$$\frac{L_z^2}{2I} \left(\frac{1}{\sqrt{2\pi}} e^{im\phi} \right) = \frac{m^2 \hbar^2}{2I} \left(\frac{1}{\sqrt{2\pi}} e^{im\phi} \right)$$

Toy problem: a quantum particle confined to a ring

Reading: McIntyre 7.5

Separation of variables:

Blue has angular dependence, red is radial:

$$-\frac{\hbar^{2}}{2\mu} \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) - \frac{1}{\hbar^{2} r^{2}} \mathbf{L}^{2} \right] R(r) Y(\theta, \phi) + V(r) R(r) Y(\theta, \phi)$$

$$= ER(r) Y(\theta, \phi)$$

Algebra (follow book 7.4):

$$\frac{1}{R(r)} \frac{d}{dr} \left(r^2 \frac{dR(r)}{dr} \right) - \frac{2\mu}{\hbar^2} (E - V(r)) r^2 = \underbrace{\frac{1}{\hbar^2} \frac{1}{Y(\theta, \phi)} \mathbf{L}^2 Y(\theta, \phi)}_{\text{function of } r \text{ only}} \mathbf{L}^2 Y(\theta, \phi) \equiv A$$

Separation of variables:

 Once we solve the (blue) angular problem, it is the solution to the angular part of ALL central force problems!

$$\frac{1}{\hbar^2} \mathbf{L}^2 Y(\boldsymbol{\theta}, \boldsymbol{\phi}) = AY(\boldsymbol{\theta}, \boldsymbol{\phi})$$

Once we find A (and Y), plug back into red equation and solve to find E (and R(r)).

$$\frac{d}{dr}\left(r^2\frac{dR(r)}{dr}\right) - \frac{2\mu}{\hbar^2}(E - V(r))r^2R(r) \equiv AR(r)$$

Separate angular equation

 But we need to work on blue equation more, first.

$$\mathbf{L}^{2} \doteq -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$

$$Y(\theta,\phi) = \Theta(\theta)\Phi(\phi)$$

$$\left[\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right) - B \frac{1}{\sin^2 \theta} \right] \Theta(\theta) = -A\Theta(\theta)$$

$$\frac{d^2\Phi(\phi)}{d\phi^2} = -B\Phi(\phi)$$

Summary

Here's the plan:

$$\frac{d^2\Phi(\phi)}{d\phi^2} = -B\Phi(\phi)$$

$$\left[\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d}{d\theta} \right) - B \frac{1}{\sin^2\theta} \right] \Theta(\theta) = -A\Theta(\theta)$$

$$\left[-\frac{\hbar^2}{2\mu r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} \right) + V(r) + A \frac{\hbar^2}{2\mu r^2} \right] R(r) = ER(r)$$

$$\psi_{n\ell m}(r,\theta,\phi) = R_{n\ell}(r)\Theta_{\ell}^{m}(\theta)\Phi_{m}(\phi)$$

$$\psi(r,\theta,\phi,t) = \sum_{n\ell m} c_{n\ell m}R_{n\ell}(r)\Theta_{\ell}^{m}(\theta)\Phi_{m}(\phi)e^{-iE_{n}t/\hbar}$$

Summary

- Here's the plan:
- We'll consider 3 different systems, a ring (to solve the ϕ problem), a sphere (to solve the θ and ϕ problem), and the full hydrogen atom (to solve the (r, θ, ϕ) problem)
- We'll find the quantum numbers and wave functions that solve each problem
- We'll apply all the things you've learned in PH424 and PH425
- Please read ahead the math is much more intense (though not harder) than before

$$\mathbf{r} = r_0 \cos \phi \mathbf{i} + r_0 \sin \phi \mathbf{j}$$

$$\theta = \pi / 2$$

$$H_{ring}\left|E_{ring}\right\rangle = E_{ring}\left|E_{ring}\right\rangle$$

$$-\frac{\hbar^{2}}{2\mu}\left[\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right)+\frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)+\frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}\right]\psi(r,\theta,\phi)$$

$$+V(r)\psi(r,\theta,\phi) = E_{ring}\psi(r,\theta,\phi)$$

$$-\frac{\hbar^{2}}{2\mu}\left[\frac{1}{r_{0}^{2}}\frac{\partial^{2}}{\partial\phi^{2}}\right]\psi(\phi) + \underbrace{V(r_{0})}_{assume}\psi(\phi) = E_{ring}\psi(\phi)$$

$$I = \mu r_0^2$$

$$L_z \doteq -i\hbar \frac{\partial}{\partial \phi}$$

$$-\frac{\hbar^2}{2I}\frac{d^2}{d\phi^2}\Phi(\phi) = E_{ring}\Phi(\phi) \xrightarrow{\text{Looks like}} \frac{d^2\Phi(\phi)}{d\phi^2} = -B\Phi(\phi)$$

