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A.  EXPLOITING SYMMETRY TO FIND A PRINCIPAL AXIS

A.1.  Reflection symmetry

There are many mathematical methods for finding the rotation that diagonalizes a
tensor.

For example, as discussed in the Mathematical Appendix of the Notes, the rotation
matrix has a simple expression in terms of the eigenvectors (eq. B.6).  Computer
algebra program packages, such as Maple, Mathematica, MatLab, or (for
professional UNIX/LINUX based systems) the CERN mathematical library, contain
programs to find the eigenvalues and eigenvectors of a matrix. The eigenvectors are
the rows of the rotation matrix, and the eigenvalues are the corresponding entries in
the diagonalized tensor expressed in the rotated basis.

In some cases we can make the task more understandable by helping out with some
physical insight.  What's needed is symmetry!

The main example is when an object possesses a plane of reflection symmetry.
The plane of symmetry necessarily passes through the center of mass.

In a coordinate system with the origin in the plane of symmetry, an axis
perpendicular to the plane of symmetry is a principal axis!

For example, suppose the plane z = 0 is a plane of symmetry.  Then

ρ(x, y, z)  =  ρ(x, y, –z) .

This can be used to show that the off-diagonal matrix elements Ixz and Iyz are 0.

When one principal axis is found, the other two are not hard to find.  They line in
the plane perpendicular to the known principal axis.  The Euler angles of the
rotation which diagonalizes the intertial tensor follow.  The first two Euler angles  φ
and  θ  can be used to bring the known axis to the z direction; then the last angle  ψ
diagonalizes the remaining  2 × 2 submatrix in the x-y plane:

1.  Rotate by φ around z  to bring the known axis into the y-z  plane.

2.  Rotate by θ around x  to bring the known axis into the +z  direction.

3.  Rotate by ψ around z  to diagonalize the submatrix  



Ixx

Ixy
 
Ixy
Iyy

 .  This is much

easier than the full 3 × 3 matrix.
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A.2.  Application to CageX apparatus

a.  The CageX apparatus of cage + ball has a plane of symmetry. Thus we can place
a principal axis along the z  direction after two rotations.

Describe the plane of symmetry

i.  in the original coordinate system before the rotations

It is the plane x  =  y

ii.  in a coordinate-system independent way, i.e. without using any coordinate
system.

It includes the principal diagonal and diagonals of both square faces, i.e.

it includes the ball and the short edges nearest to and farthest from the ball.

b.  Describe the corresponding principal axis, in terms of the cage and ball,

i.  in the original coordinate system before the rotations

It goes through the center of mass,
in a plane with z = constant,  i.e. parallel to the plane z = 0.

in a direction parallel to the plane x = –y , i.e. at an angle of –45o = – 
π
4

the equation for the line is
 x + y = xcm + ycm

ii.  in a coordinate-system independent way, i.e. without using any coordinate
system.

It goes through the center of mass,
parallel to the diagonal of the square face that doesn't include the short side where
the ball is.
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B.  FINDING THE PRINCIPAL AXES FOR CAGEX

Now that we have identified the symmetry plane and the corresponding principal
axis, we are ready to find the other two principal axes.

First, we have to rotate the coordinate system so
that the principal axis is in the z  direction.  We
do this with the first two Euler angles:  We can
find them by geometric reasoning.

The geometry is easiest in the original ball-
centered coordinate system, before the
translation to the center of mass.  After we find
the needed rotation, we will apply it to the
center-of-mass inertial tensor I'      

P

x

y

z

L

h

L

m
r

mass
radius

The first rotation is about the z axis.

The angle φ is chosen so that the known
principal axis is perpendicular to the x
direction.

The resulting angle φ  satisfies

sin φ = 1/√2

cos φ = 1/√2
x

z

y

The second rotation is about the x  axis.

The angle θ  is chosen so that the known
principal axis is parallel to the z axis.

