L^2 + h^2)}}$$

For simplicity, we can choose the case 
$$= 0$$
.  $R(=0) = \begin{array}{cccc} \frac{1}{2} & \frac{-1}{2} & 0 \\ \frac{h}{\sqrt{2(2L^2+h^2)}} & \frac{h}{\sqrt{2(2L^2+h^2)}} & \frac{-2L}{\sqrt{2L^2+h^2}} \\ \frac{L}{\sqrt{2L^2+h^2}} & \frac{L}{\sqrt{2L^2+h^2}} & \frac{h}{\sqrt{2L^2+h^2}} \end{array}$ 

We can apply the same rotation to the apparatus in its center of mass.

The result will also have the ball on the z axis, but the center of mass will be at the origin.

The inertial tensor for the combined ball plus cage, in their joint center of mass, was found in the Worksheet *Translating Tensors*:



$$I_{tot} = I_{ball} + I_{cage} =$$

expression in terms of L, h, etc.

$$L^{2}+h^{2} -L^{2} -Lh$$

$$= \frac{m}{4} -L^{2} L^{2}+h^{2} -Lh +Lh$$

$$-Lh -Lh 2L^{2}$$

$$\frac{M}{12(L^2+2Lh)} \begin{array}{c} L^4+4L^3h & 0 & 0 \\ +3L^2h^2+2Lh^3 & 0 & L^4+4L^3h & 0 \\ 0 & L^4+4L^3h & 0 \\ & +3L^2h^2+2Lh^3 & 0 \end{array}$$

The rotated inertial tensor R I' R<sup>T</sup> is calculated in two steps.

First, multiply I' times  $R^{T}$  to compute  $I'R^{T}$ : (expressed in terms of L, h, etc.)

$$\frac{M}{12(L^2+2Lh)} \frac{1}{\sqrt{2(2L^2+h^2)}}$$

$$\sqrt{2L^2+h^2}(L^4+4L^3h \quad h(L^4+4L^3h \quad 2L(L^4+4L^3h +3L^2h^2+2Lh^3) \quad +3L^2h^2+2Lh^3) \quad +3L^2h^2+2Lh^3)$$

$$-\sqrt{2L^2+h^2}(L^4+4L^3h \quad h(L^4+4L^3h \quad 2L(L^4+4L^3h +3L^2h^2+2Lh^3) \quad +3L^2h^2+2Lh^3) \quad +3L^2h^2+2Lh^3)$$

$$0 \qquad \qquad -4L^4(L+4h) \qquad 2 \quad 2L^3h(L+4h)$$

$$(2L^2+h^2)\sqrt{2L^2+h^2} \quad 2L^2h+h^3 \qquad 0$$

$$+ \frac{m}{4\sqrt{2(2L^2+h^2)}} \quad -(2L^2+h^2)\sqrt{2L^2+h^2} \quad 2L^2h+h^3 \qquad 0$$

$$0 \qquad \qquad -2L(2L^2+h^2) \quad 0$$

Next, multiply on the left by R to get  $R I' R^T$ : (expressed in terms of L, h, etc.)

$$\frac{M}{12(L^{2}+2Lh)} \frac{1}{2L^{2}+h^{2}}$$

$$(2L^{2}+h^{2}) \qquad 0 \qquad 0$$

$$(L^{4}+4L^{3}h) \qquad +3L^{2}h^{2}+2Lh^{3}) \qquad 4L^{6}+16L^{5}h+L^{4}h^{2} \qquad 2(-L^{5}h-4L^{4}h^{2}+4L^{3}h^{3}+3L^{2}h^{4}+2Lh^{5} \qquad +3L^{3}h^{3}+2L^{2}h^{4})$$

$$0 \qquad \qquad 2(-L^{5}h-4L^{4}h^{2} \qquad 2L^{6}+8L^{5}h \qquad +3L^{3}h^{3}+2L^{2}h^{4}) \qquad +4L^{4}h^{2}-4L^{3}h^{3}$$

$$(2L^{2}+h^{2})^{2} \qquad 0 \qquad 0$$

$$+ \frac{m}{4} \frac{1}{2(2L^{2}+h^{2})} \qquad 0 \qquad 2(2L^{2}+h^{2})^{2} \qquad 0$$

$$0 \qquad 0 \qquad 0 \qquad 0$$

Remarks on this result: \_\_\_\_ the x axis is a principal axis: Ixy = 0 = Ixz