$$\frac{L_z^2}{2I}\Phi(\phi) = E_{ring}\Phi(\phi)$$

$$\longrightarrow H_{ring} = \frac{L_z^2}{2I}$$

$$\mathbf{B} = \frac{2I}{\hbar^2} E_{ring}$$

$$\frac{L_z^2}{2I}\Phi(\phi) = E_{ring}\Phi(\phi)$$

$$L_z |m\rangle = m\hbar |m\rangle$$

$$L_z^2 |m\rangle = m^2 \hbar^2 |m\rangle$$

$$\frac{L_z^2}{2I}|m\rangle = \frac{m^2\hbar^2}{2I}|m\rangle$$

$$H_{ring} | m \rangle = E_{ring} | m \rangle \implies E_{ring} = \frac{m^2 \hbar^2}{2I}$$

$$B = \frac{2I}{\hbar^2} E_{ring} = m^2$$

Spatial Solution

$$\frac{d^2\Phi(\phi)}{d\phi^2} = -B\Phi(\phi)$$
$$\Phi(\phi) = Ne^{\pm i\sqrt{B}\phi}$$

$$\Phi(\phi + 2\pi) = \Phi(\phi) \implies \sqrt{B} = m = 0, \pm 1, \pm 2, \dots$$

$$|m\rangle \doteq \Phi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

$$H_{ring} | m \rangle = E_{ring} | m \rangle$$
 $H_{ring} \Phi_m (\phi) = E_{ring} \Phi_m (\phi)$
 $E_{|m|} = m^2 \frac{\hbar^2}{2I}$
 $| m \rangle \doteq \Phi_m (\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}$

 $m = 0, \pm 1, \pm 2 \dots$ are allowed – what are boundary conditions that determine this?

How is this similar to and different than the infinite square well problem?

m = 1 and m = -1 (and ± 2 etc.) correspond to SAME energy: DEGENERACY

Connect to bra-ket notation

$$H|m\rangle = E|m\rangle \rightarrow \frac{L_z^2}{2I}|m\rangle = \frac{m^2\hbar^2}{2I}|m\rangle$$

The ket can also be represented as a column vector

$$|m=1\rangle \doteq \left(\begin{array}{c} \vdots \\ 1 \\ 0 \\ 0 \\ 0 \\ \vdots \end{array} \right) \begin{array}{c} \leftarrow 2 \\ \leftarrow m=1 \\ \leftarrow 0 \\ \leftarrow -1 \\ \vdots \end{array} \right) \begin{array}{c} \leftarrow 2 \\ \leftarrow m=1 \\ \cdots \\ \leftarrow 1 \\ 0 \\ 0 \\ \leftarrow -2 \end{array} \right) \begin{array}{c} \leftarrow +2 \\ \cdots \\ \leftarrow 1 \\ \cdots \\ 0 \\ 0 \\ 0 \\ \cdots \\ 0 \end{array} \right) \begin{array}{c} \leftarrow +2 \\ \leftarrow m=+1 \\ \leftarrow 0 \\ \cdots \\ 0 \\ 0 \\ -1 \\ \cdots \\ -2 \end{array}$$

L, and H commute ...

$$H|m\rangle = \frac{L_z^2}{2I}|m\rangle = \frac{m^2\hbar^2}{2I}|m\rangle \qquad L_z|m\rangle = m\hbar|m\rangle$$

Superposition states yield different energies, angular momenta; practice this in worksheets.

$$|\psi\rangle = \frac{1}{2}[|1\rangle + i|-2\rangle + e^{i\delta}|0\rangle + |-1\rangle]$$

$$\psi\left(\phi\right) = \frac{1}{2} \left[\frac{e^{i\phi}}{\sqrt{2\pi}} + i\frac{e^{-i2\phi}}{\sqrt{2\pi}} + e^{i\delta}\frac{1}{\sqrt{2\pi}} + \frac{e^{-i\phi}}{\sqrt{2\pi}} \right]$$

As column vector?

Summary

- This is a "toy" system, but some aspects are instructive
- The Hamiltonian is proportional to L_7^2
- The eigenstates of L_z and H (L_z^2) are the same because the two operators commute.
- In the (position) wave function representation, the eigenstates are $(1/2^{1/2})^* \exp(im\phi)$
- In bra-ket notation, we denote the state by the quantum number m, that can be 0,±1...
- In matrix representation, the eigenstates are column vectors (infinite!) with one entry
- The eigenvalues are mh/ 2π for L_z and $m^2h^2/2I(2\pi)^2$ for H (be warned that this H goes like L^2 , not L_z^2 for real problems)
- There is degeneracy in this system; more than one eigenstate corresponds to the same energy