The resulting angle θ  satisfies

sin θ = 1

cos θ = 0

x

z

y
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These values can be substituted in the general expression for the rotation matrix Rij
,

  
  R  =  
 
Rψ Rθ Rφ =
 
 
 

   













cos ψ cos φ

–cos θ sin φ sin ψ
 
–sin ψ cos φ
–cos θ sin φ cos ψ
 
sin θ sin φ

  

cos ψ sin φ
+cos θ cos φ sin ψ
 
–sin ψ sin φ
+cos θ cos φ cos ψ
 
–sin θ cos φ

  

sin ψ sin θ
 
 
cos ψ sin θ
 
 
cos θ

   .

The result will still contain the last angle ψ  as an undetermined parameter.

The sines and cosines are:

sin φ = sin θ =

cos φ =   cos θ =

The rotation matrix is:

R  =    











 cos ψ /√2

 
 
–sin ψ /√2
 
 
  1/√2

  

 cos ψ /√2
 
 
–sin ψ /√2
 
 
 –1/√2

  

sin ψ
 
 
cos ψ 
 
 
 0
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B.1.  Algebra

To determine the last angle ψ, we can use R  to rotate the center-of-mass inertial
tensor I'  and then choose ψ so that the result is diagonal.  The diagonal matrix
elements will then be the principal moments of inertia.

We found I'  in the worksheet Translating Tensors, page _____.

In terms of L, h, m, and M, it is

 
Mm

M+m  
1
4   











 

L2+h2

 
–L2

 
–Lh

  

–L2

 
L2+h2

 
–Lh

  

–Lh
 
–Lh
 
2L2

   +

  
M

12(L2+2Lh)  











L4+L3h
 +8Lh3

0
 
0

  

0
 
L4+L3h
 +8Lh3

0

   

0
 
0
 
2L4+8L3h

 

We carry out the rotation in two steps.  First, we multiply times R to get R I' :

R I' =

 
Mm

M+m 
1
4 











h2cosψ /√2–Lh sinψ
 
–h2sinψ /√2–Lh cosψ
 
   (2L2+h2)/√2

 

h2cosψ /√2–Lh sinψ
 
–h2sinψ /√2–Lh cosψ
 
  –(2L2+h2)/√2

 

–√2Lh cosψ+2L2sinψ
 
 √2Lh sinψ+2L2cosψ
 
   0

+  
M

12(L2+2Lh)  













 



L4+L3h

 +8Lh3
cosψ
√2

 

–



L4+L3h

 +8Lh3
sinψ
√2

 

 



L4+L3h

 +8Lh3  
1

√2

  

 



L4+L3h

 +8Lh3
cosψ
√2

 

–



L4+L3h

 +8Lh3
sinψ
√2

 

–



L4+L3h

 +8Lh3  
1

√2

   

(2L4+8L3h)sinψ
 
 
(2L4+8L3h)cosψ
 
 
 0
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Next, we multiply by the transpose  RT to get the rotated inertial tensor:

RT  =    











cos ψ /√2

 
 
cos ψ /√2
 
 
 sin ψ 

  

–sin ψ /√2
 
 
–sin ψ /√2
 
 
 cos ψ 

  

 1/√2
 
 
–1/√2
 
 
  0 

   .

R I' RT  =

 
Mm

M+m 
1
4 













2L2sin2ψ +h2cos2ψ

–√8Lh sinψ cosψ
 
√2Lh(sin2ψ – cos2ψ)
+(2L2–h2)sinψ cosψ
 
     0
 

 

√2Lh(sin2ψ – cos2ψ)
+(2L2–h2)sinψ cosψ
 
h2sin2ψ –2L2cos2ψ
+√8Lh sinψ cosψ
 
     0
 

 

 
  0
 
 
  0
 
 2L2+h2 
 

+  
M

12(L2+2Lh)  



















L4+L3h

 +8Lh3 cos2ψ +

(2L4+8L3h)sin2ψ
 





L4+7L3h

 +8Lh3 sinψ cosψ
 
  0

  





L4+7L3h

 +8Lh3 sinψ cosψ
 





L4+L3h

 +8Lh3 sin2ψ +

(2L4+8L3h)cos2ψ
 
  0

   

0
 
 
0
 
 
L4+L3h
 +8Lh3

The Ixz  and Iyz  should both vanish for every value of ψ .

