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A. EXPLOITING SYMMETRY TO FIND A PRINCIPAL AXIS
A.l. Reflection symmetry

There are many mathematical methods for finding the rotation that diagonalizes a
tensor.

For example, as discussed in the Mathematical Appendix of the Notes, the rotation
matrix has a simple expression in terms of the eigenvectors (eg. B.6). Computer
algebra program packages, such as Maple, Mathematica, MatLab, or (for
professional UNIX/LINUX based systems) the CERN mathematical library, contain
programs to find the elgenvalues and eigenvectors of a matrix. The eigenvectors are
the rows of the rotation matrix, and the eigenvalues are the corresponding entriesin
the diagonalized tensor expressed in the rotated basis.

In some cases we can make the task more understandabl e by helping out with some
physical insight. What's needed issymmetry!

The main example is when an object possesses a plane of reflection symmetry.
The plane of symmetry necessarily passes through the center of mass.

In a coordinate system with the origin in the plane of symmetry, an axis
perpendicular to the plane of symmetry isaprincipal axis!

For example, suppose the plane z= 0 is a plane of symmetry. Then
rex,y,2 =r(xy,-2.
This can be used to show that the off-diagonal matrix elementsIxz and lyz are 0.

When one principal axis is found, the other two are not hard to find. They linein
the plane perpendicular to the known principal axis. The Euler angles of the
rotation which diagonalizes the intertial tensor follow. The first two Euler angles f
and g can be used to bring the known axis to the zdirection; then the last angle Y
diagonalizestheremaining 2~ 2 submatrix in the x-y plane:

1. Rotate by f around z to bring the known axisinto the y-z plane.

2. Rotate by g around x to bring the known axisinto the +z direction.

3. Rotate by Y around z to diagonalize the submatrix ﬁx :xg This is much

easier thanthefull 3~ 3 matrix.
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A.2. Application to CageX apparatus

a. The CageX apparatus of cage + ball has a plane of symmetry. Thus we can place
aprincipal axisalong the z direction after two rotations.

Describe the plane of symmetry

I. inthe original coordinate system before the rotations
Itistheplanex = vy

Ii. in a coordinate-system independent way, i.e. without using any coordinate
system.

It includes the principal diagona and diagonals of both square faces, i.e.

it includes the ball and the short edges nearest to and farthest from the ball.

b. Describe the corresponding principal axis, in terms of the cage and ball,
I. inthe original coordinate system before the rotations

It goes through the center of mass,
in a plane with z= constant, i.e. parallel to the planez= 0.

inadirection parallel tothe planex = -y, i.e. a an angle of 450 = —%

the equation for the lineis
X+Y=Xemt Yem

li. in a coordinate-system independent way, i.e. without using any coordinate
system.

It goes through the center of mass,
parallel to the diagonal of the square face that doesn't include the short side where
the bdl is.
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B. FINDING THE PRINCIPAL AXES FOR CAGEX

Now that we have identified the symmetry plane and the corresponding principal
axis, we are ready to find the other two principal axes.

First, we have to rotate the coordinate system so
that the principal axisisinthe z direction. We
do this with the first two Euler angles. We can
find them by geometric reasoning.

The geometry is easiest in the origina bal-
centered coordinate system, before the
translation to the center of mass. After we find

the needed rotation, we will apply it to the X mass M
center-of-mass inertial tensor I’ radius r
Thefirst rotation is about the z axis.
VA
The angle f is chosen so that the known
principal axis is perpendicular to the x
direction.
y

Theresulting anglef satisfies

snf =1

y X
cosf =1/2
Z

The second rotation is about thex axis.
The angle q is chosen so that the known
principal axisisparale to the zaxis.
Theresulting angle q satisfies y

sng=1

cosq=0

X
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These values can be substituted in the general expression for the rotation matrix Rjj

sy cosf
R = osgsinf siny
Ry Rq Rf = x-siny cosf

osgsinf cosy

inqgsinf

cosy sinf sny sing O
+cosqcosf siny -

—siny sinf cosy sing - .

+cosqcosf cosy

%)

—sing cosf cosq

The result will still containthelast angley as an undetermined parameter.

