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Toy problem: a quantum particle
confined to a ring

Reading: Mclntyre 7.5
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Separation of variables:

* Blue has angular dependence, red is radial:
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Algebra (follow book 7.4):
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Separation of variables:

* Once we solve the (blue) angular problem, it is
the solution to the angular part of ALL central
force problems!

|

—17 =4

hz Y(H’(P) Y(Q,(P)

* Once we find A (and Y), plug back into red
equation and solve to find E (and R(r)).
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Separate angular equation

* But we need to work on blue equation more,
first.
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* Here’s the plan:
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Summary

Here’s the plan:

We’'ll consider 3 different systems, a ring (to solve
the ¢ problem), a sphere (to solve the 0 and ¢
problem), and the full hydrogen atom (to solve
the (r, 0, ¢ problem)

We'll find the quantum numbers and wave
functions that solve each problem

We'll apply all the things you’ve learned in PH424
and PH425

Please read ahead — the math is much more
intense (though not harder) than before




Particle on a ring
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Particle on a ring
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Particle on a ring
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5 Particle on aring
Spatial Solution
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% Particle on a ring
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5 Particle on aring

m=0, 1, +2 ... are allowed — what are boundary
conditions that determine this?

How is this similar to and different than the infinite
square well problem?

m =1and m =-1 (and 2 etc.) correspond to SAME
energy : DEGENERACY
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% Particle on a ring

Connect to bra-ket notation ....

L2 2h2
H|m) = E|m)— —=|m) = =—|m)

The ket can also be represented as a column vector
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% Particle on a ring
L, and H commute ...
2 242
Hlm)= 2= |my =" ) L. |m) = mh|m)

Superposition states yield different energies, angular
momenta; practice this in worksheets.
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Summary

This is a “toy” system, but some aspects are instructive
The Hamiltonian is proportional to L2

The eigenstates of L,and H (L,?) are the same because
the two operators commute.

In the (position) wave function representation, the
eigenstates are (1/2/2)* exp(im)

In bra-ket notation, we denote the state by the
guantum number m, that can be 0,+1...

In matrix representation, the eigenstates are column
vectors (infinite!) with one entry

The eigenvalues are mh/2m for L, and m2h?/2I(2m)? for
H

(be warned that this H goes like L%, not L * for real problems)

There is degeneracy in this system; more than one
eigenstate corresponds to the same energy