Why should we expect this result?

Because the coordinates have been chosen so that the symmetry plane is z = 0

Does your expression for R I' RT  fulfill this expectation?

yes √   also it is symmetric, as it must be, which helps to check the algebra
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The remaining off-diagonal elements Ixy = Iyx  are a function of the undetermined
rotation angle  ψ .  What condition must  ψ fulfill in order to make Ixy  vanish, too?

Let D ≡  
Mm

M+m 
Lh
√8   and E ≡  

Mm
M+m 

2L2–h2

4   +  
M(L4+7L3h+8Lh3)

12(L2+2Lh)   , both > 0 ,

  then  D (sin2ψ–cos2ψ) + E sinψ cosψ  = 0  ⇒  tan2ψ + (E/D) tan ψ – 1 = 0 .

Use this result to evaluate the direction cosines: tan ψ =  – 
E

2D  ± 



E

2D
2

 +1

two roots:
+ sign gives positive ψ
– sign gives larger negative ψ

⇒ choose positive root

other root corresponds to  ψ – 
π
2

cos  ψ   =  
1

1+tan2ψ

 sin  ψ   =  
tan ψ

1+tan2ψ
There are additional roots for ψ = ψabove ± nπ/2, corresponding to relabelling the
axes by rotating them through multiples of 90 degrees.

Finally, use these values to find the diagonal matrix elements:

Ixx  =   substitute sin ψ and cos ψ  in xx  element of I  above

Iyy  =  substitute sin ψ and cos ψ  in yy  element of I  above

Izz   =  
Mm

M+m 
1
4 (2L2 + h2)  +  

M
12(L2+2Lh)  (L

4 + L3h + 8Lh3)

With this choice of  ψ , the diagonal elements are the principal moments.

What are the principal axes?

One lies in the symmetry plane, tilted about the c.m. point by an angle ψ
toward the ball, starting from the direction parallel to the diagonal of the square
face.  The other also lies in the symmetry plane, tilted by ψ away from the ball,
starting from the direction parallel to the short edges.
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Rotated Inertia Tensor

m M
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4 Hm + ML  

i
k
jjjjjjjjjjjj h2 Cos@yD2 - 2 è!!!!2 h L Cos@yD Sin@yD + 2 L2 Sin@yD2 -

è!!!!2 h L Cos@2 yD - Hh2 - 2 L2L Cos@yD Sin@yD 0

-
è!!!!
2 h L Cos@2 yD - Hh2 - 2 L2L Cos@yD Sin@yD 2 L2 Cos@yD2 + h Sin@yD I2 è!!!!

2 L Cos@yD + h Sin@yDM 0

0 0 h2 + 2 L2

y
{
zzzzzzzzzzzz +

M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
12 H2 h L + L2L  i
kjjjjjjjjjj
L H2 h3 + 3 h2 L + 4 h L2 + L3L Cos@yD2 + 2 L3 H4 h + LL Sin@yD2 L H-2 h3 - 3 h2 L + 4 h L2 + L3L Cos@yD Sin@yD 0

L H-2 h3 - 3 h2 L + 4 h L2 + L3L Cos@yD Sin@yD 2 L3 H4 h + LL Cos@yD2 + L H2 h3 + 3 h2 L + 4 h L2 + L3L Sin@yD2 0
0 0 L H2 h3 + 3 h2 L + 4 h L2 + L3L y

{zzzzzzzzzz
In[20]:= Izz =

m M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 Hm + ML  Hh2 + 2 L2L +

M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
12 H2 h L + L2L  L H2 h3 + 3 h2 L + 4 h L2 + L3L;

InertiaCalcs_cage.nb 1