The sinesand cosines are:

sinf =

cosf =

The rotation matrix is:

gaosy /@ cosy /2 siny

R =

1Ce (0%
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B.1. Algebra

To determine the last angleY , we can use R to rotate the center-of-mass inertial
tensor I' and then choose Y so that the result is diagonal. The diagonal matrix
elements will then be the principal moments of inertia.

Wefound ' intheworksheet Trandating Tensors, page :
Intermsof L, h, m, and M, itis

242 L2 -Lh§

12 L[2+h2 -Lh T +
1h -Lh 220

4+L.3h 0 0 0

M +8Lh3 ot 3 N
12(L2+2Lh) Lol H
: 0 2L4+8L3h @

We carry out the rotation in two steps. First, we multiply timesRtoget R1" :

RI'=

apcosy /[C-Lhsny h2cosy /C2—Lhsny —(PLh cosy +2L2siny ¢
I\I>I/|+Tn411 ~h2dny /CP-Lh cosy —h2siny /CP—Lh cosy CPLh siny +2L2cosy :
2 (2L2+h2)ICp _(2L2+h2)/CP 0 7]

4+L3n,cosy L4+ 3hcosy e

R oo SieLniocp  (AL4BLsy 0

N M g L 4+L3hsiny _%4+|_3h..siny (2L4+8L3h) :

1o2rothy §t8Lh3ace 2+8Lh3a R oY T

A44+13ny 1 L4+13hs 1 -

2i8Lh3gcp —e+8Lh3gcp O a2
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Next, we multiply by the transpose RT to get the rotated inertial tensor:
ESY I —siny IC2 1/¢Cp O
RT = osy /2 —siny /C2 —1/("2i.
siny cosy o 9
RI'RT =
SRL2sn?y +h2co?y (RLh(sSn?y — cos?y) o)
Lhsiny cosy  +(2LZ-h2)sny cosy O -
Mm 1 XPLh(sn?y — coy ) h2sin2y —21 2cos?y H
M+m 4 ¥+(2L2-h2)siny cosy +OBLh siny cosy 0 B
0 0 2L2+h2 =+
1%
4+ 3h. 4+7L3nx . 0 A
R Glha Loy +  Sgip Gy cosy O
2L 4+8L.3h)sin2y -
M L AH+L3hs N
* 1o2+2th) Gy aeian. SraLh3an?Y * H
+8Lh3 g1 COY (31 44+8) 3h)cos2y :
L4+L3h~
0 0 +8Lh3

Thelxz and lyz should both vanish for every valueof ¥ .

Why should we expect this result?

page 7

Because the coordinates have been chosen so that the symmetry planeisz=0

Does your expression for R I' RT fulfill this expectation?

yesO also it is symmetric, asit must be, which helpsto check the algebra
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Theremaining off-diagonal elementsixy = lyx are a function of the undetermined
rotation angle Y . What condition must Y fulfill in order to make Ixy vanish, too?

Mm Lh and E © Mm 2L2-h2 N M(L4+7L3h+8Lh3)
M+m (8 M+m 4 12(L2+2Lh)

Let D° , both>0,

then D (sn?y —cos?y ) + Esiny cosy =0 b tandy + (E/D)tany —1=0.

. —_— . _E [E.2 .
Use this result to evaluate the direction cosines: tany = —55 * %8 +1
two roots: 1
+ sign gives positivey cosY = ————
—sign gives larger negativey \ 1+tancy

P choose positive root
tany

other root correspondsto y —g sny = 1+tan?y

There are additional roots for y =y ahove £ NP/2, corresponding to relabelling the
axes by rotating them through multiples of 90 degrees.

Finally, use these values to find the diagonal matrix elements:

Ixx = substitutesiny andcosy inxx element of | above

lyy = substitutesiny andcosy inyy element of | above

Mm 1

- 1 M
Z = M+m4

12(L2+2Lh)

(2L2 + h2) + (L4 + L3h + 8Lh3)

With thischoiceof Y , the diagonal elements are the principal moments.
What are the principal axes?

One lies in the symmetry plane, tilted about the c.m. point by an angle y

toward the ball, starting from the direction parallel to the diagonal of the square
face. The other aso lies in the symmetry plane, tilted by y away from the ball,
starting from the direction parallel to the short edges.
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Rotated Inertia Tensor
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